Foundations of Artificial Intelligence (人工智慧導論) Lecture 6: Reinforcement Learning Shang-Tse Chen & Hsuan-Tien Lin htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering National Taiwan University (國立台灣大學資訊工程系)

from supervised to reinforcement

from supervised to reinforcement

Reinforcement Learning

a 'very different' but natural way of learning

Teach Your Dog: Say 'Sit Down'

The dog pees on the ground. BAD DOG. THAT'S A VERY WRONG ACTION.

- cannot easily show the dog that y_n = sit when x_n = 'sit down'
- but can 'punish' to say y
 _n = pee is wrong

reinforcement: learn with 'partial/implicit information' (often sequentially)

from supervised to reinforcement

Reinforcement Learning

a 'very different' but natural way of learning

Teach Your Dog: Say 'Sit Down'

The dog sits down.

Good Dog. Let me give you some cookies.

- still cannot show y_n = sit when x_n = 'sit down'
- but can 'reward' to say \tilde{y}_n = sit is good

reinforcement: learn with 'partial/implicit information' (often sequentially) from supervised to reinforcement

Application 16 (?): Go Playing Agent

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to Google DeepMind)

Non-ML Techniques

Monte C. Tree Search \approx move simulation in brain

(CC-BY-SA 3.0 by Stannered on Wikipedia)

ML Techniques

Deep Learning \approx board analysis in human brain

$\begin{array}{l} \mbox{Reinforcement Learn.} \\ \approx \mbox{(self)-practice in} \\ \mbox{human training} \end{array}$

(CC-BY-SA 2.0 by Frej Bjon on Wikipedia)

(Public Domain, from Wikipedia)

good AI: important to use the right techniques—ML & others, including human

Supervised versus Reinforcement

- supervised relies on teacher with (almost) correct examples
- not typically how we learned to walk with trial-and-error (or trial-and-reward)

(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

- supervised learning ≈ learning to decide reinforcement learning ≈ learning to control
- two essences: try y
 ^γ_n (often called action a_n) & graded with goodness (often called reward) r_n

goal: learn **best** decision from history data of trial-and-reward

- target function 'f': **x** (board state, also noted s) \rightarrow optimal action a
- data: (state s_1 , action a_1 , reward $r_1 = ?$),

$$(s_2, a_2, r_2 = ?), \ldots, (s_T, a_T, r_T = 1)$$

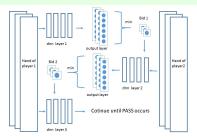
- hypothesis g (often also called agent policy π) that hopefully $\approx f$
- issues:
 - sparse (possibly delayed) rewards
 - credit assignment
 - data collection (next states) depends on chosen actions a_t
 - sometimes multi-agent (competition/collaboration)

if games (one strategy vs another) **simulated** properly, agents can be strong enough

S.-T. Chen & H.-T. Lin (NTU CSIE)

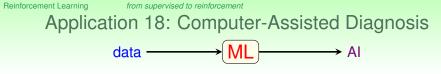
from supervised to reinforcement

Application 17: Bridge Bidding



(figure from Yeh et al., Automatic Bridge Bidding using Deep Reinforcement Learning, 2018) non-'standard' RL task: partial information, collaborative

RL: rich opportunities for different kinds of control/interactive tasks



By DataBase Center for Life Science;

licensed under CC BY 4.0 via Wikimedia Commons

for computer-assisted diagnosis, with RL

- state s_t: queried patient symptoms
- action a_t: query another symptom or make a diagnosis
- reward *r_t*: whether the diagnosis is correct
- learned policy π: dialogue system that efficiently identifies disease of patient

my student's earlier work as intern @ HTC DeepQ

S.-T. Chen & H.-T. Lin (NTU CSIE)

Efficient Diagnosis: More than Plain RL

REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease Diagnosis

Yu-Shao Peng HTC Research & Healthcare ys_peng@htc.com Kai-Fu Tang HTC Research & Healthcare kevin_tang@htc.com Hsuan-Tien Lin Department of CSIE, National Taiwan University htlin@csie.ntu.edu.tw

Edward Y. Chang HTC Research & Healthcare edward_chang@htc.com

some symptoms ⇒ all symptoms idea: autoencoder-like error term for reconstruction positive symptoms ⇒ efficient dialogue idea: auxiliary reward for positive symptom

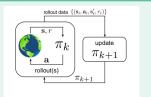
successful 'application intelligence' sometimes need beyond-textbook ideas

S.-T. Chen & H.-T. Lin (NTU CSIE)

from supervised to reinforcement

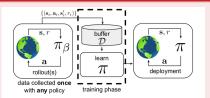
Online RL versus Offline RL

online RL



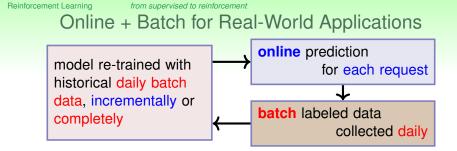
- textbook scenario
- 'easier' to analyze mathematically

offline (batch) RL



- practical scenario
- data quality depends on 'collector' policy

truely 'online learning' is luxurious in practice



purely online

- incremental update costly online
- delayed labels hard to handle properly

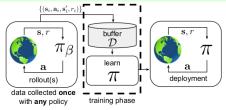
purely batch

- cannot capture drifts/trends well
- complete re-training possibly costly

real-world ML system different from textbook settings

S.-T. Chen & H.-T. Lin (NTU CSIE)

From Offline RL to Imitation Learning



offline RL

- data collected by 'any policy'
- data often more noisy (×)
- data often with wider coverage (
)

imitation learning

- data collected by 'expert policy' (demonstration)
- data often more clean (○)
- data often with more biased coverage (×)

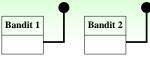
imitation learning can be more data efficient in building proof-of-concept system

S.-T. Chen & H.-T. Lin (NTU CSIE)

stateless reinforcement learning: bandit learning

stateless reinforcement learning: bandit learning

A Simple Trial-and-Reward Environment



(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

$$\mathcal{D} = (a_1, r_1), (a_2, r_2), \dots, (a_T, r_T)$$

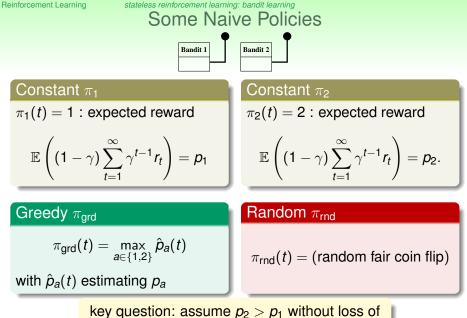
- action *a*^{*t*} ∈ {1,2}
- $r_t = 1$ with probability p_{a_t} , and 0 otherwise
- policy π specifies a_t for $t = 1, 2, \dots, T$
- evaluation: expected $\gamma\text{-discounted reward}$ (with $\gamma<$ 1) after ∞ rounds

$$V(\pi) = \mathbb{E}\left((1-\gamma)\sum_{t=1}^{\infty}\gamma^{t-1}r_t\right)$$

as early rewards more preferred

what are the possible policies?

S.-T. Chen & H.-T. Lin (NTU CSIE)

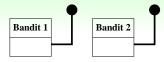


generality, can we be 'nearly as good as' π_2 ?

S.-T. Chen & H.-T. Lin (NTU CSIE)

stateless reinforcement learning: bandit learning

Blindspot in Pure Exploitation



Greedy π_{grd}

$$\pi_{\mathsf{grd}}(t) = \max_{a \in \{1,2\}} \hat{p}_a(t)$$

with $\hat{p}_a(t)$ estimating p_a .

doomed when
$$(a_1 = 1, r_1 = 1), (a_2 = 2, r_2 = 0)$$

stateless reinforcement learning: bandit learning

Exploitation and Exploration

Greedy $\pi_{\rm grd}$ (exploitation)

 $\pi_{\mathsf{grd}}(t) = \max_{a \in \{1,2\}} \hat{p}_a(t)$

with $\hat{p}_a(t)$ estimating p_a

Greedy + Random

- run Greedy with prob. $(1 - \epsilon)$ run Random with prob. ϵ

Random π_{rnd} (exploration)

 $\pi_{rnd}(t) = (random fair coin flip)$

Greedily-Random

- randomly execute *a* with prob. ∝ converted p̂_a(t)
- e.g. Exponential-weight for Exploration & Exploitation

theoretically: you would not regret doing a little exploration

Application 19: Smart A/B Testing

(CC-BY-SA 4.0 by Maxime Lorant on Wikimedia)

Greedy + Random

start with some 'small' traffic for option B

Greedily-Random

tune A/B percentage by performance

smart A-B testing allows **continuous improvement** in evolving AI products

S.-T. Chen & H.-T. Lin (NTU CSIE)

stateless reinforcement learning: bandit learning

Exploration-Exploitation Tradeoff

Principle

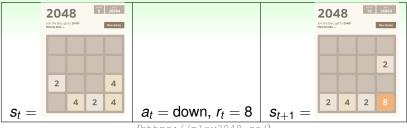
start with exploration, gradually switching to exploitation, always doing enough but not too much, exploration

often needs other criteria to determine the right tradeoff

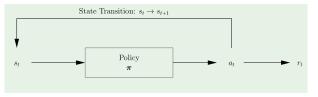
stateful reinforcement learning

stateful reinforcement learning

Dynamic Environment



(https://play2048.co/)

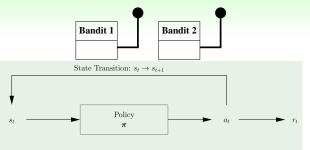


(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

passive reactive environment: reacts dynamically by fixed but unknown way

S.-T. Chen & H.-T. Lin (NTU CSIE)

Modeling Dynamic Environment with Different States

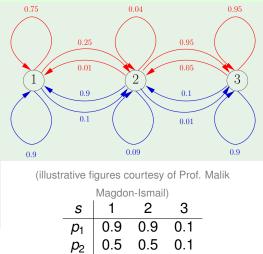


want: policy π such that $\pi(s) \approx$ optimal action

S.-T. Chen & H.-T. Lin (NTU CSIE)

Reinforcement Learning Stateful reinforcement learning Modeling Dynamic Environment with State Transitions

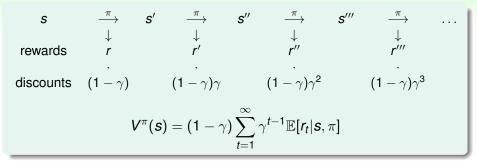
T ₁		<i>s</i> _{t+1}	
s t	1	2	3
1	0.75	0.25	0
2	0.01	0.04	0.95
3	0	0.05	0.95
	1		
T ₂		<i>s</i> _{t+1}	
T ₂ s _t	1	<i>s</i> _{t+1} 2	3
_	1 0.90		3 0
	1 0.90 0.90	2	



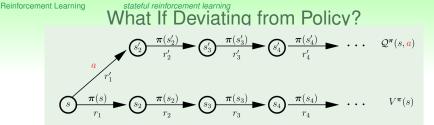
Markov Decision Process (MDP): 'automata' with probabilistic transitions

S.-T. Chen & H.-T. Lin (NTU CSIE)

Value Function of Policy for Known MDP



value function $V^{\pi}(s)$: performance of π when starting from *s* in MDP

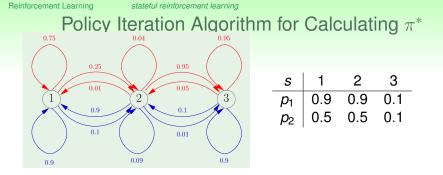


(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

 $Q^{\pi}(s, a): \text{ rewards from } s \text{ when taking } a \text{ first, and follow } \pi \text{ later}$ $Q^{\pi}(s, a) = (1 - \gamma)r(s, a) + \gamma \sum_{s'} T_a(s, s')V^{\pi}(s')$ $= (1 - \gamma)r(s, a) + \gamma \sum_{s'} T_a(s, s')Q^{\pi}(s', \pi(s'))$

best policy π^* must satisfy $\pi^*(s) = \operatorname{argmax}_a Q^{\pi^*}(s, a)$

S.-T. Chen & H.-T. Lin (NTU CSIE)



given known MDP, and any initial policy π , repeat

- (re-)compute V^{π} and $Q^{\pi}(s, a)$ [dynamic programming helps!]
- for every state s with $\pi(s) \neq \operatorname{argmax}_a Q^{\pi}(s, a)$, change $\pi(s)$ to $\operatorname{argmax}_a Q^{\pi}(s, a)$

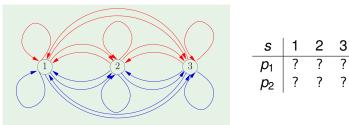
until no change of π

feasible if MDP is known and (s, a) somewhat 'enumerable' (Q-table)

S.-T. Chen & H.-T. Lin (NTU CSIE)

Unknown MDP: Explore & Estimate

(Mars exploration with Perseverance Rover, free image from NASA)



after enough exploratory actions, T_a and r(s, a)can be estimated to calculate Q^{π} for any π .

S.-T. Chen & H.-T. Lin (NTU CSIE)

Foundations of Artificial Intelligence

3

stateful reinforcement learning

Q-Learning: Updating \hat{Q} Directly on the Fly

ideal:
$$Q^{\pi^*}(s, a) = (1 - \gamma)r(s, a) + \gamma \sum_{s'} T_a(s, s') V^{\pi^*}(s')$$

= $(1 - \gamma)r(s, a) + \gamma \sum_{s'} T_a(s, s') \max_{a'} Q^{\pi^*}(s', a')$

one-example:
$$\hat{Q}(s_t, a_t) = r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a')$$

deep Q-learning (with 'any' exploration):

- represent Â with NNet
- many techniques to stabilize

•
$$\pi(s) = \operatorname{argmax}_{a} \hat{Q}(s, a)$$

stateful reinforcement learning

Application 20: Data Center Cooling

Applied

DeepMind Al Reduces Google Data Centre Cooling Bill by 40%

July 20, 2016

(from Deepmind)

deep reinforcement learning: new opportunity to control complicated systems

Summary

Lecture 6: Reinforcement Learning

- from supervised to reinforcement trial-and-reward, instead of duck-fed with examples
- stateless reinforcement learning: bandit learning
 explore possible actions and exploit better-reward ones
- stateful reinforcement learning
 exploration + Q-learning + best action from Q