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from supervised to reinforcement



Reinforcement Learning from supervised to reinforcement

Reinforcement Learning
a ‘very different’ but natural way of learning

Teach Your Dog: Say ‘Sit Down’
The dog pees on the ground.
BAD DOG. THAT’S A VERY WRONG ACTION.
• cannot easily show the dog that yn = sit

when xn = ‘sit down’
• but can ‘punish’ to say ỹn = pee is wrong

reinforcement: learn with ‘partial/implicit
information’ (often sequentially)
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Reinforcement Learning from supervised to reinforcement

Reinforcement Learning
a ‘very different’ but natural way of learning

Teach Your Dog: Say ‘Sit Down’
The dog sits down.
Good Dog. Let me give you some cookies.
• still cannot show yn = sit

when xn = ‘sit down’
• but can ‘reward’ to say ỹn = sit is good

reinforcement: learn with ‘partial/implicit
information’ (often sequentially)
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Reinforcement Learning from supervised to reinforcement

Application 16 (?): Go Playing Agent

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to Google DeepMind)

Non-ML Techniques
Monte C. Tree Search
≈ move simulation in
brain

(CC-BY-SA 3.0 by Stannered on

Wikipedia)

ML Techniques
Deep Learning
≈ board analysis in
human brain

(CC-BY-SA 2.0 by Frej Bjon on

Wikipedia)

Reinforcement Learn.
≈ (self)-practice in
human training

(Public Domain, from Wikipedia)

good AI: important to use the right
techniques—ML & others, including human
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Reinforcement Learning from supervised to reinforcement

Supervised versus Reinforcement
• supervised relies on teacher with (almost) correct examples
• not typically how we learned to walk with trial-and-error (or

trial-and-reward)

(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

• supervised learning ≈ learning to decide
reinforcement learning ≈ learning to control
• two essences: try ỹn (often called action an) & graded with

goodness (often called reward) rn

goal: learn best decision from history data of
trial-and-reward
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Reinforcement Learning from supervised to reinforcement

Reinforcement Learning to Play Backgammon

data ML

• target function ‘f ’: x (board state, also noted s)→ optimal action a
• data: (state s1,action a1, reward r1 =?),

(s2,a2, r2 =?), . . ., (sT ,aT , rT = 1)
• hypothesis g (often also called agent policy π) that hopefully ≈ f
• issues:

• sparse (possibly delayed) rewards
• credit assignment
• data collection (next states) depends on chosen actions at
• sometimes multi-agent (competition/collaboration)

if games (one strategy vs another) simulated
properly, agents can be strong enough
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Reinforcement Learning from supervised to reinforcement

Application 17: Bridge Bidding

(figure from Yeh et al., Automatic Bridge Bidding using Deep Reinforcement Learning, 2018)

non-‘standard’ RL task: partial information, collaborative

RL: rich opportunities for different kinds of
control/interactive tasks
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Reinforcement Learning from supervised to reinforcement

Application 18: Computer-Assisted Diagnosis
data ML AI

By DataBase Center for Life Science;

licensed under CC BY 4.0 via Wikimedia Commons

for computer-assisted diagnosis, with RL
• state st : queried patient symptoms
• action at : query another symptom or make a diagnosis
• reward rt : whether the diagnosis is correct
• learned policy π: dialogue system that efficiently identifies

disease of patient

my student’s earlier work
as intern @ HTC DeepQ
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Reinforcement Learning from supervised to reinforcement

Efficient Diagnosis: More than Plain RL

some symptoms
=⇒ all symptoms

idea: autoencoder-like error
term for reconstruction

positive symptoms
=⇒ efficient dialogue

idea: auxiliary reward for
positive symptom

successful ‘application intelligence’ sometimes
need beyond-textbook ideas
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Reinforcement Learning from supervised to reinforcement

Online RL versus Offline RL

online RL

• textbook scenario
• ‘easier’ to analyze

mathematically

offline (batch) RL

• practical scenario
• data quality depends on

‘collector’ policy

truely ‘online learning’ is luxurious in practice
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Reinforcement Learning from supervised to reinforcement

Online + Batch for Real-World Applications

model re-trained with
historical daily batch
data, incrementally or
completely

online prediction
for each request

batch labeled data
collected daily

purely online
• incremental update costly

online
• delayed labels hard to

handle properly

purely batch
• cannot capture drifts/trends

well
• complete re-training

possibly costly

real-world ML system
different from textbook settings
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Reinforcement Learning from supervised to reinforcement

From Offline RL to Imitation Learning

offline RL
• data collected by ‘any

policy’
• data often more noisy (×)
• data often with wider

coverage (©)

imitation learning
• data collected by ‘expert

policy’ (demonstration)
• data often more clean (©)
• data often with more biased

coverage (×)

imitation learning can be more data efficient
in building proof-of-concept system
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Reinforcement Learning stateless reinforcement learning: bandit learning

A Simple Trial-and-Reward Environment

Bandit 1 Bandit 2

(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

D = (a1, r1), (a2, r2), . . . , (aT , rT )

• action at ∈ {1,2}
• rt = 1 with probability pat , and 0 otherwise
• policy π specifies at for t = 1,2, . . . ,T
• evaluation: expected γ-discounted reward (with γ < 1) after∞

rounds

V (π) = E

(
(1− γ)

∞∑
t=1

γt−1rt

)
as early rewards more preferred

what are the possible policies?
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Reinforcement Learning stateless reinforcement learning: bandit learning

Some Naive Policies
Bandit 1 Bandit 2

Constant π1

π1(t) = 1 : expected reward

E

(
(1− γ)

∞∑
t=1

γt−1rt

)
= p1

Greedy πgrd

πgrd(t) = max
a∈{1,2}

p̂a(t)

with p̂a(t) estimating pa

Constant π2

π2(t) = 2 : expected reward

E

(
(1− γ)

∞∑
t=1

γt−1rt

)
= p2.

Random πrnd

πrnd(t) = (random fair coin flip)

key question: assume p2 > p1 without loss of
generality, can we be ‘nearly as good as’ π2?
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Reinforcement Learning stateless reinforcement learning: bandit learning

Blindspot in Pure Exploitation

Bandit 1 Bandit 2

Greedy πgrd

πgrd(t) = max
a∈{1,2}

p̂a(t)

with p̂a(t) estimating pa.

doomed when (a1 = 1, r1 = 1), (a2 = 2, r2 = 0)
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Reinforcement Learning stateless reinforcement learning: bandit learning

Exploitation and Exploration

Greedy πgrd (exploitation)

πgrd(t) = max
a∈{1,2}

p̂a(t)

with p̂a(t) estimating pa

Random πrnd (exploration)

πrnd(t) = (random fair coin flip)

Greedy + Random
• run Greedy with prob.
(1− ε)
run Random with prob. ε
• called ε-greedy

Greedily-Random
• randomly execute a with

prob. ∝ converted p̂a(t)
• e.g. Exponential-weight for

Exploration & Exploitation

theoretically: you would not regret
doing a little exploration
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Reinforcement Learning stateless reinforcement learning: bandit learning

Application 19: Smart A/B Testing

(CC-BY-SA 4.0 by Maxime Lorant on Wikimedia)

Greedy + Random
start with some ‘small’ traffic for
option B

Greedily-Random
tune A/B percentage by
performance

smart A-B testing allows continuous
improvement in evolving AI products
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Reinforcement Learning stateless reinforcement learning: bandit learning

Exploration-Exploitation Tradeoff
Principle
start with exploration, gradually switching to exploitation, always doing
enough but not too much, exploration

More Exploitation
• more stable
• reacts more slowly

More Exploration
• less stable
• reacts faster

often needs other criteria
to determine the right tradeoff
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Reinforcement Learning stateful reinforcement learning

Dynamic Environment

st = at = down, rt = 8 st+1 =
(https://play2048.co/)

(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

passive reactive environment: reacts
dynamically by fixed but unknown way
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Reinforcement Learning stateful reinforcement learning

Modeling Dynamic Environment with Different States

Bandit 1 Bandit 2

different states⇒ different (probabilities of) rewards, e.g.
s 1 2 3
p1 0.9 0.9 0.1
p2 0.5 0.5 0.1

want: policy π such that π(s) ≈ optimal action
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Reinforcement Learning stateful reinforcement learning

Modeling Dynamic Environment with State Transitions

T1 st+1
st 1 2 3
1 0.75 0.25 0
2 0.01 0.04 0.95
3 0 0.05 0.95

T2 st+1
st 1 2 3
1 0.90 0.10 0
2 0.90 0.09 0.01
3 0 0.10 0.90

(illustrative figures courtesy of Prof. Malik

Magdon-Ismail)
s 1 2 3
p1 0.9 0.9 0.1
p2 0.5 0.5 0.1

Markov Decision Process (MDP):
‘automata’ with probabilistic transitions
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Reinforcement Learning stateful reinforcement learning

Value Function of Policy for Known MDP

s π−→ s′ π−→ s′′ π−→ s′′′ π−→ . . .
↓ ↓ ↓ ↓

rewards r r ′ r ′′ r ′′′

· · · ·
discounts (1− γ) (1− γ)γ (1− γ)γ2 (1− γ)γ3

Vπ(s) = (1− γ)
∞∑

t=1

γt−1E[rt |s, π]

value function Vπ(s): performance of π
when starting from s in MDP
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Reinforcement Learning stateful reinforcement learning

What If Deviating from Policy?

(illustrative figures courtesy of Prof. Malik Magdon-Ismail)

Qπ(s,a): rewards from s when taking a first, and follow π later

Qπ(s,a) = (1− γ)r(s,a) + γ
∑
s′

Ta(s, s′)Vπ(s′)

= (1− γ)r(s,a) + γ
∑
s′

Ta(s, s′)Qπ(s′, π(s′))

best policy π∗ must satisfy
π∗(s) = argmaxaQπ∗(s,a)
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Reinforcement Learning stateful reinforcement learning

Policy Iteration Algorithm for Calculating π∗

s 1 2 3
p1 0.9 0.9 0.1
p2 0.5 0.5 0.1

given known MDP, and any initial policy π, repeat
• (re-)compute Vπ and Qπ(s,a) [dynamic programming helps!]
• for every state s with π(s) 6= argmaxaQπ(s,a), change π(s) to

argmaxaQπ(s,a)
until no change of π

feasible if MDP is known
and (s,a) somewhat ‘enumerable’ (Q-table)
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Reinforcement Learning stateful reinforcement learning

Unknown MDP: Explore & Estimate

(Mars exploration with Perseverance Rover, free image from NASA)

s 1 2 3
p1 ? ? ?
p2 ? ? ?

after enough exploratory actions, Ta and r(s,a)
can be estimated to calculate Qπ for any π.

S.-T. Chen & H.-T. Lin (NTU CSIE) Foundations of Artificial Intelligence 26/29



Reinforcement Learning stateful reinforcement learning

Q-Learning: Updating Q̂ Directly on the Fly

ideal: Qπ∗(s,a) = (1− γ)r(s,a) + γ
∑
s′

Ta(s, s′)Vπ∗(s′)

= (1− γ)r(s,a) + γ
∑
s′

Ta(s, s′)max
a′

Qπ∗(s′,a′)

one-example: Q̂(st ,at) = rt + γmax
a′

Q̂(st+1,a′)

deep Q-learning (with ‘any’ exploration):
• represent Q̂ with NNet
• many techniques to stabilize
• π(s) = argmaxa Q̂(s,a)
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Reinforcement Learning stateful reinforcement learning

Application 20: Data Center Cooling

(from Deepmind)

deep reinforcement learning: new opportunity
to control complicated systems
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Reinforcement Learning stateful reinforcement learning

Summary

Lecture 6: Reinforcement Learning
from supervised to reinforcement

trial-and-reward, instead of duck-fed with examples
stateless reinforcement learning: bandit learning

explore possible actions and exploit better-reward ones
stateful reinforcement learning

exploration + Q-learning + best action from Q
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