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Reinforcement Learning from supervised to reinforcement

Reinforcement Learning
a ‘very different’ but natural way of learning )

Teach Your Dog: Say ‘Sit Down’

The dog pees on the ground.
BAD DOG. THAT'S A VERY WRONG ACTION.

e cannot easily show the dog that y, = sit
when x, = ‘sit down’

e but can ‘punish’ to say y, = pee is wrong

V.

reinforcement: learn with ‘partial/implicit
information’ (often sequentially) J
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Reinforcement Learning from supervised to reinforcement

Reinforcement Learning
a ‘very different’ but natural way of learning )

Teach Your Dog: Say ‘Sit Down’

The dog sits down.
Good Dog. Let me give you some cookies.

e still cannot show y, = sit
when x, = ‘sit down’

e but can ‘reward’ to say y, = sit is good

reinforcement: learn with ‘partial/implicit
information’ (often sequentially) J
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Reinforcement Learning from supervised to reinforcement

Application 16 (?): Go Playing Agent
40 AlphaGo

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to Google DeepMind)

Non-ML Techniques § ML Techniques

Monte C. Tree Search | Deep Learning Reinforcement Learn.
~ move simulation in ~ board analysis in = (self)-practice in
brain human brain human training

T

\

e

I

(CC-BY-SA 3.0 by Stannered on (CC-BY-SA 2.0 by Frej Bjon on (Public Domain, from Wikipedia)
Wikipedia) ) Wikipedia)
v
good Al: important to use the right
techniques—ML & others, including human
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Reinforcement Learning from supervised to reinforcement

Supervised versus Reinforcement

e supervised relies on teacher with (almost) correct examples

¢ not typically how we learned to walk with trial-and-error (or
trial-and-reward)

I
(illustrative figures courtesy of Prof. Malik Magdon-Ismail)
e supervised learning = learning to decide
reinforcement learning ~ learning to control

* two essences: iry y, (often called action a,) & graded with
goodness (often called reward) r,

goal: learn best decision from history data of
trial-and-reward J
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Reinforcement Learning from supervised to reinforcement

Reinforcement Learning to Play Backgammon

S MU—— Cib b
..‘Qy
° function ‘f’: x (board state, also noted s) — optimal action a
e data: (state sy, action ay,reward r; =7),
(S2,80,12=7), ..., (St,ar,rr=1)
o g (often also called agent ) that hopefully ~ f

® issues:

sparse (possibly delayed) rewards

credit assignment

data collection (next states) depends on chosen actions a;
sometimes multi-agent (competition/collaboration)

if games (one strategy vs another)
properly, agents can be strong enough J
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Reinforcement Learning from supervised to reinforcement

Application 17: Bridge Bidding
(THI- 3 =57
“HHHH“ et

playert % .
l dnn tayer2

_.|:| |:| |:| H ——  Cotinue until PASS occurs

dnn layer3 —

(figure from Yeh et al., Automatic Bridge Bidding using Deep Reinforcement Learning, 2018)
non-‘standard’ RL task: partial information, collaborative

RL: rich opportunities for different kinds of
control/interactive tasks J
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Reinforcement Learning from supervised to reinforcement

Application 18: Computer-Assisted Diagnosis

data > ML Al

-

! i“, By DataBase Center for Life Science;
licensed under CC BY 4.0 via Wikimedia Commons

for computer-assisted diagnosis, with RL

e state s;: queried patient symptoms
e action a;: query another symptom or make a diagnosis
e reward r;: whether the diagnosis is correct

* learned policy 7: dialogue system that efficiently identifies
disease of patient

as intern @ HTC DeepQ

S.-T. Chen & H.-T. Lin (NTU CSIE) Foundations of Artificial Intelligence 7/29

my student’s earlier work J




Reinforcement Learning from supervised to reinforcement

Efficient Diagnosis: More than Plain RL

REFUEL: Exploring Sparse Features in Deep
Reinforcement Learning for Fast Disease Diagnosis

Yu-Shao Peng Kai-Fu Tang Hsuan-Tien Lin
HTC Research & Healthcare  HTC Research & Healthcare Department of CSIE,
ys_peng@htc. con kevin_tanghtc. con National Taiwan University

htlinQcsie.ntu.edu.tw

Edward Y. Chang
HTC Research & Healthcare
edward_chang@htc.con

some symptoms positive symptoms
— all symptoms — efficient dialogue
idea: autoencoder-like error idea: auxiliary reward for
term for reconstruction positive symptom

successful ‘application intelligence’ sometimes
need beyond-textbook ideas
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Reinforcement Learning from supervised to reinforcement

Online RL versus Offline RL

offline (batch) RL

rollout data {(si,a;,s!,7:)}

update
Thk+1

rollout(s)

e textbook scenario

e ‘easier to analyze
mathematically

rollout(s) deployment

data collected once = = = = — 1
with any policy training phase

® practical scenario

e data quality depends on
‘collector’ policy

truely ‘online learning’ is luxurious in practiceJ
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Reinforcement Learning from supervised to reinforcement

Online + Batch for Real-World Applications

online prediction

g - \
mpde! re-tra!ned with ? for each request
historical daily batch 1
data, incrementally or

batch labeled data

completel
peiey collected daily

AN

purely online purely batch
incremental update costly e cannot capture drifts/trends
online well
delayed labels hard to e complete re-training
handle properly possibly costly
real-world ML system
different from textbook settings J
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Reinforcement Learning from supervised to reinforcement

From Offline RL to Imitation Learning

- — = - -

{(si- 20,80, 74)}

S, T

@

ta |

rollout(s)

data collected ONCe — — — — — 1
with any policy training phase
¢ data collected by ‘any ¢ data collected by ‘expert
policy’ policy’ (demonstration)
e data often more noisy (x) ¢ data often more clean ()
e data often with wider e data often with more biased
coverage (Q) ) coverage (x) |

imitation learning can be more data efficient
in building proof-of-concept system J
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Reinforcement Learning stateless reinforcement learning: bandit learning

A Simple Trial-and-Reward Environment

Bandit 1 ‘ Bandit 2 ‘

(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

D = (ay,n),(ae,r2),...,(ar,rr)
e action a; € {1,2}
* r = 1 with probability p,,, and 0 otherwise
* policy 7 specifies a;fort =1,2,..., T
e evaluation: expected ~-discounted reward (with v < 1) after oo

rounds -
V(r)=E ((1 —m> A rz)
t=1

as early rewards more preferred

what are the possible policies? J
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Reinforcement Learning stateless reinforcement learning: bandit learning

Some Naive Policies

Bandit 1 | Bandit 2 |

m1(t) = 1 : expected reward

E <(1 —7)27"%) = P E <(1 —’Y)ZVt_1ft> = P2.
(=1 t=1

mo(t) = 2 : expected reward

Random g

t = a o t
Tgra (1) ag}{é}pa( ) mmd(t) = (random fair coin flip)

with pa(t) estimating pa

key question: assume p, > p; without loss of
generality, can we be ‘nearly as good as’ 7,?
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Reinforcement Learning stateless reinforcement learning: bandit learning

Blindspot in Pure Exploitation

Bandit 1 ‘ Bandit 2 ‘

Tgra(t) = amax pa(t)

with P,(t) estimating pa.

doomed when (a; = 1,r; = 1), (&2 =2,r, = 0) |
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Reinforcement Learning stateless reinforcement learning: bandit learning

Exploitation and Exploration

Greedy mqq (exploitation) Random 7, (exploration)

mard(t) = max Pt
ora(1) ac{1,2} alt) mnd(t) = (random fair coin flip)

with pa(t) estimating pa

4

Greedy + Random Greedily-Random

run Greedy with prob. randomly execute a with
(1—¢) prob. « converted Pa(t)
run Random with prob. e e.g. Exponential-weight for
called e-greedy ) Exploration & Exploitation )
theoretically: you would not regret
doing a little exploration J
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Reinforcement Learning stateless reinforcement learning: bandit learning

Application 19: Smart A/B Testing

[ X ] [ X ]
a r /%

! 1

Welcome to our website Welcome to our website

Click rate: 52% 2%

(CC-BY-SA 4.0 by Maxime Lorant on Wikimedia)

Greedy + Random Greedily-Random
start with some ‘small’ traffic for | tune A/B percentage by
option B

performance

smart A-B testing allows continuous
improvement in evolving Al products
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Reinforcement Learning stateless reinforcement learning: bandit learning

Exploration-Exploitation Tradeoff

start with exploration, gradually switching to exploitation, always doing
enough but not too much, exploration

More Exploitation More Exploration

* more stable ® |ess stable
e reacts more slowly e reacts faster

often needs other criteria
to determine the right tradeoff J
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Reinforcement Learning stateful reinforcement learning

Dynamic Environment

Howtapay

2048 HEH 2048 HEH

s, get 0 20481
Howtapay -

2|
= [N

a
[«]2] ar=down, rr =8 | sy1 =

St
(https://play2048.co/)

State Transition: s; — si4q

Policy

5 T > q —® 7

(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

passive reactive environment: reacts
dynamically by fixed but unknown way



https://play2048.co/

Reinforcement Learning stateful reinforcement learning

Modeling Dynamic Environment with Different States

Bandit 1 ‘ Bandit 2 ‘

State Transition: s; — s¢q

Policy
s > g —® 7
™

different states = different (probabilities of) rewards, e.g.
s|1 2 3
py1 |09 09 0.1
p>|05 05 0.1

want: policy = such that 7(s) ~ optimal action ]
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Reinforcement Leamlng

stateful reinforcement learning

Modeling Dynamic Environment with State Transitions

0.75 0.04 0.95
T4 St+1
St 1 2 3
11075 025 O
2 [ 0.01 0.04 0.95
3 0 0.05 0.95
Tz St+1
St 1 2 3
1 090 0.10 0 (illustrative figures courtesy of Prof. Malik
2 0.90 0.09 0.01 ‘Magdon—lsmail)
} i | s | 1 2 3
3 0 0.10 0.90
pr 109 09 0.1
p>| 05 05 0.1
Markov Decision Process (MDP):
‘automata’ with probabilistic transitions J
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Reinforcement Learning stateful reinforcement learning

Value Function of Policy for Known MDP

s N s N s N s N
! ! ! !
rewards r 7 r N
discounts (1 —~) (1= (1—y)? (1 —y)?

VT(s) = (1 =) _ 7" 'Elnls,7]
t=1

value function V™(s): performance of =
when starting from s in MDP J
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Reinforcement Learning stateful reinforcement learning

What If Deviating from Policy?
@ W(f’z)>@ 77(;53)> ﬂ(fix) .. Q7(s.0)

m(s2) m(s3) m(54) v (
T2 T3 T4
(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

Q" (s, a): rewards from s when taking a first, and follow 7 later

Q(s,a) = (1-)r(s,a)+7 ) Ta(s.s)V(s)

sl
= (1=9)r(s,a)+v ) _Ta(s,s)Q"(s,n(s))
Sl
best policy n* must satisfy
7*(8) = argmax,Q" (s, a) J
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Reinforcement Learning stateful reinforcement learning

Policy Iteration Algorithm for Calculating =*

0.75 0.04 0.95

i’\_@ 3 P1

0.09

2 3
09 09 01
05 05 0.1

given MDP, and any initial policy , repeat
* (re-)compute V™ and Q™ (s, a) [dynamic programming helps!]

e for every state s with 7(s) # argmax,Q" (s, a), change 7(s) to
argmax,Q" (s, a)
until no change of =

feasible if MDP is
and (s, a) somewhat ‘enumerable’ (Q-table) J
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Reinforcement Learning stateful reinforcement learning

Unknown MDP: EXEIore & Estimate

s|1 2 3
pr| 7 7 7
p2|? 7 7

after enough exploratory actions, T4 and r(s, a)
can be estimated to calculate Q™ for any .
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Reinforcement Learning stateful reinforcement learning

Q-Learning: Updating Q Directly on the Fly

ideal: @' (s,a) = (1—)r(s,a)+7)_Ta(s,s)V" ()
s/
= (1—y)r(s,a)+7 ) _Ta(s,s)max Q™ (¢, 4)
s’ &
one-example: Q(s;,a;) = n + 7y max Q(st41,4d)

deep Q-learning (with ‘any’ exploration):
* represent Q with NNet
* many techniques to stabilize

A

* 7(s) = argmax, Q(s, a)
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Reinforcement Learning stateful reinforcement learning

Application 20: Data Center Cooling

& rorlice

DeepMind Al Reduces Google
Data Centre Cooling Bill by 40%

July 20, 2016

(from Deepmind)

deep reinforcement learning: new opportunity
to control complicated systems
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Reinforcement Learning stateful reinforcement learning

Summary

Lecture 6: Reinforcement Learning

e from supervised to reinforcement
trial-and-reward, instead of duck-fed with examples
e stateless reinforcement learning: bandit learning
explore possible actions and exploit better-reward ones
e stateful reinforcement learning
exploration + Q-learning + best action from QJ
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