PROOF OF (THE INDUCTION STEP OF) THE SAUER'S LEMMA

Hsuan-Tien Lin

Setup

1. A set of N-bit vectors of +/- is called a N-long set. For instance, the following matrix represents a 4-long set, where each row is an element of the set:

+	+	+	+
+	+	-	+
+	-	-	+
-	+	+	-

- 2. An *N*-long set is said to be **complete** if it includes all possible 2^N distinct vectors. Otherwise it is said to be **incomplete**. For instance, the following matrix represents an incomplete set:
- 3. An N-long set is said to be M-incomplete if projecting the vectors to any M dimensions results in an incomplete set. For instance, by projecting the 4-long set above to any of the two columns (dimensions), we see that the set is 2-incomplete:

1	2	1	3	1	4	2	3	2	4	3	4
+	+	+	+	+	+	+	+	+	+	+	+
+	-	+	-	-	-	+	-	-	+	-	+
-	+	-	+			-	-	+	-	+	-

4. B(N, M) is defined to be the maximum number of unique elements in an N-long and M-incomplete set. For instance, the following matrix represents a set that achieves B(4, 2):

+	+	+	+
+	+	-	+
+	-	-	+
-	+	+	-
+	+	+	-

The Main Lemma

Lemma 1 (The induction step)

$$B(N, M) \le B(N - 1, M) + B(N - 1, M - 1).$$

Proof. Consider the set S that achieves B(N, M). We first project the vectors in S into the first N-1 dimensions to get $V = \{v_i\}$, where v_i 's are unique. For instance, consider the set that achieves B(4, 2) above, after projecting we get:

We can then separate V to three disjoint subsets:

- A_1 : there is only $(v_i, +)$ in S, but no $(v_i, -)$. For instance, $\{v_2, v_3\}$.
- A_2 : there is only $(v_i, -)$ in S, but no $(v_i, +)$. For instance, $\{v_4\}$.
- A_3 : both $(v_i, +)$ and $(v_i, -)$ are in S. For instance, $\{v_1\}$.

By reorganizing the rows, we get

$$S = \begin{bmatrix} A_1 & + \\ A_2 & - \\ A_3 & + \\ A_3 & - \end{bmatrix} ; \quad V = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}$$

Now let $a = |A_1| + |A_2|$, and $b = |A_3|$. We see that¹

$$|V| = a + b$$
; $B(N, M) = |S| = a + 2b.$ (1)

1. We first look at V:

$$V = \left[\begin{array}{c} A_1 \\ A_2 \\ A_3 \end{array} \right]$$

If V is not M-incomplete, obviously S is also not M-incomplete—**a** contradition!. Thus, V must be M-incomplete, and

$$|V| \le B(N-1, M). \tag{2}$$

2. We now look at the subset (submatrix)

$$S_3 = \left[\begin{array}{cc} A_3 & + \\ A_3 & - \end{array} \right]$$

If A_3 is not (M-1)-incomplete, then S_3 (and hence S) is not M-incomplete—**a** contradition! Thus, A_3 must be (M-1)-incomplete, and

$$b = |A_3| \le B(N - 1, M - 1).$$
(3)

By combining (1), (2), and (3), we get the desired result.

Lemma 2 (Sauer's Lemma)

$$B(N, M) \le \sum_{m=0}^{M-1} C(N, m) \le N^{M-1} + 1.$$

Proof. The first inequality can be proved using mathematical induction (with Lemma 1). The second inequality can be proved using mathematical induction, too.

¹Here $|\cdot|$ means the size of the set, or (equivalently) the number of rows in the representing matrix.