
Data Structures and Algorithms (NTU, Spring 2015) instructor: Hsuan-Tien Lin, Roger Jang

Homework #4
RELEASE DATE: 04/28/2015

DUE DATE: 05/12/2015, 16:20 in CSIE R102/R104 and on github

As directed below, you need to submit your code to the designated place on the course website.

Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or get
negative scores and/or fail the class and/or be kicked out of school and/or receive other punishments for
those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

Both English and Traditional Chinese are allowed for writing any part of your homework (if the compiler
recognizes Traditional Chinese, of course). We do not accept any other languages. As for coding, either
C or C++ or a mixture of them is allowed.

This homework set comes with 200 points and 20 bonus points. In general, every home-
work set of ours would come with a full credit of 200 points.

4.1 Trees

(1) (20%) Do Exercise R-7.15 of the textbook.

(2) (20%) Do Exercise R-7.24 of the textbook.

(3) (20%) Do Exercise C-7.3 of the textbook.

(4) (20%) Do Exercise C-7.7 of the textbook with pseudo code.

4.2 Decision Tree

In this problem, we will explore an application of trees in the area of Artificial Intelligence and Machine
Learning. Decision Tree is one of the earliest tool for Machine Learning. The non-leaf nodes of a decision
tree represent choices (factors) considered, while the leaf nodes represent final decisions under the choices.
For simplicity, we will consider the trees with binary factors—i.e., binary decision trees. Such a tree is
shown in Example 7.8 of the textbook.

For instance, the following tree1 is a binary decision tree for deciding whether to play golf. If the sky
is cloudy, we decide to play golf; if not, we check if it is windy—if so, we play golf only if it is not humid
and the sky is clear. On the other hand, if it is not windy, we do not play golf only when the sky is not
rainy but it is humid.

1Thanks to our TA emeritus Chun-Sung Ferng for drawing.
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Such a decision tree is called a “classification tree.” It classifies different (sky, windy, humid) sit-
uations to decision categories play? = {yes, no}. The tree is not arbitrarily formed. In fact, it is
automatically learned by a program from a bunch of given examples. In other words, you can “teach”
the program with the examples. For instance, consider the following examples.

sky windy humid play?

clear true true no
clear true false yes
rainy true false no
rainy false true yes
clear false true no
clear false false yes
cloudy false true yes
clear false true no
cloudy true false yes
cloudy true true yes
rainy false true yes
cloudy false true yes
rainy true true no
rainy false true yes

The decision tree can be taught with the examples in a top-down recursive way. First, we need to find
the root branch. There are 9 yes and 5 no (9Y5N) in the examples above. If we consider a factor of “sky
being clear or not”, we can separate the 14 examples to two branches: 2Y3N for the clear branch and
7Y2N otherwise; if we consider a factor of “sky being cloudy or not”, we can separate the 14 examples
to two branches: 4Y0N for the cloudy branch and 5Y5N otherwise. We can continue checking possible
branches.

One heuristic for making a good branching choice is to check the total confusion after branching.
The confusion of a mixture of aYbN is defined as
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The total confusion after branching by “sky is cloudy or not” is
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The heuristic tries to find a branch such that the total confusion is the smallest, with ties arbitrarily
broken.

Now, after finding a good branch for the root, we separate the examples to two subsets: one for the
left-child of the root, one for the right-child of the root. The same branching strategy can be applied to
the two subsets to form the two sub-trees and the tree building continues recursively.

Recursively? What is the termination condition, then? Well, you do not need to branch if all the
examples are the same and you cannot branch anymore, or if the confusion without branching is readily
less than or equal to a value ε. For instance, if ε = 0.2 and there is 9Y1N in a subset, its

confusion(9, 1) = 1−
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Then we do not need to branch anymore. In such a case we declare a leaf with the final decision with
the majority of the examples (such as the Y in the 9Y1N case), with ties arbitrarily broken. The simple
decision tree algorithm is listed as follows:

given ε as the parameter
Decision-Tree(examples)
if confusion in the examples ≤ ε or cannot branch anymore then

build and return a leaf node with the associated final decision
else

find a branch such that the total confusion is smallest, store the branch in the root of the tree
separate examples to two subsets, one for the left-child and one for the right-child
set the left-subtree to be DecisionTree(example subset for the left-child)
set the right-subtree to be DecisionTree(example subset for the right-child)
return the tree

end if

The branch we discussed are on discrete factors. We can also branch on numerical (continuous) factors
by setting a proper threshold. For instance, a numerical factor may be the temperature and a branch
may be “is temperature greater than t?” The best threshold t can be found by “cleverly” searching all
possible thresholds.

For instance, consider branching on one numerical variable with M examples. Consider a simple case
where the values of the numerical variable on those examples are v1, v2, . . . , vM with v1 < v2 < . . . < vM—
if the values are not sorted or not unique, you can always sort them and remove the duplicates to get
sorted and unique values. Trivially, there are only M + 1 possible “regions” of thresholds t, where all the
thresholds within the same region are equivalent—that is, they separate the M examples to two subsets
in identical ways. Consider choosing the thresholds among {v1 − 1, v1+v2

2 , v2+v3
2 , . . . , vM−1+vM

2 , vM + 1}.
A näıve algorithm for making the best choice is to evaluate the total confusion (which is O(M)) with
each threshold, needing a total time of O(M2). The näıve algorithm does not use the property that the
vm values are sorted, by the way.

In this problem, we ask you to implement such a program that can be taught with examples of
numerical variables and produces the binary decision tree. One interesting thing about binary decision
trees is that you can output the tree as some C code if(...){...} else{...}. That is, after you teach
your program, it can automatically produce another program that can make future decisions.

(1) (Bonus 20%) Using the property that the vm values are sorted, describe an O(M) algorithm to
calculate the best threshold. Note that if you combine theO(M) algorithm with a sorting algorithm,
which can be done in O(M logM) (this will be taught later), you get an O(M logM) time algorithm
for picking the best branching threshold.

(2) (30%) Implement the decision tree algorithm. Your program should read the input examples
that contain numerical values, and print out a piece of C code representing the decision tree. Your
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program should be named tree, take the data file as the first argument, and ε as the second
argument. For instance, ./tree heart 0.1 learns a decision tree from the data file heart with
ε = 0.1.

The data file is assumed be of the famous LIBSVM sparse format.2 Each line of the data file
represents an example of the form

label sparse_array

where label is either +1 (indicating YES) or -1 (indicating NO), and sparse array represents an
C-style dense array {0, 4, 0, 0, 3, 2} by 1:4 4:3 5:2

You can read the sparse array and store it in whatever way (sparse or dense) you choose in your
program. A friendly hint is that it might be simpler to internally use the dense array.

Please output your tree as a function in C/C++ language. The function must follow this interface:

int tree_predict(double *attr);

The only argument is a double array which contains the factors of one example in the same format
as input. This function should return the label prediction of the example (1 or -1 for heart, for
instance). After the Makefile.ta redirects your standard output to tree pred func.cpp, you can
compile and run the provided tree predictor.cpp to check how good your decision tree is (see
README). For example, your tree pred func.cpp should look like:

int tree_predict(double *attr){

if(attr[3] > 5){

return 1;

}

else{

return -1;

}

}

(3) (15%) Illustrate (ideally with drawing) the internal data structure you use to represent the
decision tree in your memory. Please be as precise as possible.

(4) (15%) Teach your decision tree with the following examples to learn a function f with ε = 0.
Draw the tree you get.

weight height age f(weight, height, age)

68 153 32 +1 (YES)
74 167 22 +1 (YES)
90 182 26 +1 (YES)
83 179 18 -1 (NO)
59 152 28 -1 (NO)
52 144 24 -1 (NO)
43 170 33 -1 (NO)
47 171 23 -1 (NO)

(5) (20%) Construct your own data set with at least 2 numerical factors and at least 6 examples.
Teach your program to make a decision tree of at least 2 levels with this data set. List the examples
as well as draw the tree found. Briefly explain the tree.

(6) (30%) A popular algorithm in Machine Learning is called Random Forest. The random forest
contains T decision trees. We will consider a simple case. Given N , each decision tree is learned
from

⌊
N
3

⌋
of randomly chosen examples with ε = 0. For making a decision, the random forest asks

each tree to provide a decision (vote), and then takes the majority vote as the final decision, with
ties arbitrarily broken. Implement the random forest algorithm. Your program should read the

2LIBSVM is a world-famous machine learning algorithm developed by Prof. Chih-Jen Lin’s lab in our department
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input examples that contain numerical values and T as input. Then, it prints out a piece of C code
representing the random forest. Your program should be named forest, take the data file as the
first argument, and T as the second argument. For instance, ./forest heart.train 50 learns a
50-tree forest from the data file heart.train.

Similar with the decision tree function, you need to output your forest as a function in C/C++
language. The function must follow this prototype:

int forest_predict(double *attr);

The argument and return value specs are the same as the decision tree function. The Makefile.ta

would direct your standard output to forest pred func.cpp. Then, you can compile and run the
provided forest predictor.cpp to check how good your Random Forest is (see README). For
example, your forest pred func.cpp should looks like:

int forest_predict(double *attr){

tree1_predict:

//do something

tree2_predict:

//do something

treeT_predict:

//do something

voting:

//do something

}

Submission File

Please submit your written part of the homework on all problems together to R102/R104 before the
deadline. For the coding part, please follow the same guide of hw2 and submit through github (while
tagging your submission as hw4).
10 of the total points will also depend on how you use git, such as whether the commit message is
meaningful, whether each commit involves reasonable logical units of the source, etc. Please DO NOT
PUT BINARY FILES in your repository.

Your hw4 directory of the repository should contain the following items:

• all the source code and your own Makefile (different from the TAs’ Makefile.ta) such that make
tree would generate a program named tree, which reads examples and outputs a piece of code
to stdout for the decision tree, and make forest would generate a program named forest, which
reads examples and output a piece of code to stdout for the random forest

• an optional README, anything you want the TAs to read before grading your code

Please make sure that your code can be compiled and run with the Makefile on CSIE
R217 linux machines. Otherwise your program “fails” its most basic test and can result in
ZERO!
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