
DSA HW2 Analysis (Programming Section)

kelvin

Overview
In this assignment, you are asked to process a series of plate-number records on highway cameras, where

at most two digits are possibly wrongly identified. You are to support two kinds of queries, possible and
anomaly.

This is a brief sketch of possible approaches and some implementation detail. If you manage to capture
most of the important stuffs, the given time limit should be fairly loose.

Anomaly Queries
The anomaly query is actually the easier one of two, because you do not need to consider the existence

of wrongly identified digits.
It thus became fairly obvious that we should categorize the records by plate-number and sort them in

chronological order. For a particular plate, we can easily discover anomaly records by scanning the records
corresponding to the plate-number from earliest to latest. After each record, the vehicle is expected to be
between two specific camera. Thus the (at most) two possible next occurence of the vehicle is known, and
an anomaly is discovered if the next record is not one of the possibilities.

For handling this part of queries, a vector corresponding to each plate is enough.

Possible Queries
The Obvious Way

Note that the approach we used in processing anomaly queries (categorizing by plate) no longer work,
as there is multiple (roughly

(
6
2

)
× 252 ≈ 2000) possible identified version for a particular plate. Thus one

of the trivial approach is to scan through all records, and test one-by-one whether each record could be
corresponding to the queried plate, i.e. differs by at most two digits.

This approach is however slow (taking O(6#record) per query), and will time out in larger test cases.

Trading Space for Time Efficiency

A way to go is to observe that despite the many possibilities of how a plate is identified, it is possible
to express them concisely in with the wildcard character. Namely, the set of possible match of a plate “p =
”ABCDEF”” could be expressed with S = WC(p) = ”ABCD ∗ ∗”|”ABC ∗ E∗”|”ABC ∗ ∗F”| . . . |”∗ ∗ CDEF”.
Note that the originally more than 2000 possibilities is cut down to just

(
6
2

)
= 15.

This hints us to instead categorize plates by their matching wildcard. In particular, we keep a vector
for all possible representation with exactly two wildcards, and each record is appended to it’s corresponding
15 wildcard vectors.

When processing a query asking for a particular plate p, we gather those records in vectors corresponding
to WC(p), and merge them in chronological order. When the number of relevant record (corresponding to a
particular plate) is relatively sparse (in comparison to the whole list of records), this method is tremendously
more efficient.

Implementation Details
STL Map is a perfectly suitable storage structure to serve the purpose of this problem (as is a hash map

or a balanced tree; some more preprocessing to sort all possible plate occurences work as well. The key here
is to be able to retreive the vector storing vectors corresponding to a specific plate in O(lgN) time).

1

DSA HW2 Analysis

Specifically, let map<string,vector<Record>> rec be the aforementioned map. An example way of
retreiving or appending records into one of the vector is then

rec["DSA*1*"].push_back(Record("DSA014",time,camera))

Some other tricks (STL functionality) are helpful in this homework as well. For example, if we want to gen-
erate all possible “mask” (wildcard plate) for a particular plate p, we can simply make use of next_permutation:

char mask[] = "....**";
do {

string str = p;
for(int i=0; i<6; i++)

if(mask[i]=='*') str[i] = '*';
/* do something to the wildcard plate str */

} while(next_permutation(mask,mask+6));

When searching records from a given start date till an end date, the STL function lower_bound may
be of help. For removeing duplicated records from a sorted array (you may need to do this when handling
the possible query, where you may have a same record mapping to multiple wildcard plate), STL function
unique is useful:

sort(arr.begin(),arr.end()); // arr is sorted now
arr.resize(unique(arr.begin(),arr.end())-arr.begin());

There, one line and you’re done. So sometimes making use of existing libraries could really save your
time.

There are even more things that you can do to improve your efficiency, though it might not be worth
your effort. For example for merging all the records from different cameras in chronological order, it could
be done in O(N lg k), where N is the total number of records and k is the number of cameras. A way to do
this is through divide and conquer (on camera), another way is to utilize the heap data-structure that you
just learnt in class. Since you can still always achieve the same in O(N lgN) by a simple sort, it may not be
meaningful to go through all the hassle. It’s still fun to think about different ways to improve things though.

2

