
Classes and Instances
10/05/2015

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)

Hsuan-Tien Lin (NTU CSIE) Class vs. Instance 0/14

htlin@csie.ntu.edu.tw

Recall: OOP Definition

Decompose computation into interactions of
“computing parts” called objects, each containing its
own data (to be manipulated by itself) and own code
(to be called by other objects)

• data (variables): status of object
• code (methods): actions of objects

Hsuan-Tien Lin (NTU CSIE) 1/14

Basic OOP Needs

Decompose computation into interactions of
“computing parts” called objects, each containing its
own data (to be manipulated by itself) and own code
(to be called by other objects)

• designing object (what variables? what methods?)
• creating “first” object and calling its first action
• creating other objects
• calling other objects
• manipulating object status
• deleting objects

Hsuan-Tien Lin (NTU CSIE) 2/14

Big Picture: Java Solution of OOP Needs
• designing object (what variables? what methods?)

—declaring class, the blueprint of object
• creating “first” object and calling its first action

—JVM does so, with first action called main
—(note: not exactly so, will be clarified later)

• creating other objects
—with something called new

• calling other objects
—with grammar like objectname.methodname(...)

• manipulating object status
—with grammar like variablename = ... in the object
code

• deleting objects
—JVM automatically and autocratically does so, when object
“no longer needed” (garbage collection)

Hsuan-Tien Lin (NTU CSIE) 3/14

Big Picture: C++ Solution of OOP Needs

• designing object (what variables? what methods?)
—declaring class, the blueprint of object

• creating “first” object and calling its first action
—you need to write code to do so, while C++ only provides a
main like C, a non-OO program entry

• creating other objects
—with something called new

• calling other objects
—with grammar like objectname.methodname(...)

• manipulating object status
—with grammar like variablename = ... in the object
code

• deleting objects
—with something called delete

Hsuan-Tien Lin (NTU CSIE) 4/14

Big Picture: Objective C Solution of OOP Needs
• designing object (what variables? what methods?)

—declaring interface (variable and method prototype) and
implementation (code), the blueprint of object

• creating “first” object and calling its first action
—you need to write code to do so, while ObjC only provides a
main like C, a non-OO program entry

• creating other objects
—with something like [[ClassName alloc] init]

• calling other objects (sending message to other objects)
—with grammar like [objectname methodname]

• manipulating object status
—with grammar like variablename = ... in the object
code

• deleting objects
—modernly, with an automatic mechanism called “automatic
reference counting”

Hsuan-Tien Lin (NTU CSIE) 5/14

Java Solution of OOP Needs (1/6)
• designing object (what variables? what methods?)

—declaring class, the blueprint of object

1 / / Song . java
2 p u b l i c c lass Song {
3 p r i v a t e S t r i n g name ;
4 p r i v a t e byte [] data ;
5 p u b l i c vo id p lay () {
6 / / . . .
7 }
8 }
9 / / MP3Player . java

10 p u b l i c c lass MP3Player {
11 p r i v a t e Song [] songs ;
12 p r i v a t e i n t currentSong ;
13 p u b l i c boolean playSongAtIndex (i n t index) {
14 / / . . .
15 }
16 }
Hsuan-Tien Lin (NTU CSIE) 6/14

Java Solution of OOP Needs (2/6)

• creating “first” object and calling its first action
—JVM does so, with first action called main
—(note: not exactly so, will be clarified later)

java MyProgram

1 / / MyProgram . java
2 p u b l i c c lass MyProgram {
3 p u b l i c s t a t i c vo id main (S t r i n g [] argv) {
4 / / . . .
5 }
6 }

Hsuan-Tien Lin (NTU CSIE) 7/14

Java Solution of OOP Needs (3/6)
• creating other objects

—with something called new

1 p u b l i c c lass MyProgram {
2 p u b l i c s t a t i c vo id main (S t r i n g [] argv) {
3 MP3Player p1 = new MP3Player () ;
4 MP3Player p2 = new MP3Player () ;
5 MP3Player p3 ; / / not l i n k e d to any ob jec ts yet
6 }
7 }

• can use one blueprint (class) to create many objects
• class is an extended type, like a C structure

(Record* r = (Record*)malloc(sizeof(Record));)
object of type R ≡ instance of class R ≡ object of class R

• a variable of the type links to (can be used to refer to) some object

Hsuan-Tien Lin (NTU CSIE) 8/14

Java Solution of OOP Needs (4/6)

• calling other objects
—with grammar like objectname.methodname(...)

1 p u b l i c c lass MyProgram {
2 p u b l i c s t a t i c vo id main (S t r i n g [] argv) {
3 MP3Player p1 = new MP3Player () ;
4 p1 . playSongAtIndex (5) ;
5 }
6 }

• similar to procedure invocation in C, but specifying which instance
to be called/messaged

Hsuan-Tien Lin (NTU CSIE) 9/14

Java Solution of OOP Needs (5/6)
• manipulating object status

—with grammar like variablename = ... within the object
code

1 p u b l i c c lass MP3Player {
2 p r i v a t e Song [] songs ;
3 p r i v a t e i n t currentSong ;
4

5 p u b l i c vo id next () {
6 currentSong ++;
7 / / . . .
8 }
9 }

• the same as variable assignment in C, but (for now) within the
“scope” of the object

Hsuan-Tien Lin (NTU CSIE) 10/14

Java Solution of OOP Needs (6/6)

• deleting objects
—JVM automatically and autocratically does so, when object
“no longer needed” (garbage collection)

no worries yet, more to be discussed later.

Hsuan-Tien Lin (NTU CSIE) 11/14

Class versus Instances (Objects)

1 p u b l i c c lass Record { / / c lass
2 p r i v a t e S t r i n g name ; / / v a r i a b l e / f i e l d d e c l a r a t i o n
3 p r i v a t e S t r i n g ID ; / / v a r i a b l e d e c l a r a t i o n
4 p u b l i c boolean isB86 () { / / ac t i on
5 r e t u r n ID . s t a r t s W i t h ("B86") ;
6 / / here ID i s an ins tance of the c lass S t r i n g
7 / / and performs an ac t i on (method) s t a r t s W i t h ()
8 }
9 }

10

11 / / somewhere else
12 Record r1 = new Record () ; / / r1 i s an ins tance
13 / / w i th r1 . name and r1 . ID
14 / / as i t s data (v a r i a b l e s)
15 Record r2 = new Record () ; / / r2 i s another ins tance
16

17 i f (r2 . isB86 ()) { . . . } / / r2 performs an ac t i on (method)

Hsuan-Tien Lin (NTU CSIE) 12/14

Class versus Instances (courtesy of Prof. Chuen-Liang Chen)

 Are they the same?

 instance 個體 (object)
 with different status
 representation of status (in high-level language): variable
 instance: set of instance variables

 l 類別 class 類別
 it is no way & unnecessary

to write program for instances one by one

Chuen-Liang Chen, NTU CS&IE / 9OOP

 OO programming = class (interface) declarations

Hsuan-Tien Lin (NTU CSIE) 13/14

Not Just Record: An OO Design of RandomIndex

• DATA: a randomly permuted index array of size N
• ACTION: setSize, initializeIndex, permuteIndex, getNext
• see RandomIndex.java, OOPLotteryV3.java
• Now you can use it for name calling in class, distributing cards in

games, etc.

Hsuan-Tien Lin (NTU CSIE) 14/14

