
Data Structures and Algorithms (NTU, Spring 2014) instructor: Hsuan-Tien Lin

Homework #1
RELEASE DATE: 02/25/2014

DUE DATE: 03/11/2014, 13:10 in CSIE R104 and on CEIBA

As directed below, you need to submit your code to the designated place on the course website.

Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or get
negative scores and/or fail the class and/or be kicked out of school and/or receive other punishments for
those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

Both English and Traditional Chinese are allowed for writing any part of your homework (if the compiler
recognizes Traditional Chinese, of course). We do not accept any other languages. As for coding, either
C or C++ or a mixture of them is allowed.

This homework set comes with 200 points and 20 bonus points. In general, every home-
work set of ours would come with a full credit of 200 points.

1.1 More from the Class

(1) (10%) Try to find who Professor Donald Knuth is, and write down a short paragraph (≤ 15
sentences) to introduce him in a way that a usual high school student would worship him.

(2) (10%) The following getMinPos has been introduced in the class. Prove that when there are
multiple minimum elements within the array, the one with the smallest index would be returned.

getMinPos(integer array arr, integer len)
minpos← 0
for i← 1 to len− 1 do

if arr[i] < arr[minpos] then
minpos← i

end if
end for
return minpos

By proving, we mean that you should list your “claim” related to the goal of this problem first,
and then illustrate a rigorous mathematical argument to justify the claim.

1.2 Sequential Search for Greatest Common Divisor

The greatest common divisor gcd(a, b) between two positive integers a and b is defined as the largest
positive integer that divides both a and b without a remainder. Mathematically speaking, for any integer
k > gcd(a, b), (a mod k) 6= 0 or (b mod k) 6= 0. In the following problems, we translate several properties
of the gcd function to corresponding algorithms. In particular, we will pay some respect to Euclid’s
algorithm, which is arguably one of the earliest algorithms ever.

(1) (10%) The following GCD-By-Def algorithm simply translates from the definition of gcd. Note
that GCD-By-Def is not an algorithm yet because the for loop does not end, which violates the
finiteness property of an algorithm. Provide an upper bound for i in the for loop that completes
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this algorithm. Prove that using this upper bound would work. Note that the tightness of your
upper bound will be a grading criteria—the tighter, the better!

GCD-By-Def(positive integer a, positive integer b)
ans← 1
for i← 2 to · · · do

if a mod i = 0 and b mod i = 0 then
ans← i

end if
end for
return ans

(2) (10%) Dr. Speedup is not satisfied with the performance of GCD-By-Def, and thus designed
another algorithm called GCD-By-Reverse-Search below. Prove that the algorithm is correct
for positive integers a, b using the mathematical definition of gcd.

GCD-By-Reverse-Search(positive integer a, positive integer b)
for i← min(a, b) to 1 do

if a mod i = 0 and b mod i = 0 then
return i

end if
end for

(3) (10%) Assume that a > b. What is the minimum number of iterations that GCD-By-Reverse-
Search needs (for a fixed a)? When does the situation happen? (The situation is usually called
the best case.)

(4) (10%) Assume that a > b. What is the maximum number of iterations that GCD-By-Reverse-
Search needs (for a fixed a)? When does the situation happen? (The situation is usually called
the worst case.)

1.3 Binary Algorithm for GCD

Well, as a CSIE student, you shall not be satisfied with the efficiency of the algorithms mentioned above.
Let’s study another faster algorithm. The algorithm, called Binary Algorithm for GCD. “Binary”, you
say. Yes, binary is a magic word in computer science. Unlike the previous two algorithms, the Binary
Algorithm needs only subtraction and division by 2 to work.

GCD-By-Binary(positive integer a, positive integer b)
n← min(a, b), m← max(a, b), ans← 1
while n 6= 0 and m 6= 0 do

if n is even and m is even then
ans← ans× 2
n← n/2
m← m/2

else if n is even and m is odd then
n← n/2

else if n is odd and m is even then
m← m/2

end if
if n > m then

swap(n, m)
end if
m← (m− n)

end while
return n× ans
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(1) (10%) Write down the values of n, m and ans in the end of each iteration when a = 42 and
b = 14.

(2) (10%) Prove that GCD-By-Binary satisfies the finiteness property. That is, the while only
runs for a finite number of iterations for any given pair of positive integers (a, b).

(3) (10%) Assume that k is a positive common divisor of a and b. Prove that

k · gcd(a/k, b/k) = gcd(a, b).

You can see that the Binary Algorithm takes k = 2 somewhere.

(4) (10%) Assume that a > b. Please prove that gcd(a, b) = gcd(a − b, b). You can see that the
Binary Algorithm uses this somewhere.

(5) (Bonus 10%) Assume that a > b. What is the maximum number of iterations that GCD-By-
Binary needs (for a fixed a)? Provide the tighest upper bound on the maximum number that you
can think of, and prove your answer.

1.4 Euclid’s Algorithm for Greatest Common Divisor

Now, let’s take a look at Euclid’s algorithm. Euclid’s algorithm, as you probably learned in high school,
is as follows.

GCD-By-Euclid(positive integer a, positive integer b)
n← min(a, b), m← max(a, b)
while m mod n 6= 0 do
tmp← n
n← m mod n
m← tmp

end while
return n

(1) (10%) Write down the values of m, n and tmp in the end of each iteration when a = 21 and
b = 13.

(2) (10%) Prove that GCD-By-Euclid satisfies the finiteness property. That is, the while only
runs for a finite number of iterations for any given pair of positive integers (a, b).

(3) (10%) Assume that it takes T iterations of while to run GCD-By-Euclid(a, b) for some positive
integers a and b. How many iterations does it take to run GCD-By-Euclid(2a, 2b)? Formally
prove your result.

(4) (Bonus 10%) Prove that gcd(a, b) = gcd(b, a mod b). You can see that Euclid’s algorithm uses this
property somewhere.

1.5 Comparison of GCD

In all the implementations below, your code should be able to work correctly for any positive integers a
and b.

(1) (30%) Implement GCD-By-Def, GCD-By-Reverse-Search, GCD-By-Binary and GCD-
By-Euclid in one single file hw1 5.c or hw1 5.cpp. The code should take two 4-byte integers a
and b from the standard input per line until reaching a = 0. Then, the code should output the gcd
of a and b computed by each algorithm and the number of iterations the algorithm takes.

Sample Input

3 2

4 3

0
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Sample Output (Note that the AAA, BBB, · · · should be filled by the actual numbers.)

Case (3, 2): GCD-By-Def = 1, taking AAA iterations

Case (3, 2): GCD-By-Reverse-Search = 1, taking BBB iterations

Case (3, 2): GCD-By-Binary = 1, taking CCC iterations

Case (3, 2): GCD-By-Euclid = 1, taking EEE iterations

Case (4, 3): ...

(2) (10%) Consider a = 32460 and b ∈ {32000, 32001, 32002, · · · , 32460}. Plot b versus the number of
iterations (of for or while) that GCD-By-Def, GCD-By-Reverse-Search, GCD-By-Binary,
GCD-By-Euclid takes to compute gcd(a, b) as curves on the same figure. Briefly state your
findings.

1.6 GCD of Big Integers

(1) (30%) Sometimes one int variable cannot represent the integer we want. Even if we use an
unsigned 4-byte integer, the maximum possible value is only 232 − 1. So we may need a data
structure, such as an integer array to represent larger values. We will call it BigInt. For instance,
you can use an integer array where each element represents one (decimal) digit, like representing
1722 by

int digits[10]={2,2,7,1};

There are other choices, of course. Please implement a (non-negative) BigInt data structure of
your choice and one of the GCD algorithms introduced above for two non-negative BigInt in one
single file hw1 6.c or hw1 6.cpp

Input: Two positive integers A and B separated by one space. Number of decimal digits of A and
B will be no more than 100.

Output: One integer that represents gcd(A,B).

Sample Input

987654321987654321987654321 123456789123456789123456789

Sample Output

9000000009000000009

Time Limit: 1 second for each test case.

Hint from TAs: You are encouraged to use C++ and implement a BigInt class with operator
overloading like -, <, *, and / to make it easier to reuse your programs in the previous part. Also,
because implementing division or modulo operations may be difficult, the TAs recommend GCD-
By-Binary.
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Submission File

Please submit your written part of the homework on all problems together to R104 before the deadline.
Also, you need to upload your coding part as a single ZIP compressed file to CEIBA. The zip file should
be like b86506054.zip, where the file name should be changed to your own school ID. The ZIP file
should contain the following items:

• hw1 5.c or hw1 5.cpp

• hw1 6.c or hw1 6.cpp

• an optional README, anything you want the TAs to read before grading your code

The TAs will use the Makefile provided on the course website to test your code. Please make sure
that your code can be compiled and run with the Makefile on CSIE R217 linux machines.
Otherwise your program “fails” its most basic test and can result in ZERO!
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