Introduction to Adaptive Boosting

Hsuan-Tien Lin

National Taiwan University

Machine Learning, Fall 2008

イロン イボン イヨン

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

イロン イボン イヨン

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

・ロト ・ 同ト ・ ヨト ・

크 > 크

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

Apple Recognition Problem

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

イロト イ押ト イヨト イヨト

2

• □ > • □ > • = > •

크 > 크

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

< □ > < 同 > < 三 > <

크 > 크

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

< □ > < 同 > < 三 > <

크 > 크

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

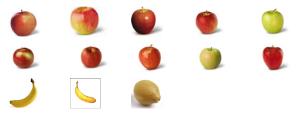
< □ > < 同 > < 三 > <

- ⊒ →

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

ъ

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.


< < >> < </>

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

< < >> < </>

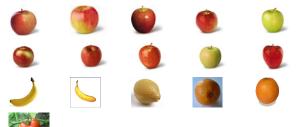
- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

< 🗇 🕨

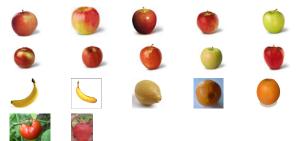
.⊒...>

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

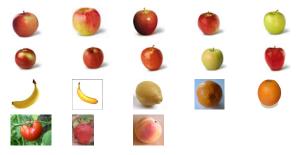
.⊒...>


- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

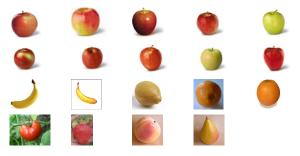
< 🗇 🕨


ъ

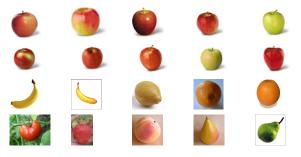
- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.


ъ

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.


ъ

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

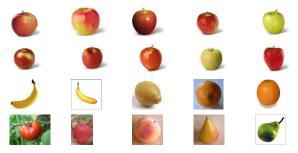

ъ

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

ъ

- Is this a picture of an apple?
- We want to teach a class of 6 year olds.
- Gather photos from NY Apple Asso. and Google Image.

< ∃ > <

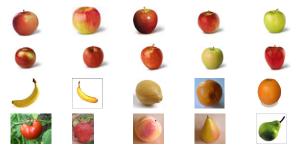

< < >> < </>

Our Fruit Class Begins

Teacher: How would you describe an apple? Michael?

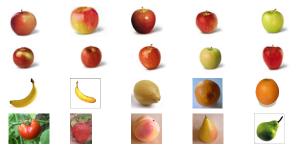
Michael: I think apples are circular.

(Class): Apples are circular.



- < ≣ → <

< < >> < </>


Our Fruit Class Begins

- Teacher: How would you describe an apple? Michael? Michael: I think apples are circular.
- (Class): Apples are circular.

Our Fruit Class Begins

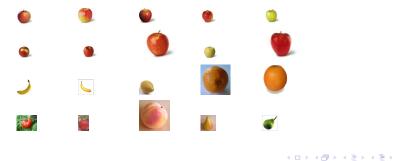
- Teacher: How would you describe an apple? Michael?
- Michael: I think apples are circular.
- (Class): Apples are circular.

Our Fruit Class Continues

Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?

Tina: It looks like apples are red.

(Class): Apples are somewhat circular and somewhat red.



Our Fruit Class Continues

Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?

Tina: It looks like apples are red.

(Class): Apples are somewhat circular and somewhat red.

・ 同 ト ・ ヨ ト ・ ヨ ト

Our Fruit Class Continues

Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?

Tina: It looks like apples are red.

(Class): Apples are somewhat circular and somewhat red.

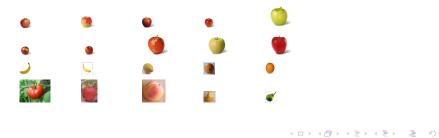
ヘロト ヘアト ヘビト ヘビト

Our Fruit Class Continues

Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?

Joey: Apples could also be green.

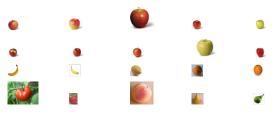
(Class): Apples are somewhat circular and somewhat red and possibly green.


Our Fruit Class Continues

- Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?
 - Joey: Apples could also be green.
 - (Class): Apples are somewhat circular and somewhat red and possibly green.

Our Fruit Class Continues

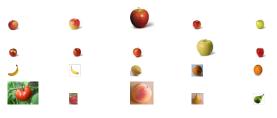
- Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?
 - Joey: Apples could also be green.
 - (Class): Apples are somewhat circular and somewhat red and possibly green.


ヘロト ヘアト ヘビト ヘビト

Our Fruit Class Continues

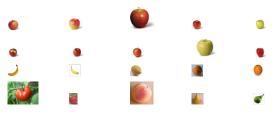
Teacher: Yes. It seems that apples might be circular, red, green. But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?

Jessica: Apples have stems at the top.


(Class): Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top.

くロト (過) (目) (日)

Our Fruit Class Continues


- Teacher: Yes. It seems that apples might be circular, red, green. But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?
- Jessica: Apples have stems at the top.
 - (Class): Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top.

ヘロト ヘアト ヘビト ヘビト

Our Fruit Class Continues

- Teacher: Yes. It seems that apples might be circular, red, green. But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?
- Jessica: Apples have stems at the top.
 - (Class): Apples are somewhat circular, somewhat red, possibly green, and may have stems at the top.

Put Intuition to Practice

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.
- AdaBoost Algorithm (Freund and Schapire 1997)
 - Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.

• For
$$t = 1, 2, \cdots, T$$
,

- Learn a simple rule *h_t* from emphasized training examples.
- Get the confidence α_t of such rule
- Emphasize the training examples that do not agree with *h*_t.

イロト イポト イヨト イヨト 三連

• Output: combined function $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Put Intuition to Practice

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.
- AdaBoost Algorithm (Freund and Schapire 1997)
 - Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.

• For
$$t = 1, 2, \cdots, T$$
,

- Learn a simple rule *h*^t from emphasized training examples.
- Get the confidence α_t of such rule
- Emphasize the training examples that do not agree with *h*_t.

イロト イポト イヨト イヨト 三連

• Output: combined function $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.
- AdaBoost Algorithm (Freund and Schapire 1997)
 - Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.

• For
$$t = 1, 2, \cdots, T$$
,

- Learn a simple rule *h*^t from emphasized training examples.
- Get the confidence α_t of such rule
- Emphasize the training examples that do not agree with *h*_t.

イロト イポト イヨト イヨト 一座

• Output: combined function $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.
- AdaBoost Algorithm (Freund and Schapire 1997)
 - Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.

- Learn a simple rule *h*^t from emphasized training examples.
- Get the confidence α_t of such rule
- Emphasize the training examples that do not agree with *h*_t.

イロト イポト イヨト イヨト 一座

```
• Output: combined function H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)
```

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.
- AdaBoost Algorithm (Freund and Schapire 1997)
 - Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.

- Learn a simple rule *h*^t from emphasized training examples.
- Get the confidence α_t of such rule
- Emphasize the training examples that do not agree with *h*_t.

イロト イポト イヨト イヨト 一座

• Output: combined function $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Intuition

- Combine simple rules to approximate complex function.
- Emphasize incorrect data to focus on valuable information.
- AdaBoost Algorithm (Freund and Schapire 1997)
 - Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.

- Learn a simple rule *h*^t from emphasized training examples.
- Get the confidence α_t of such rule
- Emphasize the training examples that do not agree with *h*_t.

イロト イポト イヨト イヨト 一座

• Output: combined function
$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

イロト イポト イヨト イヨト 三連

Some More Details

AdaBoost Algorithm

- Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.
- For *t* = 1, 2, · · · , *T*,
 - Learn a simple rule h_t from emphasized training examples.

• How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.

- Get the confidence α_t of such rule
 - How? An h_t with lower error should get higher α_t .
- Emphasize the training examples that do not agree with *h*_t.
 - How? Maintain an emphasis value *u_n* per example.
- Output: combined function $H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

イロト イポト イヨト イヨト 三連

Some More Details

- Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.
- For *t* = 1, 2, · · · , *T*,
 - Learn a simple rule h_t from emphasized training examples.
 - How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - Get the confidence α_t of such rule
 - How? An h_t with lower error should get higher α_t .
 - Emphasize the training examples that do not agree with *h*_t.
 - How? Maintain an emphasis value *u_n* per example.
- Output: combined function $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$
- Let's see some demos.

Some More Details

- Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training examples.
 - How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - Get the confidence α_t of such rule
 - How? An h_t with lower error should get higher α_t .
 - Emphasize the training examples that do not agree with *h*_t.
 - How? Maintain an emphasis value *u_n* per example.
- Output: combined function $H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$
- Let's see some demos.

Some More Details

AdaBoost Algorithm

- Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training examples.
 - How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - Get the confidence α_t of such rule
 - How? An h_t with lower error should get higher α_t.
 - Emphasize the training examples that do not agree with h_t .
 - How? Maintain an emphasis value un per example.
- Output: combined function $H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Some More Details

AdaBoost Algorithm

- Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training examples.
 - How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - Get the confidence α_t of such rule
 - How? An h_t with lower error should get higher α_t .
 - Emphasize the training examples that do not agree with h_t.
 - How? Maintain an emphasis value *u_n* per example.
- Output: combined function $H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Some More Details

- Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training examples.
 - How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - Get the confidence α_t of such rule
 - How? An h_t with lower error should get higher α_t .
 - Emphasize the training examples that do not agree with *h*_t.
 - How? Maintain an emphasis value u_n per example.
- Output: combined function H(x) = sign (Σ^T_{t=1} α_th_t(x))
 Let's see some demos.

Some More Details

AdaBoost Algorithm

- Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training examples.
 - How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - Get the confidence α_t of such rule
 - How? An h_t with lower error should get higher α_t .
 - Emphasize the training examples that do not agree with *h*_t.
 - How? Maintain an emphasis value *u_n* per example.
- Output: combined function $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Some More Details

- Input: training examples $Z = \{(x_n, y_n)\}_{n=1}^N$.
- For $t = 1, 2, \cdots, T$,
 - Learn a simple rule h_t from emphasized training examples.
 - How? Choose a $h_t \in \mathcal{H}$ with minimum emphasized error.
 - Get the confidence α_t of such rule
 - How? An h_t with lower error should get higher α_t .
 - Emphasize the training examples that do not agree with *h*_t.
 - How? Maintain an emphasis value *u_n* per example.
- Output: combined function $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$
- Let's see some demos.

• Input:
$$Z = \{(x_n, y_n)\}_{n=1}^N$$
. Set $u_n = \frac{1}{N}$ for all n .
• For $t = 1, 2, \dots, T$,

• Learn a simple rule h_t such that h_t solves

$$\min_{h}\sum_{n=1}^{N}u_{n}\cdot I[y_{n}\neq h(x_{n})].$$

• Compute the error $\epsilon_t = \sum_{n=1}^{N} \frac{u_n}{\sum_{m=1}^{N} u_m} \cdot I[y_n \neq h(x_n)]$ and the confidence

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$$

• Emphasize the training examples that do not agree with *h*_t:

$$u_n = u_n \cdot \exp\left(-\alpha_t y_n h_t(x_n)\right).$$

• Output: combined function $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

• Input:
$$Z = \{(x_n, y_n)\}_{n=1}^N$$
. Set $u_n = \frac{1}{N}$ for all n .
• For $t = 1, 2, \dots, T$,

• Learn a simple rule *h*_t such that *h*_t solves

$$\min_{h}\sum_{n=1}^{N}u_{n}\cdot I[y_{n}\neq h(x_{n})].$$

• Compute the error $\epsilon_t = \sum_{n=1}^{N} \frac{u_n}{\sum_{m=1}^{N} u_m} \cdot I[y_n \neq h(x_n)]$ and the confidence

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$$

• Emphasize the training examples that do not agree with h_t :

$$u_n = u_n \cdot \exp\left(-\alpha_t y_n h_t(x_n)\right).$$

• Output: combined function $H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

• Input:
$$Z = \{(x_n, y_n)\}_{n=1}^N$$
. Set $u_n = \frac{1}{N}$ for all n .
• For $t = 1, 2, \dots, T$,

• Learn a simple rule *h*_t such that *h*_t solves

$$\min_{h}\sum_{n=1}^{N}u_{n}\cdot I[y_{n}\neq h(x_{n})].$$

• Compute the error $\epsilon_t = \sum_{n=1}^{N} \frac{u_n}{\sum_{m=1}^{N} u_m} \cdot I[y_n \neq h(x_n)]$ and the confidence

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$$

• Emphasize the training examples that do not agree with *h*_t:

$$u_n = u_n \cdot \exp\left(-\alpha_t y_n h_t(x_n)\right).$$

• Output: combined function $H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

• Input:
$$Z = \{(x_n, y_n)\}_{n=1}^N$$
. Set $u_n = \frac{1}{N}$ for all n .
• For $t = 1, 2, \dots, T$,

• Learn a simple rule h_t such that h_t solves

$$\min_{h}\sum_{n=1}^{N}u_{n}\cdot I[y_{n}\neq h(x_{n})].$$

• Compute the error $\epsilon_t = \sum_{n=1}^{N} \frac{u_n}{\sum_{m=1}^{N} u_m} \cdot I[y_n \neq h(x_n)]$ and the confidence

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$$

• Emphasize the training examples that do not agree with *h*_t:

$$u_n = u_n \cdot \exp\left(-\alpha_t y_n h_t(x_n)\right).$$

• Output: combined function $H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$