
Fundamental Object Oriented Programming (NTU, Fall 2015) instructor: Hsuan-Tien Lin

Homework #4
RELEASE DATE: 12/14/2015

DUE DATE: 1/11/2016, 12:00 (NOON)

As directed below, you need to upload your submission files to the github repository under the exact guide-
lines of the TAs.

Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.
Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but not
copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

Only English is allowed for writing any part of your homework. We do not accept any other languages.

1 Description

The boss of the POOCasino is very satisfied with your performance. Now, there is a new game opening:
a one-deck black-jack game in the real-world casino with seven actions for the players: bet, hit, stand,
double-down, split, surrender, and insurance. Check http://en.wikipedia.org/wiki/Blackjack for
some information about the game, which roughly goes (from the dealer’s view) as follows:

(1) Ask every player to make a bet Bi (a positive integer).

(2) Assign a face-up card and a face-down card to each player and the dealer.

(3) If the dealer’s face-up card is ACE, ask each player whether to buy an insurance of 1
2Bi or not.

(4) Check dealer’s face-down card (hole card), and if the dealer does not get a Blackjack, ask each player
whether to surrender or not.

(5) For each player who did not choose to surrender,

• Flip up (open) the face-down card.

• If the two cards happen to be of equal face value, decide whether to split. If splitting, the player
goes with two separate hands and continues the game with the decisions below. Re-splitting is
not allowed.

• Decide whether to double down.

• Decide whether to hit, until a standing decision or busted, of course.

(6) Faithfully execute the following dealer actions:

• If the total card value is ≤ 16 or is a soft-17, hit.

• Otherwise, stand.

(7) Compare the result of the dealer to the result of the player.

• If player i surrenders, 1
2Bi goes to the casino.

• If player i gets busted, Bi goes to the casino.

• If player i gets a Blackjack, the player gets 3
2Bi more chips unless the dealer also gets a Blackjack.

In the latter case, it is a “push” and the player just get 0 more chips.

• If player i doesn’t get a Blackjack, and if the dealer gets busted, each player gets Bi more chips

• If player i doesn’t get a Blackjack, and if the dealer gets a Blackjack, the bet Bi goes to the
casino. If the player bought an insurance, however, she/he gets Bi back from the insurance,
making it even.

1 of 3



Fundamental Object Oriented Programming (NTU, Fall 2015) instructor: Hsuan-Tien Lin

• Finally, if neither player i nor the dealer gets a Blackjack, and neither of them gets busted,
the sum of face values on the dealer’s and on player i’s hands are compared. If the dealer gets
more, the player loses and Bi goes to the casino. If the player gets more, the player wins Bi

more chips. Otherwise it is a “push” and the player just get 0 more chips.

You should carefully check http://en.wikipedia.org/wiki/Blackjack for the definitions of double
down, split pairs, insurance, and surrender. You are asked to use the following classes to implement
the Blackjack game. Only the JDK 1.7 compiled class files and javadoc generated documents are provided.

• an abstract foop.Player class that to be extended to create your own player, including some inner
exception classes

• a foop.Card class that represents one of the 52 cards in a standard deck of playing cards; a foop.Hand

class that represents the cards on a player’s hand

You can design your own strategy. You can do so by using the dealer’s face-up card on the table, your
own cards on hand, or other players’ cards. You can also “keep count of” the cards that have been shown
so far (see the movie twenty-one?).

2 Requirements

• Implement a new POOCasino class that allows the abstract Player to play the Blackjack game
with the other utility classes provided. Your POOCasino should be able to allow 4 different players in
the game with the command java POOCasino nRound nChip Player1 Player2 Player3 Player4

when Playeri is a subclass of Player. Here nRound is the number of rounds of the game, and nChip

is the amount of chips that each player has in the beginning.

• Implement your own player (like PlayerB86506054) that extends the abstract Player class.

• Find a classmate and takes her/his player to enter a duel in your casino with your player (yours as
Player1 and Player3 and his/hers as Player2 and Player4), and let them play for a large number of
rounds (with many chips). You need to make both players bug free in your casino—so you should
start collaborating with your classmate much earlier than the deadline. We allow you to openly
collaborate this time as long as there is no direct copy of your code in any part.

• Write a short report with at most five A4 pages that contains the following items:

(1) your name and school ID

(2) the player’s strategy that you implemented

(3) the design of all the classes related to the casino, and the reason that you chose this design

(4) the result of the duel between you and your classmate (her/his name and school ID), and any
experience that you two learned during the duel

(5) any part that you implemented that is worth getting “bonus” points

• We understand that there are some parts of the spec that may not appear clear enough. Please
feel free to ask for the designer’s intention on the forum, but you do not have to follow every
intention. You can design your own amendment of the spec. Then, you can use one more page of
report to write down the amendment. Illustrate your amendment clearly and you’d get at most 40
bonus out of a total of 200 points.

You should submit your report in PDF format.

3 Submission File

Please submit your code with github as directed in the homework submission guide. Your directory
structure (under hw4) should be

• src/*, your source code

2 of 3



Fundamental Object Oriented Programming (NTU, Fall 2015) instructor: Hsuan-Tien Lin

• lib/*, PlayerXXX.class that you get from your classmate, Player.class and other utility classes
that you get from the class website

• Makefile, where the TAs can use make on CSIE R217 linux machines to compile your code, and
then make run to test your program with your player and your classmate’s player

• a PDF file report.pdf, which is your report file written in English

Please do not include any other files (e.g. class files) in the repository. Otherwise you may
lose some points.

3 of 3


