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Syllabus of a Intro-ML course (“Machine Learning”,
Andrew Ng, Stanford, Autumn 2009)

e Supervised learning. (7 classes) Supervised learning setup. LMS.
— Logistic regression. Perceptron. Exponential family.
— Generative learning algorithms. Gaussian discriminant analysis. Naive Bayes.
— Support vector machines.
— Model selection and feature selection.
— Ensemble methods: Bagging, boosting, ECOC.
— Evaluating and debugging learning algorithms.
e Learning theory. (3 classes)
— Bias/variance tradeoff. Union and Chernoff/Hoeffding bounds.
— VCdimension. Worst case (online) learning.
— Practical advice on how to use learning algorithms.
* Unsupervised learning. (5 classes)
— Clustering. K-means. EM. Mixture of Gaussians.
— Factor analysis. PCA. MDS. pPCA.
— Independent components analysis (ICA).
e Reinforcement learning and control. (4 classes)
— MDPs. Bellman equations. Value iteration and policy iteration.
— Linear quadratic regulation (LQR). LQG.
— Q-learning. Value function approximation.
— Policy search. Reinforce. POMDPs.

HT has done a great job teaching you “Advanced SL” and “Learning
THEOYY”, and my mission is to fill one missing piece in the puzzle.’
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* When revealing that you have taken an ML course,
people would more or less expect you to have already
known something, E.g.

— Nalve Bayes.
* There are some ML methods that are so commonly

applied in research and real world that you will need
to know a little bit about them. E.g.

— K-means clustering

e There are some ML method that are too unbelievable
and amazing to ignore . E.g.

— EM framework.



To Bring you Back to the Earth

e Statistical Machine Learning. (2 hours)
— A Bayesian view about ML
— Generative learning model.

— Gaussian discriminant analysis. Naive Bayes
* Unsupervised learning. (3 hours)

— Clustering: K-means.

— EM.
 Reinforcement learning (0.5 hour)

— Value iteration and policy iteration.
— Q-learning & SARSA
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Theoretical ML vs. Statistical ML
ain

e What you have known: SL takes many (x,t) as
inputs to train a learner f(x), then apply it to
unseen x, and predict it as f(x,)

 For example (X is 3 dimensional):
— Training { ([1,2,3], 0.1), ([2,3,4],0.2), ([3,4,5], 0.5)...}
— Testing: [2,4,5] =2 0.7

e However, uncertainty exist in the real world,
therefore an error distribution (e.g. Gaussian) is
usually added: t=f(x)+error. That says, it is
possible to generate different results for same
inputs, for example:
— Training {([1,2,3],0.1), ([1,2,3],0.2),([1,2,3],0.1)...}
— Testing: [1,2,3]="
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e The output tis a distribution caused by the
error (assuming Gaussian) term:

p(t|x,W,B)= N(t|y(x,W), B), B is called a
precision parameter which equals the inverse
of the variance 1/02.
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e Given training data {X,T}, we want to
determine the unknown parameter W and 8
so we will know the distribution of v.

 Assuming we observed N data points, then
P(TIX,W, B) = p(t]x, W, B)* p(t,x,,\W, B)...* p(ty|xy, W, )

N
=] [N(t, | y(x,, W), B7) — likelihood function
n=1

In(PTIXW, ) =23 {y(x, W) - ¥ +-(In - In(2),

thisis called log - likelihood function



Maximum Likelihood Estimation (MLE)

e |dea: trying to adjust the unknown parameters
(i.e. W and ) to maximize the likelihood
function or log-likelihood function

IN(PTIXW, £)) = =LY {y(x, W)~ ¥ +-(In 5 - In(27)

e Adjusting W to maximizing this log-likelihood
function given Gaussian error function is
equivalent to finding a W,, that minimizing
the mean-square error function
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* First, we calculate W,,, that governs the mean
of the distribution.

* Then we use W,,, in the likelihood function to
determine the optimal B,,

5'”( p(TlX,W ML !ﬂ)) . 1 i{y(x \A/ \ 12 N
n=1

¢ N
Wy ) — L T =Y

2

Y 2

= pt = %Z{y(xn,wm—tn}z



4.

A \ 7

Ql cyc us A E
A OL SYS

4+ A A Y
tem using MLE

We first determine W as W,,, that minimizes the error

function 1 <
2 LWty o T

UsmgWMLtofmdBas :_Z{y(x W, )-t}

Prediction stage: Using W,, and B to construct the
distribution of t: p(t|x,W,B)= N(t|y(x,W,,), Bx2)

Predict the value of an input x” by sampling t using
the distribution in (3)

 The MLE approach consistently underestimate the

variance of the data and can lead to overfitting

2009/11/30 Probability and ML, Shou-de Lin 10
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 Why Bayesian Approach: some w’s are
preferable than others

— For example, the regularization prefers simple
model (i.e. small w’s).

— Consequently, p(w) cannot be treated as
uniformly distributed
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P(T |W)*P
ooy PP
P | X,T) = IR

PW [ X,T)oc P(T [ X,W)*PW | X)
e P(W|X): prior probability

o P(TI X,W): Likelihood probability (what MLE
tries to optimize, argmax,, P(T|X,W))

e P(W|X,T) : posterior probability




Bayesian Curve Fitting
PW | X,T)oc P(T [X,W)*PW | X)
e Likelihood probability (we have already done):

|n(P(TIX,W,ﬂ))———Z{Y(X W) -t} +—(|n,6’—|n(27f))

e Prior: Assuming independent of X, and is

Gaussian with mean 0 and variance = 1/a
M +1 o T
W

p(W | X) = (—) g2
* Then the log probablllty of posterior will be
proportion to

M +1

LS W)Y+ Do g - in(2n) +

(In o - In(27)) - %WTW
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 The best parameter set should maximize
posterior probability instead of the likelihood
probability.

e The MAP solution for the Gaussian noise and
Gaussian Prior is to find a W that minimize

N
gz{ym,‘vv)—tn}%%ww
n=1

e Maximizing the posterior distribution is
equivalent to minimizing the regularized sum-of-
squares error function with the regularization
parameter A=a/[3
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1. Learning Phrase (MLE or MAP):

— Finding W, that maximizes the likelihood
function p(T|X,W)€ = Finding W that minimize
the square error of loss function, or

— Finding W, ,p that maximizes the posterior
function P(W|T,X) € =>» Finding W that minimize
the regularized sum-of-squares loss function

2. Inference Phrase:

— When an new x’ comes in, using the determined
W to predict the output y’
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 The problem of MLE: overfitting
 The problem of MAP: lose information
P(W|X,T) P(W[X,T) P(WIXJ*)A/W
MAP W MAP W MAP w

e Since in MAP we have learned P(W | X,T), why
not using total probability theory

p(t]x, X, T)=] p(tIxW)*pW | X,T)dw
where p(t|x,w) = N(t] y(xW), 57)
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where p(t|x,w) = N(t|y(x,W), 87
e |t can be proved that when the posterior and
p(t|x,W) are Gaussian, then the predictive
distribution p(t|x,X,T) is also Gaussian with
mean m(x) and variance s?(x)
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Example of predicti
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e Green: true function. Red line: mean of the
predicted function . Red zone: one variance

from mean.
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Y(x,w) from sampling posterior
distributions over w

2009/11/30 Probability and ML, Shou-de Lin
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e Because it can not only produce the output,
but the distribution of the outputs.

— The distribution tells us more about the data,
including how confident the system has about its
prediction.

— It can be used to generate the dataset.



We have talked about Regression,
so how about Classification?
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Strategy 1: two-stage methods

Classification can be broken down into two stages

— Inference stage: for each C,, using its own training
data to learn a model for p(C, | X)

— Decision stage: Use p(C, | X) and the loss matrix to
make optimal class assignment

Strategy 2: One-shot methods (or Discriminant
model)

Using all training data to learn a function that
directly maps inputs x into the output class
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e Model 1: Generative Model

— First solve the inference problem of determining
p(x|C,) for each class C, individually.

— Separately infer the prior class probabilities p(C,).

— Use Bayes’ theorem to find the posterior class
probabilities p(C, | x) 0(C, |X) = p(x|C,)p(C,)

— note that the denominator can be p(X)
generated as p(x)=2 p(x|C,)p(C,)

— Finally use p(C, |x) and decision theory to find the best
class assignment.

* This is called generative model since we can learn
p(x) and p(C,,x)
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e Model 2: Discriminative Model

— Directly learn p(C, | x) from data ( know nothing
about p(x|C,), and p(x))

— Logistic regression is a typical example.

p ——
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Generative Model: learning P(C, | X) using Bayes Rule

— First solve the inference problem of determining p(x|C,) and p(C,)
for each class C, individually.

— Use Bayes’ rule to find the posterior class probabilities p(C, |x)

Discriminative Model: learning P(C, | X) directly from data

— Then apply decision theory to decide which Cis the best
assignment for x (e.g. Logistic Regression)

Discriminant Model: Learn a function that directly maps inputs x
into the output class

— Linear discriminant function: learning linear functions to separate
the classes

* Least Squares
e Fisher’s linear discriminant
* Perceptron Algorithm
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Generative model

— Pros: P(x) can be used to generate samples of inputs, which is
useful for knowledge discovery & data mining (e.g. outlier
detection and novelty detection).

— Cons: very demanding since it has to find the joint distribution
of Ck and x. Need a lot training data.

Discriminative Model
— Pros: can be learned with fewer data
— Cons: cannot learn the detail structure of the data

5 1.2
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Generative vs. Discriminant Model (1/3)

A discriminant approach learns a discriminant
function and use it for decision making. It
does not learn P(C, | x).

e However, P(C, |x) is useful in many aspects

1.

2.

It can be combined with the cost function to
produce the final decision. If the cost function
changes, we don’t need to re-train the whole
model as a discriminant model does.

It can be used to determine the reject region.
P(C,|x)=0.1, P(C,, | x)= 0.05
P(C,|x)=0.7, P(C,|x)=0. 8



Generative vs. Discriminant Model (2/3)

 Generative Model takes care of the class prior
P(y) explicitly.
— E.g.: in cancer prediction, only a small amount of
data (e.g. 0.1 %) are positive.

— A normal classifier will guess negative and receive
99.9% accuracy.

— Using P(C,|x) and P(C,) allow us to ignore the
inference from the prior during learning.
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e Generative model are better in terms of
combining several models:

— Assuming in the previous example, we have two types
of information for each photo:
e The image features (X))
e The social information (X,)

* |t might be more effective and meaningful to
build separate models P(C, | X:), P(C,[X,) for these
two sets of features.

e Generative allows us to combine these models as:

PICIXiXs) p(C, %,%,) oc P(%, %, | C,)P(C,) o

Naive b%mfssumptlon
P(C, | x)P(C, | x
P(X |C,)P(X.C)P(C,) o ¢ klp'()c() ALY
k




“I"\.I.\lf\ DAawvA A I n+
INdIVT Daytc AS |||J N
p(x1C)P(Cy)
Recall in Bayesian Setup, we have P(Cc[X)= pEX) ‘

If we assume features of an instance are independent
given the class (conditionally independent)

P(X]C)=P(Xy, X5 X, |C) = HP(X |C)

Therefore, we then only need to know P(X | C) for each
possible pair of a feature-value and class.

If C and all X; are binary, this requires specifying only 2n
parameters:

— P(X.=true | C=true) and P(X;=true | C=false) for each X;

— P(X=false | C) = 1—P(X=true | C)

Compared to specifying 2" parameters without any
independence assumptions.
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e This is another generative model.

e GDA assumes p(x|y) is distributed according
to a Multivariate Normal Distribution (MND).

e An MND in n-dimensions is parameterized by
a mean vector ueR" and a covariance matrix
2eR™" also written as N(u, 2). Its density is:

\ 1 1 P \
p{'{* I ZJ — (271_)}12‘2‘12 exp (2('{ - .U'JTZ l(:r - ﬂ))
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* p(x]y) is MND, p(y=0)=®, p(y=1)=1-O

, 1 Iy 1/
plely=0) = CSREDE exp (—5[.;11 — 1) (& — ,mﬁ)

, _ 1 Iy Ts—1,
plely=1) = ESRENE exp _5“1' — ) X (2 — )

(assuming different y shares the same X )
 The log-likelyhood of the data is

1

U, o, p1,2) = h}ng LDy oy 1y 2)

1

= log | [ p(@1y"; o, pa, D)p(y'”; ).
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e Using maximum likelihood estimate (MLE), we
can obtain

I
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Discussion: GDA vs. Logistic Regression

In GDA, p(y|x) is of the form 1/(1+exp(-0"x)), where 0O is a
function of o, 2, .

— This is exactly the form of logistic regression to model p(y|x).

That says, if p(x|y) is multivariate gaussian, then p(y|x) follows a
logistic function.

— However, the converse is not true. This implies that GDA makes
stronger modeling assumptions about the data than LR does.

 Training on the same dataset, these two algorithms will
produce different decision boundaries.

— If p(x|y) is indeed Gaussian, then GDA will get better results.
That says, if x is some sort of the mean value of something
whose size is not small, then based on central-limit-theorem,
GDA should perform very well.

— If p(x|y=1) and p(x|y=0) are both Poisson, then P(y|x) will be
logistic. In this case, LR can work better than GDA.

— If we are sure the data is non-Gaussian, we should use LR than
GDA



