
Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

Homework #3
TAs’ email: dsa AT csie DOT ntu DOT edu DOT tw

RELEASE DATE: 04/01/2014
DUE DATE: 04/22/2013 (Tuesday!!!), 5:30pm (after class)

As directed below, you need to put your code in the designated repository.

Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or get
negative scores and/or fail the class and/or be kicked out of school and/or receive other punishments for
those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

Both English and Traditional Chinese are allowed for writing any part of your homework (if the compiler
recognizes Traditional Chinese, of course). We do not accept any other languages. As for coding, either
C or C++ or a mixture of them is allowed.

This homework set comes with 200 points and 20 bonus points. The 200 points include
10 points for git usage (see submission guide), 90 points for the hand-written part and
100 points for the programming part. In general, every homework set of ours would come
with a full credit of 200 points.

1 More about Analysis Tools

(1) (20%) Do Exercise R-4.22 of the textbook.

(2) (10%) Do Exercise R-4.39 of the textbook.

(3) (10%) Do Exercise C-4.11 of the textbook.

2 More about Arrays

(1) (10%) Use any pseudocode to do Exercise C-3.3 of the textbook. (The faster the better.)

(2) (10%) Given two strictly increasing integer arrays A and B, use any pseudocode to write down
an algorithm for finding A ∩B. (The faster the better.)

3 List, Stack and Queue

(1) (10%) If a singly linked list is wrongly constructed, there would be a cycle within the linked list.
Use any search engine or consult any friend to find an O(N) time and O(1) space algorithm that
detects whether there is a cycle in a linked list of size N where N is unknown beforehand (hint :
usually called Floyd’s Cycle-Finding Algorithm). Learn and explain the algorithm clearly to the
grading TA in your own words. Also, cite the website (or the person) that you learn the algorithm
from.

(2) (10%) Use any pseudocode to write down an algorithm that uses two queues (with enqueue,
dequeue and isempty operations but no others) to simulate one stack (for push and pop operations).
What is the total running time after N operations?

1 of 8

Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

(3) (10%) Use any pseudocode to write down an algorithm that uses two stacks (with push, pop

and isempty operations but no others) to simulate one deque (for push/pop front and push/pop

back operations). What is the total running time after N operations?

Hint : You can begin your analysis by reasoning how much time it takes to perform one operation
and how much time is required when there are N operations.

4 Programming via SVM

4.1 Introduction

In this homework, we are going to ask for your help in designing a minimal programming language based
on the calculator introduced in the class. This will mainly involve the infix-to-postfix algorithm (that is,
the “shunting-yard” algorithm invented by Dijkstra) you have learnt.

The work is splitted into two parts. The first part is a toy compiler that converts the input expression
into a sequence of low-level instructions. The second part, which is left as a bonus for those who are
interested in playing with so, is a stack virtual machine (“SVM” for short) which executes the translated
instructions on a stack, as illustrated by the following figure. Note that stack virtual machine is one
important part of the famous Java platform. We hope that this minimum programming language helps
you think more about how programs can work in different languages/platforms.

source language

2 * (3 - 4) + 5
hw3 1

push 2

push 3

push 4

sub

imul

push 5

add

target langauge

hw3 2
(bonus)

3

(Note: the postfix form of the input expression is 2 3 4 - * 5 +)

4.2 Core Language

The language is designed to be as small as possible, you need only support several core features. Apart
from usual arithmetic operators, the most distinctive feature of our language will be the support for
conditional expressions and full mathematical functions.

Given an expression e, let eval(e) denote its value. So eval(1 + 2) = 3, eval(2× (3− 4) + 5) = 3.

• Conditional Expression, if expr1 then expr2 else expr3

The conditional expression is similar to the ternary operator ? : in C++. We shall first evaluate
expr1 to a number (say, n), continue with expr2 if n 6= 0 and expr3 otherwise.

eval(if expr1 then expr2 else expr3) =

{
eval(expr2) if eval(expr1) 6= 0
eval(expr3) if eval(expr1) = 0

• Functions, \ argument -> body

– (Creating Functions) Our mathematical function will be anonymous. In our syntax, an
expression \x -> e denotes a function that takes an argument x and yields e, where e is some
expression (which may involve x).

∗ Example 1. \x -> x * x denotes the function f such that f(x) = x× x.

∗ Example 2. The function g where g(y) = 2× y + 1 can be written as \y -> 2 * y + 1.

2 of 8

Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

Note that in these examples, the names of the function f , g are completely dropped. Also,
since it doesn’t matter which name we choose for the formal paramter; \x -> x * x will
behave exactly the same as \t -> t * t.

Our functions will always be univariate.

– (Function Application) We denote function application of f on x by an @ operator (read
“ap”). That is, the usual “math” notation f(x) becomes f @ x in this language. Moreover,
@ associates to the left, so g @ x @ y is parsed as (g @ x) @ y, i.e. g(x)(y); g(h(x)) should
be written as g @ (h @ x) – here (,) is just the usual notation specifying that h @ x will
be calculated first.

Function applications work by substituting the formal parameter by the applied value. In the
following example, the function on the left-hand side is applied to 5. We thus replace all the
occurences of t by 5.

– (Example) the expression (\t -> t * 3 + t * t) @ 5 means f(5) where f is the function
with f(t) = t× 3 + t2. Hence

eval((\t -> t * 3 + t * t) @ 5) = eval(t * 3 + t * t [where t = 5]) (substitute 5 for t)

= eval(5 * 3 + 5 * 5)

= 40

To ease your load, we will provide some code for tokenizing the input and simplifying the expression
to the core language (called “desugaring”) for hw3 1. Thus you can focus on the main algorithm. If you
are interested in what syntactic extensions are available, please check the provided code.

4.3 Toy Compiler (hw3 1)

There will be two kinds of expressions, called topexpr and expr, respectively. topexpr represents any
valid expression in our language, and expr denotes the part without conditionals and functions. We
provide code for topexpr, and your job is to help with the expr part.

• A topexpr can be either

– An expr

– A conditional expression, "if" expr "then" expr "else" expr

– An anonymous function, "\" id "->" topexpr

where id is a valid variable name (specified below)

• An expr can be

– A non-negative integer n or a variable

– "(" topexpr ")"

– expr op expr where op is either "@", "^", "*", "/", "+", "-", or "<="

Please implement a program hw3 1 that converts an expr expression into a sequence of instructions.
The conversion algorithm is the same as the one that converts an infix expression into postfix notation.
You should print the instructions to the screen, one per line. We have provided the code for handling
topexpr.

The following operators, ordered from the highest precedence to the lowest, may be in the expression.

1. @: The function application operator.

• “f @ x”: f applies to x.

• “(\x -> 5) @ (1 + 2)”: (\x -> ...) applies to (1 + 2).

• “g @ x @ y”: (g @ x) applies to y where g @ x means g applies to x.

• “g @ (h @ x)”: g applies to (h @ x) where h @ x means h applies to x.

2. ^: The (integer) exponential operator. This operator associates to the right.

3 of 8

Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

3. *, /: The usual arithmetic operators that associates to the left. Please note that / is integer
division, hence 10 / 3 7→ 3

4. +, -: The usual arithmetic operators that associates to the left.

5. <=: A comparison operator that associates to the left.

e 1 <= e 2 is 1 if e1 ≤ e2 and is 0 if e1 > e2.

In addition to the operators, the expressions contain non-negative integers and variables. A variable
name will begin with a letter or an underscore, followed by an arbitrary number of letters, digits or
underscores.

We ask you to implement an algorithm of the following form, where ParseTopExpr is in the provided
code. As you can see, parentheses connecting topexpr with expr should be handled specially. Tokens
like “then”, “else” should also be handled specially.

function ParseExpr()
while there are input tokens do

tok ← PeekToken() . PeekToken will not remove the token from the buffer
if tok ∈ { “)”, “then”, “else” } then

break
else if tok = “(” then

insts← the output of ParseTopExpr()
tok ← NextToken() . here tok should equal “)”
output insts

else
. . . . the expression translation code

end if
end while

end function

For your information, the provided function ParseTopExpr() roughly works by translating

The input “if exprcon then exprth else exprel”
to the following instructions

ParseExpr(exprcon)

“jz m k”

k insts.

ParseExpr(exprth)
“ret”

}
m insts.

ParseExpr(exprel)
“ret”

The input “\ id -> topexprbody” to the fol-
lowing instructions

“closure id n”

ParseTopExpr(topexprbody)
“ret”

}
n insts.

Otherwise, recursively call ParseExpr().

So another responsibility of yours is to make sure that the ParseExpr() that you implements can
be properly called by ParseTopExpr().

For your main job “ the expression translation code ”, Please convert the input expression into post-

fix form and output according to the following table.

Output Token Instruction
n (positive integer) push n
“x” (variable) access x

@ apply

^ pow

* imul

/ idiv

+ add

- sub

<= setle

4 of 8

Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

(Example) If your ParseExpr() is working properly with ParseTopExpr(), you should be able to
get that the postfix form of the expression

g @ (x - 3) / 4

is

g x 3 - @ 4 /,

This is because function application is of the highest precedence, and hence the expression
g @ (x - 3) / 4 means (g @ (x - 3)) / 4.

Then, your program should output

access g

access x

push 3

sub

apply

push 4

idiv

4.4 Grading Details

• Implementation

– Please note that you are required to use the provided code (in hw3 1). Otherwise, it is your
responsibility to make your program be completely compatible with the provided code.

• Input limits

– All input [output] should be read from [printed to] the screen. All input expressions are
guaranteed to be correct in sense that there will be no syntax error

– There will be at most 500 tokens in the input of hw3 1. Variable names are at most 31
characters long.

• Testing (100%)

– There will be a total of 10 checkpoints of the homework, each requires some (or all) of the
features defined above. It is up to your choice to (selectively) skip some features.

No. Required Feature(s)
1, 2, 3 <=, +, -, *, /
4, 5, 6 all operators (no parentheses)

7, 8 all except topexpr (So the expression inside (,) can only be expr)
9, 10 all

5 of 8

Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

Submission File (Program) and Written Copy

Please push your program to your repository <user name>/dsa14hw3 (on GitHub) before the deadline
at 5:30pm on Tuesday (04/22/2014). We will use the latest time that you pushed to the repository as
your submission time.

10 of the total points will also depend on how you use git, such as whether the commit message is
meaningful, whether each commit involves reasonable logical units of the source, etc. Please DO NOT
PUT BINARY FILES in your repository.

Your repository should contain the following items:

• all the source code for your program.

• a Makefile to compile your code and run your program. The TAs will type make to compile your
source files to one (or two) programs. Then they will use ./hw3 1 < input > output and (if you
choose to do the bonus) ./hw3 2 < input > output to test your program.

• an optional README, anything you want the TAs to read before grading your code

For all the problems that require illustrations, please submit a written (or printed) copy in class or to
CSIE R217 before the deadline.

MEDAL USAGE: If you want to use the gold medals for this homework, please visit
http://main.learner.csie.ntu.edu.tw/php/dsa14spring/login medal.php and submit the request
before the deadline + 4 days (4/26).

Bonus: Stack Vector Machine (Not Support Vector Machine)
(hw3 2)

(Bonus 20%) Please implement a program hw3 2 that reads the instructions from the screen and runs
the compiled instructions. When there are no instructions left, print the value at top of vstk (which is
guarenteed to be an integer) to the screen.

Our machine consists of 5 components:

pc = n · · · push 1

n− 1

push 2

n

add

n + 1

· · ·

vstk = 1 · · ·

env = x 3 • z 8 • · · ·

cstk = pc1
•

saved env1

pc2
•

saved env2

· · ·

A snapshot of the machine

6 of 8

Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

register name description

code An array storing instructions

pc program counter Index of the code array, denoting the position of the next instruction

vstk value stack

A stack storing value for postfix expression evaluation.
A value can either be

• An integer n

• A triple (“x”, pc′, env′) representing a function where x is its formal
parameter, pc′ is the address of the function code and env′ is the
pointer to the environment saved upon the creation of the function.

env environment Pointer to the head of the linked-list storing variable names and their values

cstk call stack A stack of (pc′, env′) pairs storing the return addresses of function calls

The components of SVM

The instructions of SVM are:

• add, sub, imul, idiv, setle, pow

– These instructions will pop 2 values from vstk and push the result back.

∗ setle evaluates to 1 if v1 ≤ v2 and 0 otherwise.

∗ pow evaluates to v1
v2 . We guarantee that v2 is non-negative and that v1

2 + v2
2 6= 0.

– (Example) sub

before after
pc n n + 1

vstk v2, v1, u1, u2, . . . (v1 − v2), u1, u2, . . .

• push m: Push the integer m to vstk

– (Example) push 8

before after
pc n n + 1
vstk u1, u2, . . . 8, u1, u2, . . .

• access <variable>: Get the value of <variable> from env and push it to vstk. If there are
multiple entries of <variable>, push the one that occurs first.

– (Example) access x

before after
pc n n + 1

vstk u1, u2, . . . 13, u1, u2, . . .
env (y, 3)→ (x, 13)→ · · · → (x, 5)→ · · · (unchanged)

• closure <variable> m: Create a function, put it on vstk, skip the following m instructions.

– (Example) closure t 4

before after
pc n n + 1 + 4
vstk u1, u2, . . . (“t”, n + 1, p), u1, u2, . . .
env p (pointer) (unchanged)

∗ Note: (“t”, n + 1, p) can be viewed as a struct containing a string "t", an integer n + 1
and a pointer p.

7 of 8

Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

• apply: Pop a function and its argument from vstk. Call the function. To call a function, we push
the current pc and env to cstk and extend the environment with the argument.

– (Example) apply

before after
pc n m
vstk v, (“w”,m, q), u1, u2, . . . u1, u2, . . .
env p (pointer) (w, v)→ q (q is a pointer)
cstk addr1, addr2, . . . (n + 1, p), addr1, addr2, . . .

• ret: Get the return address and environment from cstk and return

– (Example) ret

before after
pc n n′

env – env′

cstk (n′, env′), addr1, addr2, . . . addr1, addr2, . . .

• jz m k: Push the return address (pc + 1) + k and the environment to cstk. Pop a value v from
vstk and test if it is zero. If so, skip the following m instructions.

– (Example) jz 3 6

before after
pc n if v 6= 0 then n + 1 else (n + 1) + 3
vstk v, u1, u2, . . . u1, u2, . . .
env p (pointer) (unchanged)
cstk addr1, addr2, . . . (n + 1 + 6, p), addr1, addr2, . . .

8 of 8

