Sorting

Hsuan-Tien Lin

Dept. of CSIE, NTU

April 13, 2021

Selection Sort: Review and Refinements

idea: linearly select the minimum one from "unsorted" part; put the minimum one to the end of the "sorted" part

Implementations

- common implementation: swap minimum with a[i] for putting in i-th iteration
- rotate implementation: rotate minimum down to a[i] in i-th iteration
- linked-list implementation: insert minimum to the *i*-th element
- space O(1): in-place
- time $O(n^2)$ and $\Theta(n^2)$
- rotate/linked-list: stable by selecting minimum with smallest index
 —same-valued elements keep their index orders
- common implementation: unstable

Heap Sort: Review and Refinements

idea: selection sort with a max-heap in original array rather than unordered pile

- space *O*(1)
- time $O(n \log n)$
- not stable
- usually preferred over selection (faster)

Insertion Sort: Review and Refinements

idea: insert a card from the unsorted pile to its place in the sorted pile

Implementations

- naive implementation: sequential search sorted pile from the front O(n) time per search, O(n) per insert
- backwise implementation: sequential search sorted pile from the back O(n) time per search, O(n) per insert
- binary-search implementation: binary search the sorted pile $O(\log n)$ time per search, O(n) per insert
- linked-list implementation: same as naive but on linked lists
 O(n) time per search, O(1) per insert
- rotation implementation: neighbor swap rather than insert (gnome sort)

Insertion Sort: Review and Refinements (II)

- space *O*(1)
- time *O*(*n*²)
- stable
- backwise implementation adaptive
- usually preferred over selection (adaptive)

Shell Sort: Introduction

idea: adaptive insertion sort on every k_1 elements; adaptive insertion sort on every k_2 elements; \cdots adaptive insertion sort on every $k_m = 1$ element

- insertion sort with "long jumps"
- space O(1), like insertion sort
- time: difficult to analyze, often faster than $O(n^2)$
- unstable, adaptive
- usually good practical performance and somewhat easy to implement

Merge Sort: Introduction

idea: combine sorted parts repeatedly to get everything sorted

Implementations

• bottom-up implementation:

```
6 5 4 7 8 3 1 2 (size-1 sorted)
5 6 4 7 3 8 1 2 (size-2 sorted)
4 5 6 7 1 2 3 8 (size-4 sorted)
1 2 3 4 5 6 7 8 (size-8 sorted)
```

- $O(\log n)$ loops, the *i*-th loop combines size-2^{*i*} arrays $O(n/2^i)$ times
- combine size- ℓ array can take $O(\ell)$ time but need $O(\ell)$ space! (how about lists?)
- thus, bottom-up Merge Sort takes $O(n \log n)$ time
- top-down implementation:

```
MergeSort(arr, left, right)
```

- = combine(MergeSort(arr, left, mid), MergeSort(arr, mid+1, right));
 - divide and conquer, $O(\log n)$ level recursive calls

Merge Sort: Review and Refinements

idea: combine sorted parts repeatedly to get everything sorted

- time $O(n \log n)$ in both implementations
- usually stable (if carefully implemented), parallellize well
- popular in external sort

Tree Sort: Review and Refinements

idea: replace heap with a BST; an in-order traveral outputs the sorted result

- space O(n)
- time: $O(n \cdot h)$, with worst $O(n^2)$ (unbalanced tree), average $O(n \log n)$, careful BST $O(n \log n)$
- unstable
- suitable for stream data and incremental sorting

idea: simulate tree sort without building the tree

Tree Sort Revisited

```
make a[0] the root of a BST
for i \leftarrow 1, \cdots, n-1 do
  if a[i] < a[0]
     insert a[i] to the left-subtree
     of BST
```

else

insert a[i] to the right-subtree of BST

end if

end for

in-order traversal of left-subtree. then root, then right-subtree

Quick Sort

```
name a[0] the pivot
for i \leftarrow 1, \cdots, n-1 do
   if a[i] < a[0]
     put a[i] to the left pile of the
     pivot
```

else

put a[i] to the right pile of the pivot

end if

end for

output quick-sorted *left*; output a[0]; output quick-sorted right

Quick Sort Simulation

6, 1, 4, 9, 7, 8, 3, 10, 2, 5

Quick Sort: Introduction (II)

Implementations

- naive implementation: pick first element in the pile as pivot
- random implementation: pick a random element in the pile as pivot
- median-of-3 implementation: pick median(front, middle, back) as pivot
- space: worst O(n), average $O(\log n)$ on stack calls
- time: worst $O(n^2)$, average $O(n \log n)$
- not stable
- usually best choice for large data (if not requiring stability), can be mixed with other sorts for small data