
Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

main contributing authors to this document:
Mu-Chu Lee, Shu-Hung You

This is just an easy introduction about overloading operators in C++. If you’re
familiar with C++ already, this might not be helpful for you, you can just start to
do your HW1 now :)

However, if you’re not that familiar with operator overloading, you might find
this note helpful! Making good use of operator overloading will make your code clean
and clear :)

We now start with an easy example, which keeps track of the score and the name
of student’s exam result.

class students{
public:

int score;
char name[20];

};

In this class, there are two students. Bob and Charlie.

students Bob, Charlie;
strcpy(Bob.name, ”Bob”);
strcpy(Charlie.name, ”Charlie”);

After the exam, Bob scored 59 in the test and Charlie got 100, so we have:

Bob.score = 59;
Charlie.score = 100;

Now, we want to see whether Bob has a higher score or Charlie has a higher
score. We get:

if(Bob.score < Charlie.score)
cout << ”Charlie!!!!!”;

else
cout << ”Bob :((((”;

This is somehow annoying, since we just want to compare Bob and Charlie. We
hope we could do something like:

if(Bob < Charlie)

However, when we try to do this, the compiler tells us “this is something unde-
fined”. Since the “<” operator doesn’t mean anything to class students. There-
fore, we’ll need to tell what we hope to do. So we add the followings into our class.

class students{
public:

int score;
char name[20];

bool operator <(const students& st) const {
return score < st.score;

}
};

Voilà! Now we can just compare class student directly!
However, the same annoying thing happens when we want to say “Bob scored 59

on the test and Charlie scored 100”.

Bob = 59;
Charlie = 100;

1 of 3



Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

This won’t work. Why? The same reason as above. The “=” operator doesn’t
mean anything to class students. Therefore, we’ll need to tell what we hope to
do again. So we add the followings into our class.

class students{
public:

int score;
char name[20];

bool operator <(const students& st) const {
return score < st.score;

}
student& operator =(int num){

(∗this).score = num;
return ∗this;

}
};

Now, when we use “=” with an integer, class students would know what to
do.

But another problem arises. What if I what to do “Bob’s name is Bob”? This
might sound weird, but when we declared a students Bob;, the Bob.name is still
undefined. So we might want to say “Bob’s name is Bob”.

You might think the operator “=” occupied, but actually you can still use it.

class students{
public:

int score;
char name[20];

bool operator <(const students& st) const {
return score < st.score;

}
student& operator =(char∗ str){

strcpy((∗this).name, str);
return ∗this;

}
student& operator =(int num){

(∗this).score = num;
return ∗this;

}
};

From char* str and int num, we can easily recognize what “=” means. Therefore,
we can now use:

students Bob, Charlie;
Bob = ”Bob”;
Charlie = ”Charlie”;
Bob = 59;
Charlie = 100;

Finally, we want to add up the score of the whole class, and we hope we can keep
it in a class students. We’ll have:

students Bob, Charlie, DSA Class;
Bob = ”Bob”;
Charlie = ”Charlie”;
DSA Class = ”DSA Class”;
Bob = 59;
Charlie = 100;

2 of 3



Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

DSA Class = Bob.score+Charlie.score;

I believe you’ll find DSA Class = Bob.score+Charlie.score weird.
Why can’t we just do DSA Class = Bob+Charlie? The answer lies above.

Your compiler doesn’t know what class students + class students means. We’ll
need to tell what it means.

class students{
public:

int score;
char name[20];

bool operator <(const students& st) const {
return score < st.score;

}
student& operator =(char∗ str){

strcpy((∗this).name, str);
return ∗this;

}
student& operator =(int num){

(∗this).score = num;
return ∗this;

}
int operator +(const students& st) const {

return score+st.score;
}

};

Now, we see when we do the “+” operation on class students, we have an
integer returned!

There are still a lot of things that operator overloading can do(for example, we
may feed multi-variables). Also, we can also overload operators by using function
signature. There are a lot of knowledge that aren’t mentioned in this note(same as
courses you take in school). So if you want to learn more, you should be an active
learner and seek for resources to strengthen yourself (No matter going to the TA
hours or looking for information on the internet) :)

3 of 3


