
Machine Learning (NTU, Fall 2010) instructor: Hsuan-Tien Lin

Homework #8
TA in charge: Yao-Nan Chen

RELEASE DATE: 12/27/2010

DUE DATE: 01/03/2011, 4:00 pm IN CLASS

TA SESSION: 12/30/2010, 6:00 pm IN R110

The homework is OPTIONAL. That is, if you choose to turn it in, your homework score
would be calculated over HW1 to HW8; otherwise your homework score would be calculated
over HW1 to HW7. In both cases, we will use the equation

your best homework ∗ 1.5 + your worse homework ∗ 0.5 +
∑

(your other homework)

# of homework

Please make a choice BEFORE the TA grades HW8. If you choose to not turn in HW8, we
still encourage you to discuss the solutions with your classmates or TAs.

Unless granted by the instructor in advance, you must turn in a hard copy of your solutions (without the
source code) for all problems. For problems marked with (*), please follow the guidelines on the course
website and upload your source code to designated places.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but not
copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

8.1 A Bayesian View of Logistic Regression

(1) (10%) Prove that logistic regression (see Problem 4.6) equivalently minimizes the following error
function:

Ece(w) = −
N∑
n=1

(
1 + yn

2
ln

1 + tanh( 1
2w • xn)

2
+

1− yn
2

ln
1− tanh( 1

2w • xn)

2

)
.

The error function is usually called the cross-entropy.

(2) (10%) Assume that the universe generates an example (x, y) by the following procedure:

(a) generate x from some probability density function P (x)

(b) use some fixed wu (including wu0 = 1) to evaluate ρ = wu • x

(c) evaluate Q+ = exp
(
ρ
2

)
and Q− = exp

(
−ρ2
)

(d) generate y ∈ {+,−} with the probability distribution Qy/(Q+ +Q−)

If each (xn, yn) within D = {(xn, yn)}Nn=1 is generated i.i.d from the procedure above, what is the
likelihood P

(
D|w = wu

)
?

(3) (10%) Prove that logistic regression equivalently gives the maximum likelihood estimate of wu.

(4) (10%) If we take the solution ŵ from logistic regression as our estimate of the underlying wu.

Show that Q+

Q++Q−
can be estimated by 1

1+exp(−ŵ • x) .
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Note that the cross-entropy error function is often used to design other learning algorithms (for example,
some Neural Networks). In addition, the logistic function in (4) is often used to obtain “probability
estimates” of linear classifiers.

8.2 A Bayesian View of Linear Regression

(1) (10%) Assume that the universe generates an example (x, y) by the following procedure:

(a) generate x from some probability density function P (x)

(b) use some fixed wu (including wu0 = 1) to evaluate ρ = wu • x

(c) generate y ∈ R from ρ by the probability density function P (y| ρ) = 1√
2π

exp
(
−(y − ρ)2

)
If each (xn, yn) within D = {(xn, yn)}Nn=1 is generated i.i.d from the procedure above, what is the
likelihood P

(
D|w = wu

)
?

(2) (10%) Prove that least-square linear regression (see Problem 4.5) equivalently gives the maximum
likelihood estimate of wu.

(3) (10%) Assume that the universe generates an example (x, y) by the following procedure:

(a) generate some wu from

P (wu) =
1

(
√

2π)d+1 · σd+1
· exp

(
−‖w

u‖2

2σ2

)

(b) generate x from some probability density function P (x)

(c) use the wu to evaluate ρ = wu • x

(d) generate y ∈ R from ρ by the probability density function P (y| ρ) = 1√
2π

exp
(
−(y − ρ)2

)
If each (xn, yn) within D = {(xn, yn)}Nn=1 is generated i.i.d from the procedure above, what is the
posterior probability P

(
w = wu| D

)
?

(4) (10%) Prove that regularized linear regression (see Problem 5.3) equivalently gives the maximum
posterior estimate of wu. What is the relationship between λ (in Problem 5.3) and σ (here)?

(5) (10%) Prove or disprove that on any new input vector xtest, the prediction (see Problem 5.3)

g(xtest) = wreg(λ) • xtest

happens to correspond to the Bayes estimate (in the regression sense) with respect to the posterior
probability derived above.

(6) (10%) Assume that you have a strong prior belief that the universe generates an example (x, y)
by the following procedure:

(a) generate some wu that is similar to a “prior” target ŵ by

P (wu) =
1

(
√

2π)d+1 · σd+1
· exp

(
−‖w

u − ŵ‖2

2σ2

)

(b) generate x from some probability density function P (x)

(c) use the wu to evaluate ρ = wu • x

(d) generate y ∈ R from ρ by the probability density function P (y| ρ) = 1√
2π

exp
(
−(y − ρ)2

)
If each (xn, yn) within D = {(xn, yn)}Nn=1 is generated i.i.d from the procedure above, what is the
posterior probability P

(
w = wu| D

)
?

(7) (Bonus 5%) Derive a closed-form solution that gives the maximum posterior estimate of wu in
Problem 8.2(6).
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