
Machine Learning (NTU, Fall 2008) instructor: Hsuan-Tien Lin

NEURAL NETWORKS AND BACKPROPAGATION

original version provided by Professor Yaser S. Abu-Mostafa in Caltech CS156;
notations slightly modified by Professor Hsuan-Tien Lin

A set of neural networks is a learning model, and backpropagation is the learning algo-
rithm that goes with it.

The Learning Model

We consider a target function f : R
d → R to be learned by a feedforward neural network

(or multi-layer perceptron). The network consists of L layers of neurons. Layer l (l =
1, ..., L) has d(l) neurons that connect d(l−1) inputs to d(l) outputs. The outputs of layer
l−1 are the inputs to layer l. The inputs to the first layer (l = 1) are the function inputs
(hence d(0) = d) and the output of the last layer (l = L) is the function output (hence
d(L) = 1).

l = 1

l = 2

l = 3

l = 4

l = L−1

l = L

o u t p u t

i n p u t

B
 A

 C
 K

 W
 A

 R
 D

F
 O

 R
 W

 A
 R

 D

Let us denote the inputs and outputs of layer l by x
(l−1)
i (where i = 0, ..., d(l−1)) and x

(l)
j

(where j = 1, ..., d(l)), respectively. Notice that the zero subscript denotes the fixed -1
‘input’ in each layer that represents the threshold term. The weights of the neurons in

Courtesy of Y. S. Abu-Mostafa (Caltech) 1 of 4



Machine Learning (NTU, Fall 2008) instructor: Hsuan-Tien Lin

layer l are

w
(l)
ij for











1 ≤ l ≤ L layers

0 ≤ i ≤ d(l−1) inputs

1 ≤ j ≤ d(l) outputs

Neuron j in layer l implements the function

x
(l)
j = ϕ





d(l−1)
∑

i=0

w
(l)
ij x

(l−1)
i





where ϕ(s) = tanh(s) = (es − e−s)/(es + e−s). It is convenient to separate the linear and

nonlinear portions of the neuron function by defining the intermediate variables s
(l)
j such

that

s
(l)
j =

d(l−1)
∑

i=0

w
(l)
ij x

(l−1)
i

x
(l)
j = ϕ(s

(l)
j )

The overall function of the network gr(x) is obtained by applying x to the input x
(0)
1 ...x

(0)

d(0) ,
computing the outputs of each layer recursively from l = 1 to l = L according to the
above equation, and assigning gr(x) to the output of the last layer x

(L)
1 . This computation

proceeds in the forward direction, from l = 1 to l = L.

The Learning Algorithm

Given a neural network with a certain architecture, we would like to learn a target
function f : R

d → R represented to us by examples (x1, y1), ..., (xN , yN), where yn =
f(xn). We define an error function En(w) = (gr(xn) − yn)2 that measures how well the
network (i.e., with the current values of the weights) approximates the target function

on the nth example. We would like to compute the gradient of this error ∂En/∂w
(l)
ij for

i = 0, ..., d(l−1), j = 1, ..., d(l), l = 1, ..., L. Once we have the example-wise gradient, we
are going to apply stochastic gradient descent to modify the weights

w
(l)
ij ← w

(l)
ij − η

∂En

∂w
(l)
ij

where η is the learning rate. We will repeat this for a sufficiently large number of itera-
tions.

The key to doing this efficiently is to be able to evaluate ∂En/∂w
(l)
ij quickly, and this

is the essence of the backpropagation algorithm. We assume that we applied the input
of the example to the network and carried out the forward computation to the network
output. In doing so, we have computed all the intermediate x

(l)
j and s

(l)
j . To compute the

partial derivatives that we now need, we start by writing

∂En

∂w
(l)
ij

=
∂En

∂s
(l)
j

×
∂s

(l)
j

∂w
(l)
ij

Courtesy of Y. S. Abu-Mostafa (Caltech) 2 of 4



Machine Learning (NTU, Fall 2008) instructor: Hsuan-Tien Lin

which is evident since w
(l)
ij affects the output only through s

(l)
j (the linear sum involving

w
(l)
ij that goes through the nonlinearity ϕ(·) to become an input to the next layer).

x

w

s

x

(l−1)
i

(l)

ij

(l)
j

(l)
j

We notice that ∂s
(l)
j /∂w

(l)
ij = x

(l−1)
i which is readily available, so the trick is to compute

∂En/∂s
(l)
j which we will call δ

(l)
j . Here is how to do it. At the last layer, l = L, we have

En = (x
(L)
1 − y)2 (the error measure on some example). Hence, we can compute

δ
(L)
1 =

∂En

∂s
(L)
1

=
∂En

∂x
(L)
1

×
∂x

(L)
1

∂s
(L)
1

The first factor is 2(x
(L)
1 − y) and the second factor is ϕ′(s

(L)
1 ). Thus we have the delta

for the last layer. We now recursively compute the deltas for layer l − 1 given the deltas
for layer l (backward).

δ
(l−1)
i =

∂En

∂s
(l−1)
i

=

d(l)
∑

j=1

∂En

∂s
(l)
j

×
∂s

(l)
j

∂x
(l−1)
i

×
∂x

(l−1)
i

∂s
(l−1)
i

=
d(l)
∑

j=1

δ
(l)
j × w

(l)
ij × ϕ′(s

(l−1)
i )

Noticing that ϕ′(s) = 1 − ϕ2(s) and that ϕ(s
(l)
i ) = x

(l)
i , the deltas can be expressed

recursively for l = L, L− 1, ... as

δ
(l−1)
i =

(

1− (x
(l−1)
i )2

)

d(l)
∑

j=1

w
(l)
ij δ

(l)
j

Courtesy of Y. S. Abu-Mostafa (Caltech) 3 of 4



Machine Learning (NTU, Fall 2008) instructor: Hsuan-Tien Lin

All quantities are available from the forward pass, hence we can compute the deltas (notice
the similarity of the delta computation in the backward pass to the x computation in the
forward pass). With the deltas, we have the gradient of the error with respect to all the
weights, and we can implement stochastic gradient descent.

x (l−1)
i

s(l−1)
i

w (l)
ij

s j
(l)

x j
(l)

Courtesy of Y. S. Abu-Mostafa (Caltech) 4 of 4


