Introduction to Machine Learning (Part 1: Statistical Machine Learning)

Shou-de Lin

CSIE/GINM, NTU sdlin@csie.ntu.edu.tw

Syllabus of a Intro-ML course ("Machine Learning", Andrew Ng, Stanford, Autumn 2009)

- Supervised learning. (7 classes) Supervised learning setup. LMS.
 - Logistic regression. Perceptron. Exponential family.
 - Generative learning algorithms. Gaussian discriminant analysis. Naive Bayes.
 - Support vector machines.
 - Model selection and feature selection.
 - Ensemble methods: Bagging, boosting, ECOC.
 - Evaluating and debugging learning algorithms.
- **Learning theory.** (3 classes)
 - Bias/variance tradeoff. Union and Chernoff/Hoeffding bounds.
 - VC dimension. Worst case (online) learning.
 - Practical advice on how to use learning algorithms.
- Unsupervised learning. (5 classes)
 - Clustering. K-means. EM. Mixture of Gaussians.
 - Factor analysis. PCA. MDS. pPCA.
 - Independent components analysis (ICA).
- Reinforcement learning and control. (4 classes)
 - MDPs. Bellman equations. Value iteration and policy iteration.
 - Linear quadratic regulation (LQR). LQG.
 - Q-learning. Value function approximation.
 - Policy search. Reinforce. POMDPs.

HT has done a great job teaching you "Advanced SL" and "Learning Theory", and my mission is to fill one missing piece in the puzzle.²

Why teaching "Intro to ML"?

- When revealing that you have taken an ML course, people would more or less expect you to have already known something, E.g.
 - Naïve Bayes.
- There are some ML methods that are so commonly applied in research and real world that you will need to know a little bit about them. E.g.
 - K-means clustering
- There are some ML method that are too unbelievable and amazing to ignore . E.g.
 - EM framework.

To Bring you Back to the Earth

- Statistical Machine Learning. (2 hours)
 - A Bayesian view about ML
 - Generative learning model.
 - Gaussian discriminant analysis. Naïve Bayes
- Unsupervised learning. (3 hours)
 - Clustering: K-means.
 - **–** EM.
- Reinforcement learning (0.5 hour)
 - Value iteration and policy iteration.
 - Q-learning & SARSA

Theoretical ML vs. Statistical ML

- What you have known: SL takes many (x,t) as inputs to train a learner f(x), then apply it to unseen x_k and predict it as f(x_k)
- For example (X is 3 dimensional):
 - Training { ([1,2,3], 0.1), ([2,3,4],0.2), ([3,4,5], 0.5)...}
 - Testing: $[2,4,5] \rightarrow 0.7$
- However, uncertainty exist in the real world, therefore an error distribution (e.g. Gaussian) is usually added: t=f(x)+error. That says, it is possible to generate different results for same inputs, for example:
 - Training {([1,2,3],0.1), ([1,2,3],0.2),([1,2,3],0.1)...}
 - Testing: [1,2,3]=?

The Probabilistic Form of t

 The output t is a distribution caused by the error (assuming Gaussian) term:

p(t|x,W, β)= N(t|y(x,W), β^{-1}), β is called a **precision parameter** which equals the inverse of the variance $1/\sigma^2$.

•

The SL process under probability

- Given training data {X,T}, we want to determine the unknown parameter W and β so we will know the distribution of y.
- Assuming we observed N data points, then

$$p(T/X, W, \beta) = p(t_1/x_1, W, \beta) * p(t_2/x_2, W, \beta) ... * p(t_N/x_N, W, \beta)$$

$$= \prod_{n=1}^{N} N(t_n \mid y(x_n, W), \beta^{-1}) \rightarrow likelihood \text{ function}$$

$$\ln(p(T/X, W, \beta)) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, W) - t_n\}^2 + \frac{N}{2} (\ln \beta - \ln(2\pi)),$$

this is called log - likelihood function

Maximum Likelihood Estimation (MLE)

 Idea: trying to adjust the unknown parameters (i.e. W and β) to maximize the likelihood function or log-likelihood function

$$\ln(p(T/X, W, \beta)) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, W) - t_n\}^2 + \frac{N}{2} (\ln \beta - \ln(2\pi))$$

 Adjusting W to maximizing this log-likelihood function given Gaussian error function is equivalent to finding a W_{ML} that minimizing the mean-square error function

Maximum Likelihood Estimation for B

- First, we calculate W_{ML} that governs the mean of the distribution.
- Then we use W_{ML} in the likelihood function to determine the optimal β_{Ml}

$$\frac{\partial \ln(p(T/X, W_{ML}, \beta))}{\partial \beta} = -\frac{1}{2} \sum_{n=1}^{N} \{y(x_n, W_{ML}) - t_n\}^2 + \frac{N}{2\beta} = 0$$

$$\Rightarrow \beta^{-1} = \frac{1}{N} \sum_{n=1}^{N} \{ y(x_n, W_{ML}) - t_n \}^2$$

A SL system using MLE

1. We first determine W as W_{ML} that minimizes the error

function $\frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 \longrightarrow \text{Tend to overfit}$

- 2. Using W_{ML} to find β as $\beta^{-1} = \frac{1}{N} \sum_{n=1}^{N} \{ y(x_n, W_{ML}) t_n \}^2$
- 3. Prediction stage: Using W_{ML} and β to construct the distribution of t: $p(t|x,\mathbf{W},\beta) = N(t|y(x,W_{ML}), \beta_{ML}^{-1})$
- 4. Predict the value of an input x' by sampling t using the distribution in (3)
- The MLE approach consistently underestimate the variance of the data and can lead to overfitting

Bayesian Approach for Regression

- Why Bayesian Approach: some w's are preferable than others
 - For example, the regularization prefers simple model (i.e. small w's).
 - Consequently, p(w) cannot be treated as uniformly distributed

Bayes' Rule Review

$$P(W \mid T) = \frac{P(T \mid W) * P(W)}{P(T)}$$

$$P(W \mid X,T) = \frac{P(T \mid X,W) * P(W \mid X)}{P(T \mid X)}$$

$$P(W \mid X,T) \propto P(T \mid X,W) * P(W \mid X)$$

- P(W|X): prior probability
- P(Tl X,W): Likelihood probability (what MLE tries to optimize, argmax_w P(T|X,W))
- P(W|X,T): posterior probability

Bayesian Curve Fitting

$$P(W \mid X,T) \propto P(T \mid X,W) * P(W \mid X)$$

Likelihood probability (we have already done):

$$\ln(p(T/X, W, \beta)) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, W) - t_n\}^2 + \frac{N}{2} (\ln \beta - \ln(2\pi))$$

 Prior: Assuming independent of X, and is Gaussian with mean 0 and variance = $1/\alpha$

$$p(W \mid X) = \left(\frac{\alpha}{2\pi}\right)^{\frac{M+1}{2}} e^{-\frac{\alpha}{2}w^T w}$$

 $p(W \mid X) = (\frac{\alpha}{2\pi})^{\frac{M+1}{2}} e^{-\frac{\alpha}{2}w^Tw}$ • Then the log probability of posterior will be proportion to

$$-\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, W) - t_n \right\}^2 + \frac{N}{2} (\ln \beta - \ln(2\pi)) + \frac{M+1}{2} (\ln \alpha - \ln(2\pi)) - \frac{\alpha}{2} w^T w$$

Maximum Posterior Estimation (MAP)

$$-\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, W) - t_n\}^2 + \frac{N}{2} (\ln \beta - \ln(2\pi)) + \frac{M+1}{2} (\ln \alpha - \ln(2\pi)) - \frac{\alpha}{2} w^T w$$

- The best parameter set should maximize posterior probability instead of the likelihood probability.
- The MAP solution for the Gaussian noise and Gaussian Prior is to find a W that minimize

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, W) - t_n\}^2 + \frac{\alpha}{2} w^T w$$

• Maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function with the regularization parameter $\lambda = \alpha/\beta$

What we have discussed so far

1. Learning Phrase (MLE or MAP):

- Finding W_{ML} that maximizes the likelihood function p(T|X,W) ← → Finding W that minimize the square error of loss function, or
- Finding W_{MAP} that maximizes the posterior function P(W|T,X) ← → Finding W that minimize the regularized sum-of-squares loss function

2. Inference Phrase:

When an new x' comes in, using the determined
 W to predict the output y'

Potential Issues

- The problem of MLE: overfitting
- The problem of MAP: lose information

 Since in MAP we have learned P(W|X,T), why not using total probability theory

$$p(t \mid x, X, T) = \int_{w} p(t \mid x, W) * p(W \mid X, T) dW$$
where $p(t \mid x, w) = N(t \mid y(x, W), \beta^{-1})$

The predictive distribution of t

$$p(t \mid x, X, T) = \int_{w} p(t \mid x, W) * p(W \mid X, T) dW$$
where $p(t \mid x, w) = N(t \mid y(x, W), \beta^{-1})$

 It can be proved that when the posterior and p(t|x,W) are Gaussian, then the predictive distribution p(t|x,X,T) is also Gaussian with mean m(x) and variance s²(x)

$$m(x) = \beta \phi(x)^T \mathbf{S} \sum_{n=1}^N \phi(x_n) t_n$$

$$s^2(x) = \beta^{-1} + \phi(x)^T \mathbf{S} \phi(x).$$
 sigiven by

 $\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(x_n) \phi(x)^{\mathrm{T}}$

Example of predictive distribution

 Green: true function. Red line: mean of the predicted function. Red zone: one variance from mean.

Y(x,w) from sampling posterior distributions over w

The benefit of Statistical Learning

- Because it can not only produce the output, but the distribution of the outputs.
 - The distribution tells us more about the data, including how confident the system has about its prediction.
 - It can be used to generate the dataset.

We have talked about Regression, so how about Classification?

Two Classification Strategies

Strategy 1: two-stage methods

Classification can be broken down into two stages

- Inference stage: for each C_k , using its own training data to learn a model for $p(C_k|X)$
- Decision stage: Use $p(C_k|X)$ and the loss matrix to make optimal class assignment

Strategy 2: One-shot methods (or Discriminant model)

Using all training data to learn a function that directly maps inputs x into the output class

Two Models for Strategy 1 (1/2)

- Model 1: Generative Model
 - First solve the inference problem of determining $p(x|C_k)$ for each class C_k individually.
 - Separately infer the prior class probabilities $p(C_k)$.
 - Use Bayes' theorem to find the posterior class probabilities $p(C_k|x)$ $p(C_k|x) = \frac{p(x|C_k)p(C_k)}{p(x)}$
 - note that the denominator can be generated as $p(x)=\sum p(x|C_k)p(C_k)$
 - Finally use $p(C_k|x)$ and decision theory to find the best class assignment.
- This is called generative model since we can learn p(x) and p(C_k,x)

2009/11/30

Two Approaches for Strategy 1 (2/2)

- Model 2: Discriminative Model
 - Directly learn $p(C_k|x)$ from data (know nothing about $p(x|C_k)$, and p(x))
 - Logistic regression is a typical example.

Classification Models

- Generative Model: learning P(C_k | X) using Bayes Rule
 - First solve the inference problem of determining $p(x|C_k)$ and $p(C_k)$ for each class C_k individually.
 - Use Bayes' rule to find the posterior class probabilities $p(C_k|x)$
- Discriminative Model: learning P(C_k | X) directly from data
 - Then apply decision theory to decide which C is the best assignment for x (e.g. Logistic Regression)
- Discriminant Model: Learn a function that directly maps inputs x into the output class
 - Linear discriminant function: learning linear functions to separate the classes
 - Least Squares
 - Fisher's linear discriminant
 - Perceptron Algorithm

Generative vs. Discriminative Model

Generative model

- Pros: P(x) can be used to generate samples of inputs, which is useful for knowledge discovery & data mining (e.g. outlier detection and novelty detection).
- Cons: very demanding since it has to find the joint distribution of Ck and x. Need a lot training data.

Discriminative Model

- Pros: can be learned with fewer data
- Cons: cannot learn the detail structure of the data

Generative vs. Discriminant Model (1/3)

- A discriminant approach learns a discriminant function and use it for decision making. It does not learn $P(C_k|x)$.
- However, $P(C_k|x)$ is useful in many aspects
 - 1. It can be combined with the cost function to produce the final decision. If the cost function changes, we don't need to re-train the whole model as a discriminant model does.
 - 2. It can be used to determine the reject region.
 - $P(C_{HT}|x) = 0.1$, $P(C_{PI}|x) = 0.05$
 - $P(C_{HT}|x)=0.7$, $P(C_{PI}|x)=0.8$

Generative vs. Discriminant Model (2/3)

- Generative Model takes care of the class prior P(y) explicitly.
 - E.g.: in cancer prediction, only a small amount of data (e.g. 0.1 %) are positive.
 - A normal classifier will guess negative and receive 99.9% accuracy.
 - Using $P(C_k|x)$ and $P(C_k)$ allow us to ignore the inference from the prior during learning.

Generative vs. Discriminant Model (3/3)

- Generative model are better in terms of combining several models:
 - Assuming in the previous example, we have two types of information for each photo:
 - The image features (X_i)
 - The social information (X_s)
- It might be more effective and meaningful to build separate models $P(C_k|X_i)$, $P(C_k|X_s)$ for these two sets of features.
- Generative allows us to combine these models as:

$$P(C_{k}|X_{i},X_{s}) \quad p(C_{k}|x_{i},x_{s}) \propto P(x_{i},x_{s}|C_{k})P(C_{k}) \propto$$
Naïve bayes assumption
$$P(x_{i}|C_{k})P(x_{s}|C_{k})P(C_{k}) \propto \frac{P(C_{k}|x_{i})P(C_{k}|x_{s})}{P(C_{k})}$$

$$P(C_{k}|X_{s}|C_{k})P(C_{k}) \propto \frac{P(C_{k}|x_{s})P(C_{k}|x_{s})}{P(C_{k})}$$

Naïve Baye Assumption

- Recall in Bayesian Setup, we have $p(C_k \mid x) = \frac{p(x \mid C_k)p(C_k)}{p(x)}$
- If we assume features of an instance are independent given the class (conditionally independent).

$$P(X \mid C) = P(X_1, X_2, \dots X_n \mid C) = \prod_{i=1}^n P(X_i \mid C)$$

- Therefore, we then only need to know $P(X_i | C)$ for each possible pair of a feature-value and class.
- If C and all X_i are binary, this requires specifying only 2n parameters:
 - $P(X_i = \text{true} \mid C = \text{true})$ and $P(X_i = \text{true} \mid C = \text{false})$ for each X_i
 - $P(X_i=false \mid C) = 1 P(X_i=true \mid C)$
- Compared to specifying 2ⁿ parameters without any independence assumptions.

Gaussian Discriminant Analysis (GDA)

- This is another generative model.
- GDA assumes p(x|y) is distributed according to a Multivariate Normal Distribution (MND).
- An MND in n-dimensions is parameterized by a **mean vector** $\mu \in \mathbb{R}^n$ and a covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$, also written as $N(\mu, \Sigma)$. Its density is:

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$$

Examples for 2-D Multivariate Normal Distribution

The Model for GDA (1/2)

• p(x|y) is MND, $p(y=0)=\Phi$, $p(y=1)=1-\Phi$

$$p(x|y=0) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_0)^T \Sigma^{-1}(x-\mu_0)\right)$$
$$p(x|y=1) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)\right)$$

(assuming different y shares the same Σ)

The log-likelyhood of the data is

$$\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^{m} p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$$
$$= \log \prod_{i=1}^{m} p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi).$$

The Model for GDA (2/2)

Using maximum likelihood estimate (MLE), we can obtain

$$\phi = \frac{1}{m} \sum_{i=1}^{m} 1\{y^{(i)} = 1\}$$

$$\mu_0 = \frac{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}x^{(i)}}{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}}$$

$$\mu_1 = \frac{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}x^{(i)}}{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_{y^{(i)}})(x^{(i)} - \mu_{y^{(i)}})^T$$

Discussion: GDA vs. Logistic Regression

- In GDA, p(y|x) is of the form $1/(1+exp(-\theta^Tx))$, where θ is a function of φ , Σ , μ .
 - This is exactly the form of logistic regression to model p(y|x). That says, if p(x|y) is multivariate gaussian, then p(y|x) follows a logistic function.
 - However, the converse is not true. This implies that GDA makes stronger modeling assumptions about the data than LR does.
- Training on the same dataset, these two algorithms will produce different decision boundaries.
 - If p(x|y) is indeed Gaussian, then GDA will get better results.
 That says, if x is some sort of the mean value of something whose size is not small, then based on central-limit-theorem, GDA should perform very well.
 - If p(x|y=1) and p(x|y=0) are both Poisson, then P(y|x) will be logistic. In this case, LR can work better than GDA.
 - If we are sure the data is non-Gaussian, we should use LR than GDA