Hsuan-Tien Lin (NTU CSIE)

Polymorphism
11/09/2015

Hsuan-Tien Lin (#k#F @)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(BL6H A% TALER)

Polymorphism 0/15

htlin@csie.ntu.edu.tw

Summary on Polymorphism

¢ one thing, many shapes
e important in strongly-typed platforms with inheritance

¢ view from content: one advanced content with many compatible
access

o view from reference: one compatible reference can point to many
advanced contents

« view from method: one compatible method “contract”, many
different method “realization”

Hsuan-Tien Lin (NTU CSIE) 1/15

0 N o g~ 0N =

o oA WN = O ©

Abstract Class (1/3)

public class Professor (){
public void teach (){

}

class CSIEProfessor extends Professor{
private void teach_oop (){ }
public void teach(){ teach_oop(); }

System.out. printin ("not_sure_of_what_to_teach!");

class EEProfessor extends Professor{
private void teach_elec (){ }
public void teach(){ teach_elec(); }

}

Professor p = new Professor();
p.teach ();

e teach is a place-holder in Professor, expected to be overridden
e allows constructing a professor without any teaching ability!

—absurd in some sense

Hsuan-Tien Lin (NTU CSIE)

2/15

0 N o g s 0NN =

A WO N = O ©

Abstract Class (2/3)

public abstract class Professor (){
public abstract void teach();

class CSIEProfessor extends Professor({
private void teach_oop (){ /+ lalala =/ }
public void teach(){ teach_oop(); }

class EEProfessor extends Professor{
private void teach_elec (){ /+ lululu =/}
public void teach(){ teach_elec(); }

}

//'in other places

Professor p = new Professor(); //hahahall

Professor p = new CSIEProfessor(); //okay

e teach is a place-holder in Professor, expected to be overridden
¢ but cannot construct a pure Professor instance anymore!

Hsuan-Tien Lin (NTU CSIE)

3/15

Abstract Class (3/3)

abstract method [method not implemented]
= abstract class [cannot construct instance]?

abstract class = abstract method?

public abstract method?

proteced abstract method?

private abstract method?

keep being an abstract method in the subclass?
concrete method(s) in an abstract class?
instance variable(s) in an abstract class?

static field(s) in an abstract class?
constructor(s) in an abstract class?

reference to an abstract class?

Hsuan-Tien Lin (NTU CSIE)

4/15

Key Point: Abstract Class

a contract for future extensions)

Final Words

e static final variable: accessed through class, and assigned
once (in declaration or static constructor)

e final instance variable: accessed through instance, and
assigned once (in declaration or every instance constructor)

e final instance method: cannot be overriden (= assigned once)

e static final method: cannot be hidden by inheritance (~
assigned once)
e final class: cannot be inherited (and hence all methods final)

Hsuan-Tien Lin (NTU CSIE) 6/15

Is java.lang.Object abstract?

Who Is She?

Hsuan-Tien Lin (NTU CSIE) 8/15

Barbara Liskov

e Professor, MIT
e 2004 IEEE John von Neumann Medal (who is von Neumann?)

e 2008 ACM A. M. Turing Award (who is Turing and what is Turing
Award?)

For contributions to practical and theoretical
foundations of programming language and sys-
tem design, especially related to data abstrac-
tion, fault tolerance, and distributed comput-

ing.

Hsuan-Tien Lin (NTU CSIE) 9/15

Barbara Liskov and OOP
e The CLU language

complex_number = cluster is add, subtract, multiply,
rep = record [real_part: real, imag_part: real]
add = proc ... end add;
subtract = proc ... end subtract;
multiply = proc ... end multiply;

end complex_number;

1 class complex_number{
2 double real_part; double imag_part;
3 add (...){ ... }
4 substract (...){ ... }
5 multiply (...){ ... }
6 }
a pioneering OOP language J

Hsuan-Tien Lin (NTU CSIE) 10/15

Barbara Liskov and OOP

o The Liskov substitution principle

Let q(x) be a property provable about objects x of type T. Then q(y)
should be true for objects y of type S where S is a subtype of T.

Java: S extends T means
(y of type S) is an (object of type T) [but
more subtle than that]

Hsuan-Tien Lin (NTU CSIE) 11/15

Is Circle an Ellipse?

http://en.wikipedia.org/wiki/Circle—-ellipse_problem

e immutable ones?
e mutable ones? what happens after st retchx?
e solution? whatif E11lipse extends Circle?

Hsuan-Tien Lin (NTU CSIE) 12/15

 http://en.wikipedia.org/wiki/Circle-ellipse_problem

Inheritance in a Nutshell

motivation: use subtyping to save repeated efforts in code writing
and (to accelerate future code writing)

top-down view: from general classes to specialized ones

bottom-up view: gather similar code pieces to a higher level
axiom: LSP

(important) details: what gets inherited? which part gets accessed
(called)?

Hsuan-Tien Lin (NTU CSIE) 13/15

Polymorphism in a Nutshell

e motivation: use parent type as an entry point for accessing
(possibly future) subtypes

¢ object have their own characteristics (behavior, action) based on
their run-time type, not their compile-time type

e mechanism: method overriding
e (important) details: what gets called?

Hsuan-Tien Lin (NTU CSIE) 14/15

S.O.L.1.D. Principles

» Single Responsibility: “a class should have only a single
responsibility” (abstraction)

» Open/Closed: “software entities should be open for extension, but
closed for modification” (polymorphism)

o Liskov Substitution: “objects in a program should be replaceable
with instances of their subtypes without altering the correctness of
that program” (inheritane)

« Interface Segregation (will be discussed later)
e Dependency Inversion (will be discussed later)

Hsuan-Tien Lin (NTU CSIE) 15/15

