
Data Structures and Algorithms (NTU, Spring 2015) instructor: Hsuan-Tien Lin, Roger Jang

Homework #6
RELEASE DATE: 05/26/2015

DUE DATE: 06/09/2015, 16:20 in CSIE R102/R104 and on github

As directed below, you need to submit your code to the designated place on the course website.

Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or get
negative scores and/or fail the class and/or be kicked out of school and/or receive other punishments for
those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

Both English and Traditional Chinese are allowed for writing any part of your homework (if the compiler
recognizes Traditional Chinese, of course). We do not accept any other languages. As for coding, either
C or C++ or a mixture of them is allowed.

This homework set comes with 200 points and 20 bonus points. In general, every home-
work set of ours would come with a full credit of 200 points.

6.1 Skip List, Binary Search Tree

(1) (20%) Do Exercise C-9.15 of the textbook.

(2) (20%) Do Exercise R-10.5 of the textbook.

(3) (20%) Do Exercise C-10.12 of the textbook.

1 of 5

Data Structures and Algorithms (NTU, Spring 2015) instructor: Hsuan-Tien Lin, Roger Jang

6.2 Balanced Binary Search Trees

(1) (25%) libavl (http://adtinfo.org/) is a useful library for binary search trees. For instance,
the following short code constructs an AVL tree of 16 integers and print it out.

#include <s t d i o . h>
#include <s t d l i b . h>
#include ” av l . h”
void p r e o r d e r i n t e g e r a v l (const struct av l node ∗node){

i f (node == NULL)
return ;

p r i n t f (”%d ” , ∗ ((int ∗) node−>av l da ta)) ;
i f (node−>a v l l i n k [0] != NULL | | node−>a v l l i n k [1] != NULL){

putchar (’ (’) ;
p r e o r d e r i n t e g e r a v l (node−>a v l l i n k [0]) ;
putchar (’ , ’) ;
putchar (’ ’) ;
p r e o r d e r i n t e g e r a v l (node−>a v l l i n k [1]) ;
putchar (’) ’) ;

}
}

int int compare (const void ∗pa , const void ∗pb , void ∗param)
{

int a = ∗(const int ∗) pa ;
int b = ∗(const int ∗)pb ;

i f (a < b) return −1;
else i f (a > b) return +1;
else return 0 ;

}

int main (){
struct a v l t a b l e ∗ t r e e ;
t r e e = a v l c r e a t e (int compare , NULL, NULL) ;

int i ;
for (i =0; i <16; i ++){

int∗ element = (int ∗) mal loc (s izeof (int)) ;
∗ element = i ;
void ∗∗p = av l probe (t ree , element) ;

}

p r e o r d e r i n t e g e r a v l (t ree−>a v l r o o t) ;
puts (””) ;
return 0 ;

}

Note that the manual of libavl may be difficult to read; the code above comes from modifying
the avl-test.c in libavl. When the code is compiled with avl.c, it correctly outputs an AVL
tree (pre-order).

7 (3 (1 (0 , 2), 5 (4 , 6)), 11 (9 (8 , 10), 13 (12 , 14 (, 15))))

Write a program hw6 2 that reads 32 strings (of length at most 128 that can be compared lexi-
cographically) line by line (each line containing one string) from stdin and inserts them to the
AVL tree (avl.c), height-bounded binary search tree (bst.c), and Red-Black tree (rb.c). Please
output the resulting trees (pre-order) to stdout with the format similar to the output above in

2 of 5

Data Structures and Algorithms (NTU, Spring 2015) instructor: Hsuan-Tien Lin, Roger Jang

three lines. Your output order should be AVL tree, height-bounded binary search tree,
and Red-Black tree.

You are encouraged but not required to insert the following 32 keywords in C

auto, break, case, char, const, continue, default, do, double, else, enum,
extern, float, for, goto, if, int, long, register, return, short, signed,
sizeof, static, struct, switch, typedef, union, unsigned, void, volatile,
while

to see what the trees are like.

6.3 Disjoint Set

Next, we introduce you with a useful data structure called the disjoint set that can be implemented with
a forest of trees, and guide you to think about extending “disjoint-set forest” with binary search trees to
provide even more sophisticated functionality. The disjoint sets is also called partition, and is introduced
in Section 11.4.3 of the textbook. Let’s first start with a story.

Suppose that you have n friends, and each friend initially owns a computer game. To make it simple,
the friends are numbered from 1 to n, and the game initially-owned by the i-th friend is numbered i.
In other words, the set of all games {1, 2, . . . , n} is initially partitioned to n disjoint subsets (owned-by-
friend) {1}, {2}, . . . , {n}.

There are two kinds of incidents in our story. In the first incident, as time goes by, some friends
find the computer games on hand tedious, and want to play other games. If the current owner u of the
i-th computer game finds it tedious, and gets a message on Facebook that the j-th computer game is
interesting, two possible results will take place:

• If u also owns the j-th computer game, u will simply switch to play her/his j-th game. No other
actions are needed.

• If u doesn’t own the j-th computer game, u will visit the person who owns the j-th game, say
v, and borrow all v’s computer games. Note that after this incident, v will no longer own any
computer game. That is, v will go study hard for the DSA homeworks (and will not be eligible
for borrowing games from other friends).

Another incident arises when you visit your friend who owns the i-th game one day. During the visit,
you find that your friend owns many games that are of interest to you. You check your pocket and find s
dollars. You then ask your friend about the price of each game she/he owns, with the hope of calculating
the maximum number of games you can buy (from the store nearby, not from your friend). To simplify
this problem, you will not actually go buy those from the store nearby nor your friend.

In this very last problem of the semester, you are asked to simulate the two scenarios with efficient
data structures and algorithms. Before you switch to the next page, we encourage everyone to stop and
think about how to solve the problem. We have sub-problems on the next page to help you conquer
the problem.

Input Format

Please read the input from stdin. The first line contains two integers, n and m, separated by a space.
n denotes the number of your friends, and m denotes the number of incidents. It is guaranteed that
1 ≤ n ≤ 105 and 1 ≤ m ≤ 2 × 105. The second line contains n integers, p1, p2, . . . , pn, with pi and
pi+1 separated by a space, where pi denotes the price of the i-th computer game. It is guaranteed that
1 ≤ pi ≤ 108. Finally, each of the following m lines contains three integers that represents an incident.
The two kinds of incidents are denoted as follows.

• 1 [i] [j]: The current owner of the i-th computer game finds it tedious, and gets a message on
Facebook that the j-th computer game is interesting. It is guaranteed that 1 ≤ i, j ≤ n and i 6= j.
There is no need to output anything. You only need to take the action that changes the disjoint
sets if needed.

3 of 5

Data Structures and Algorithms (NTU, Spring 2015) instructor: Hsuan-Tien Lin, Roger Jang

• 2 [i] [s]: You visit your friend who owns the i-th game, with s dollars in your pocket. You then ask
your friend about the price of each game she/he owns, with the hope of calculating the maximum
number of games you can buy. You should output two integers, u and k, separated by a space, to
stdout. Here u denotes the id of the friend who owns the i-th game, and k indicates the maximum
number of games (within u’s collection) you can buy with s dollars. It is guaranteed that 1 ≤ i ≤ n
and 1 ≤ s ≤ 1012.

Sample Input

4 10

2 1 4 7

2 3 3

1 3 2

2 3 3

1 1 3

2 2 4

1 3 2

2 2 4

2 4 7

1 2 4

2 4 7

Sample Output

3 0

3 1

1 2

1 2

4 1

1 3

(1) (25%) Read Section 11.4.3 of the textbook while paying a special attention to “A Tree-Based
Partition Implementation” (hereby called the disjoint-set forest). Then, consider one heuristic
that merges the two trees by depth instead of size, without doing union-by-size nor path-
compression. That is, the shorter tree is always merged as a child of the taller tree. Prove that
the disjoint-set forest with this heuristic yields a worst-case running time for find and union within
O(log n). (Hint: Prove that each union operation keeps trees within depth O(log n) by showing that
within the forest, any tree of height h always contains at least 2h nodes.)

(2) (25%) Suppose that you only need to output u rather than u and k for this problem. Write down
the pseudo-code of an efficient algorithm based on the disjoint forest. (Hint: In addition to the
disjoint forest, you may need an array to keep track of the “owner” of each tree)

(3) (25%) Suppose that the prices of your friend u’s games are stored in a balanced BST as keys,
and you have access to the size and the sum of all keys of any subtree of the BST in an O(1) time,
write down the pseudo-code of an efficient algorithm for outputting k for the particular u. (Hint:
What does BST stand for? :-))

(4) (Bonus 20%) So now we know that merging (union) can be done efficiently by inserting the smaller
tree into the larger one, locating u can be done by careful bookkeeping, and that a special balanced
BST helps locating k. The only difficulty is how to merge two balanced BSTs. Given two balanced
BSTs T1 and T2, with the size of them being n1 and n2 respectively, one can easily come up with
a näıve algorithm to obtain the union of T1 and T2 by inserting all the elements of T1 into T2, and
the time complexity is O(n1 log(n1 + n2)). If we take the same heuristic as (1) and always insert
the elements of the smaller BST into the bigger one, prove that processing all incidents of the first
kind takes O(n(log n)2) time.

(5) (40%) Write a program hw6 3 to solve the problem efficiently. You can use any data structure
and algorithm you want as long as your program outputs the answer correctly within the given

4 of 5

Data Structures and Algorithms (NTU, Spring 2015) instructor: Hsuan-Tien Lin, Roger Jang

time limit (2 seconds per each test case). For instance, in addition to the disjoint-set forest, other
data structures like treap or copy-on-write segment tree may help. If you want to implement the
disjoint-set forest, TA Yen-Chieh provides a modified AVL-tree library based on libavl.

Notes about the Modified AVL-tree Library avl ntudsa.h/avl ntudsa.c

Each node of the tree contains

(1) int avl data: the key of AVL-tree.

(2) int avl cnt: for counting duplicate keys. For instance, if there is one 1126 in AVL-tree, avl cnt
will change from 1 to 2 if you insert another 1126.

(3) int avl cnode[2]: the total number of nodes in left subtree (avl cnode[0]) and right subtree (avl cnode[1]).

(4) long long int avl sum[2]: the sum of keys in left subtree (avl sum[0]) and right subtree (avl sum[1]).

Besides, some of the functions are removed. The rest is same as avl.h/avl.c.

Submission File

Please submit your written part of the homework on all problems together to R102/R104 before the
deadline. For the coding part, please follow the same guide of hw2 and submit through github (while
tagging your submission as hw6). Please DO NOT PUT BINARY FILES in your repository.

Your hw6 directory of the repository should contain the following items:

• hw6 2.c or hw6 2.cpp or any other non-libavl code that you write

• hw6 3.c or hw6 3.cpp or any other non-libavl code that you write

• an optional Makefile.inc if needed, which guides how hw6 2.o and hw6 3.o can be generated

• an optional README, anything you want the TAs to read before grading your code

The TAs will use the Makefile provided in the repository (and libavl code) to test your code. Please
make sure that your code can be compiled with the Makefile on CSIE R217 linux machines.
Please make sure that your code can be compiled and run with the Makefile on CSIE
R217 linux machines. Otherwise your program “fails” its most basic test and can result in
ZERO!

Note that this is the last homework of this semester and is therefore your last chance of
using the MEDALs, if you still have any!

5 of 5

