
From NOP to Procedure Oriented Programming

• organize the code
• identify the purpose of procedures (what a block of code can do)
• isolate (modularize) the procedures (as individual functions)
• reuse the procedures (by function calls)

You basically learned those in the C class.

Hsuan-Tien Lin (NTU CSIE) Motivation 10/19

Object Oriented Programming:
A New Way of Modularizing

• a running computer in front of you: a computing “component”
• an (interactive) program: a computing “component”
• program A interacting with program B: another computing

“component”
• sub-program A.1 interacting with sub-program A.2: two

mini-computing “components”

What does a computing “component” need?

Hsuan-Tien Lin (NTU CSIE) Motivation 11/19

Computing Component

• code: input→ output
• associated data

Google Search Engine
• code: “search words”→ “ranked list”
• associated data: user profile, web snapshot, etc

String Processor
• code: “string processing request”→ “processed result”
• associated data: string content

Object-Oriented Programming: Program by
Designing (Mini-)Computing Components

Hsuan-Tien Lin (NTU CSIE) Motivation 12/19

Object Oriented Programming

Computing Component
• associated data
• code: input→ output

Object
• properties
• actions (methods): message→ return value (and status change)

Object-Oriented Programming: Program by
Letting Objects Interact with Each Other

Hsuan-Tien Lin (NTU CSIE) Motivation 13/19

Object Oriented Programming 101-1

• group related data together in design

1 /∗ C ∗ /
2 typedef s t r u c t {
3 char dept [1 0 0] ;
4 char ID [1 0 0] ;
5 char name [1 0 0] ;
6 } Record ;

1 /∗ Java ∗ /
2 c lass Record {
3 S t r i n g dept ;
4 S t r i n g ID ;
5 S t r i n g name ;
6 }

Hsuan-Tien Lin (NTU CSIE) Motivation 14/19

Object Oriented Programming 101-2

• use the struct/class to generate objects

1 /∗ C ∗ /
2 Record r ;
3 Record∗ rp =(Record ∗) mal loc (s i z e o f (Record)) ;
4 s t r cpy (r . dept , "CSIE") ;
5 s t r cpy (rp−>name, " HTLIN ") ;
6 f r ee (rp) ;

1 /∗ Java ∗ /
2 Record r = new Record () ;
3 r . dept = "CSIE" ;
4 r . name = " HTLIN " ;

Hsuan-Tien Lin (NTU CSIE) Motivation 15/19

Object Oriented Programming 101-3

• don’t “do something on” the object; let the object “take some
action”

1 /∗ Java ∗ /
2 Pr intSt ream ps = System . out ;
3 ps . p r i n t l n ("CSIE") ;
4 S t r i n g s = "a , b , c " ;
5 tokens = s . s p l i t (" , ") ;

Hsuan-Tien Lin (NTU CSIE) Motivation 16/19

From Noodle to Procedural to Object

• NOP: spaghetti code + (possibly spaghetti) data
• You can write NOP with virtually ANY languages
• Some easier to NOP (e.g. assembly), some harder

• POP: organized CODE + (possibly organized) data
• using procedures as the basic module

–maintain, reuse
• action as separated procedures from data

(do on the data)
• C, Pascal

• OOP: organized DATA + organized code (ACTION) grouped
together

• using classes as the basic module
• action are closely coupled with data

(data do something)
• Java, C++ (?), C#

Hsuan-Tien Lin (NTU CSIE) Motivation 17/19

From Noodle to Procedural to Object

• OOP: organized DATA + organized code (ACTION)
• using classes as the basic module
• action are closely coupled with data

(data do something)
• Java, C++ (?), C#

• You can write virtually any-OP with any language
• OO design: think in the OO way
• OO language: help (force) you to think in the OO way

Hsuan-Tien Lin (NTU CSIE) Motivation 18/19

Three Levels of OO

• Object-Oriented Analysis (OOA):
what the system does

• from (customer/system) needs to software models
• an important topic in Software Engineering class

• Object-Oriented Design (OOD):
how the system does it

• from software model to class diagrams
• an important topic in Design Pattern class

• Object-Oriented Programming (OOP):
how to implement such a system

• from class diagrams to class implementations
• learn from this class

this class: just fundamental OOP

Hsuan-Tien Lin (NTU CSIE) Motivation 19/19

