Hsuan-Tien Lin

Dept. of CSIE, NTU

June 9, 2014

H.-T. Lin (NTU CSIE) Slelailyle] 06/09, 2014 0/18

Selection Sort: Review and Refinements

idea: linearly select the minimum one from “unsorted” part;
put the minimum one to the end of the “sorted” part

v

Implementations

@ common implementation: swap minimum with g[i] for putting in
i-th iteration

@ rotate implementation: rotate minimum down to a[i] in i-th iteration
@ linked-list implementation: insert minimum to the /-th element

@ space O(1): in-place

@ time O(n?) and ©(n?)

@ rotate/linked-list: stable by selecting minimum with smallest index
—same-valued elements keep their index orders

@ common implementation: unstable

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 1/13

Heap Sort: Review and Refinements

idea: selection sort with a max-heap in original array
rather than unordered pile J

@ space O(1)

@ time O(nlog n)

@ not stable

@ usually preferred over selection (faster)

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 2/18

Bubble Sort: Review and Refinements

idea: swap disordered neighbors repeatedly J

@ space O(1)

e time O(n?)

@ stable

@ adaptive: can early stop

@ a deprecated choice except in very specific applications with a few
disordered neighbors or if swapping neighbors is cheap (old tape
days)

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 3/18

Insertion Sort: Review and Refinements

idea: insert a card from the unsorted pile to its place in the sorted piIeJ

Implementations

@ naive implementation: sequential search sorted pile from the front
O(n) time per search, O(n) per insert

@ backwise implementation: sequential search sorted pile from the
back O(n) time per search, O(n) per insert

@ binary-search implementation: binary search the sorted pile
O(log n) time per search, O(n) per insert

@ linked-list implementation: same as naive but on linked lists
O(n) time per search, O(1) per insert

@ skip-list implementation: doable but a bit overkill (more space)

@ rotation implementation: neighbor swap rather than insert
(gnome sort)

v

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 4/18

Insertion Sort: Review and Refinements (II)

@ space O(1)

e time O(n?)

@ stable

@ backwise implementation adaptive

@ usually preferred over bubble (faster) and over selection (adaptive)

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 5/18

Shell Sort: Introduction

idea: adaptive insertion sort on every ki elements;
adaptive insertion sort on every k» elements; - - -
adaptive insertion sort on every k, = 1 element

@ insertion sort with “long jumps”

@ space O(1), like insertion sort

e time: difficult to analyze, often faster than O(n?)
@ unstable, adaptive

@ usually good practical performance and somewhat easy to
implement

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 6/13

Merge Sort: Introduction

idea: combine sorted parts repeatedly to get everything sorted)

Implementations

@ bottom-up implementation:
6 5 4 7 8 3 1 2
5 6 4 7 3 8 1 2
4 5 6 7 1 2 3 8 (size-4sorted
1 2 83 4 5 6 7 8 (size-8sorted)
e O(log n) loops, the i-th loop combines size-2' arrays O(n/2') times
e combine size-¢ array can take O(¢) time but need O(¢) space! (how
about lists?)
o thus, bottom-up Merge Sort takes O(nlog n) time

@ top-down implementation:

MergeSort(arr, left, right)
= combine(MergeSort(arr, left, mid), MergeSort(arr, mid+1, right));

(size-1 sorted)
(size-2 sorted)
()

e divide and conquer, O(log n) level recursive calls

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 7/18

Merge Sort: Review and Refinements

idea: combine sorted parts repeatedly to get everything sorted

J

@ time O(nlog n) in both implementations

@ usually stable (if carefully implemented), parallellize well
@ popular in external sort

H.-T. Lin (NTU CSIE) Slelailyle] 06/09, 2014

8/18

Tree Sort: Review and Refinements

idea: replace heap with a BST;
an in-order traveral outputs the sorted result J

@ space O(n)

@ time: worst O(n?) (unbalanced tree), average O(nlog n), careful
BST O(nlog n)

@ unstable
@ suitable for stream data and incremental sorting

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 9/13

Quick Sort: Introduction

idea: simulate tree sort without building the tree J
make a[0] the root of a BST name a|[0] the pivot
fori<1,--- . n—1do fori<1,--- n—1do

if a[i] < al0] if a[i] < a[0]
insert &[i] to the left-subtree put a[i] to the left pile of the
of BST pivot
else else
insert a[i] to the put a[i] to the right pile of
right-subtree of BST the pivot
end if end if
end for end for
in-order traversal of left-subtree, output quick-sorted left; output
then root, then right-subtree al0]; output quick-sorted right

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 10/13

Quick Sort Simulation

6,1,4,9,7,8,3,10,2,5

H.-T. Lin (NTU CSIE) Slelailyle] 06/09, 2014 11/13

Quick Sort: Introduction (II)

Implementations
@ naive implementation: pick first element in the pile as pivot
@ random implementation: pick a random element in the pile as pivot

@ median-of-3 implementation: pick median(front, middle, back) as
pivot

@ space: worst O(n), average O(log n) on stack calls
@ time: worst O(n?), average O(nlog n)
@ not stable

@ usually best choice for large data (if not requiring stability), can be
mixed with other sorts for small data

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 12/13

Best Use of Different Sorting Algorithms

Implementations

@ small:
@ stable small:
@ stable large:

@ worst case time guarantee:
@ least space with good time:
@ adaptive:
@ general:
@ external:
°

educational:

H.-T. Lin (NTU CSIE) Slelgilyle] 06/09, 2014 13/13

