
Lists, Stacks, Queues, Deques

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 24, 2014

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 0 / 25



Singly Linked List

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 1 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Singly Linked List Put

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 2 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Singly Linked List Removal

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 3 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Singly Linked List Search

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 4 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Doubly Linked List

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 5 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Circular Linked List

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 6 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stacks

Stack
object: a container that holds some elements
action: [constant-time] push (to the top), pop (from the top)

last-in-first-out (LIFO): 擠電梯 , 洗盤子
very restricted data structure, but important for computers
—will discuss some cases later

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 7 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stacks

Stack
object: a container that holds some elements
action: [constant-time] push (to the top), pop (from the top)

last-in-first-out (LIFO): 擠電梯 , 洗盤子
very restricted data structure, but important for computers
—will discuss some cases later

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 7 / 25



A Simple Application: Parentheses Balancing

in C, the following characters show up in pairs: (), [], {}, ""

good: {xxx(xxxxxx)xxxxx"xxxx"x}
bad: {xxx(xxxxxx}xxxxx"xxxx"x}

the LISP programming language
(append (pow (* (+ 3 5) 2) 4) 3)

how can we check parentheses balancing?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 8 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



A Simple Application: Parentheses Balancing

in C, the following characters show up in pairs: (), [], {}, ""

good: {xxx(xxxxxx)xxxxx"xxxx"x}
bad: {xxx(xxxxxx}xxxxx"xxxx"x}

the LISP programming language
(append (pow (* (+ 3 5) 2) 4) 3)

how can we check parentheses balancing?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 8 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



A Simple Application: Parentheses Balancing

in C, the following characters show up in pairs: (), [], {}, ""

good: {xxx(xxxxxx)xxxxx"xxxx"x}
bad: {xxx(xxxxxx}xxxxx"xxxx"x}

the LISP programming language
(append (pow (* (+ 3 5) 2) 4) 3)

how can we check parentheses balancing?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 8 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stack Solution to Parentheses Balancing

inner-most parentheses pair =⇒ top-most plate

’(’: 堆盤子上去 ; ’)’: 拿盤子下來

Parentheses Balancing Algorithm
for each c in the input do

if c is a left character
push c to the stack

else if c is a right character
pop d from the stack and check if match

end if
end for

many more sophisticated use in compiler design

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 9 / 25

guest
鉛筆

guest
鉛筆



Stack Solution to Parentheses Balancing

inner-most parentheses pair =⇒ top-most plate

’(’: 堆盤子上去 ; ’)’: 拿盤子下來

Parentheses Balancing Algorithm
for each c in the input do

if c is a left character
push c to the stack

else if c is a right character
pop d from the stack and check if match

end if
end for

many more sophisticated use in compiler design

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 9 / 25



Stack Solution to Parentheses Balancing

inner-most parentheses pair =⇒ top-most plate

’(’: 堆盤子上去 ; ’)’: 拿盤子下來

Parentheses Balancing Algorithm
for each c in the input do

if c is a left character
push c to the stack

else if c is a right character
pop d from the stack and check if match

end if
end for

many more sophisticated use in compiler design

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 9 / 25



System Stack

recall: function call⇔ 拿新的草稿紙來算

old (original) scrap paper: temporarily not used, 可以壓在下面

System Stack: 一疊草稿紙 , each paper (stack frame) contains
return address: where to return to the previous scrap paper
local variables (including parameters): to be used for calculating
within this function
previous frame pointer: to be used when escaping from this
function

some related issues: stack overflow? security attack?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 10 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



System Stack

recall: function call⇔ 拿新的草稿紙來算

old (original) scrap paper: temporarily not used, 可以壓在下面

System Stack: 一疊草稿紙 , each paper (stack frame) contains
return address: where to return to the previous scrap paper
local variables (including parameters): to be used for calculating
within this function
previous frame pointer: to be used when escaping from this
function

some related issues: stack overflow? security attack?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 10 / 25



System Stack

recall: function call⇔ 拿新的草稿紙來算

old (original) scrap paper: temporarily not used, 可以壓在下面

System Stack: 一疊草稿紙 , each paper (stack frame) contains
return address: where to return to the previous scrap paper
local variables (including parameters): to be used for calculating
within this function
previous frame pointer: to be used when escaping from this
function

some related issues: stack overflow? security attack?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 10 / 25

guest
鉛筆



System Stack

recall: function call⇔ 拿新的草稿紙來算

old (original) scrap paper: temporarily not used, 可以壓在下面

System Stack: 一疊草稿紙 , each paper (stack frame) contains
return address: where to return to the previous scrap paper
local variables (including parameters): to be used for calculating
within this function
previous frame pointer: to be used when escaping from this
function

some related issues: stack overflow? security attack?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 10 / 25



System Stack

recall: function call⇔ 拿新的草稿紙來算

old (original) scrap paper: temporarily not used, 可以壓在下面

System Stack: 一疊草稿紙 , each paper (stack frame) contains
return address: where to return to the previous scrap paper
local variables (including parameters): to be used for calculating
within this function
previous frame pointer: to be used when escaping from this
function

some related issues: stack overflow? security attack?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 10 / 25



System Stack

recall: function call⇔ 拿新的草稿紙來算

old (original) scrap paper: temporarily not used, 可以壓在下面

System Stack: 一疊草稿紙 , each paper (stack frame) contains
return address: where to return to the previous scrap paper
local variables (including parameters): to be used for calculating
within this function
previous frame pointer: to be used when escaping from this
function

some related issues: stack overflow? security attack?

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 10 / 25

guest
鉛筆

guest
鉛筆



Stacks Implemented on Array (5.1.4)

Reading Assignment
be sure to go ask the TAs or me if you are still confused

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 11 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stacks Implemented on Linked List (5.1.5)

Reading Assignment
be sure to go ask the TAs or me if you are still confused

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 12 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stack for Expression Evaluation (Supplementary)

a/b − c + d ∗ e − a ∗ c

precedence: {∗, /} first; {+,−} later
steps

f = a/b
g = f − c
h = d ∗ e
i = g + h
j = a ∗ c
` = i − j

Postfix Notation
same operand order, but put “operator” after needed operands
—can “operate” immediately when seeing operator
—no need to look beyond for precedence

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 13 / 25

guest
鉛筆



Stack for Expression Evaluation (Supplementary)

a/b − c + d ∗ e − a ∗ c

precedence: {∗, /} first; {+,−} later
steps

f = a/b
g = f − c
h = d ∗ e
i = g + h
j = a ∗ c
` = i − j

Postfix Notation
same operand order, but put “operator” after needed operands
—can “operate” immediately when seeing operator
—no need to look beyond for precedence

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 13 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stack for Expression Evaluation (Supplementary)

a/b − c + d ∗ e − a ∗ c

precedence: {∗, /} first; {+,−} later
steps

f = a/b
g = f − c
h = d ∗ e
i = g + h
j = a ∗ c
` = i − j

Postfix Notation
same operand order, but put “operator” after needed operands
—can “operate” immediately when seeing operator
—no need to look beyond for precedence

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 13 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stack for Expression Evaluation (Supplementary)

a/b − c + d ∗ e − a ∗ c

precedence: {∗, /} first; {+,−} later
steps

f = a/b
g = f − c
h = d ∗ e
i = g + h
j = a ∗ c
` = i − j

Postfix Notation
same operand order, but put “operator” after needed operands
—can “operate” immediately when seeing operator
—no need to look beyond for precedence

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 13 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Postfix from Infix (Usual) Notation

infix:
3 / 4 − 5 + 6 ∗ 7 − 8 ∗ 9

parenthesize:

3 / 4 − 5 + 6 ∗ 7 − 8 ∗ 9

for every triple in parentheses, switch orders

remove parentheses

difficult to parenthesize efficiently

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 14 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Evaluate Postfix Expressions

34/5− 67 ∗+89 ∗ −

how to evaluate? left-to-right, “operate” when see operator
3, 4, /⇒ 0.75
0.75, 5, -⇒ -4.25
-4.25, 6, 7, *⇒ -4.25, 42 (note: -4.25 stored for latter use)
-4.25, 42, +⇒ 37.75
37.75, 8, 9, *⇒ 37.75, 72 (note: 37.75 stored for latter use)
37.75, 72, -⇒ ...

stored where?
stack so closest operands will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 15 / 25



Evaluate Postfix Expressions

34/5− 67 ∗+89 ∗ −

how to evaluate? left-to-right, “operate” when see operator
3, 4, /⇒ 0.75
0.75, 5, -⇒ -4.25
-4.25, 6, 7, *⇒ -4.25, 42 (note: -4.25 stored for latter use)
-4.25, 42, +⇒ 37.75
37.75, 8, 9, *⇒ 37.75, 72 (note: 37.75 stored for latter use)
37.75, 72, -⇒ ...

stored where?
stack so closest operands will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 15 / 25

guest
鉛筆

guest
鉛筆



Evaluate Postfix Expressions

34/5− 67 ∗+89 ∗ −

how to evaluate? left-to-right, “operate” when see operator
3, 4, /⇒ 0.75
0.75, 5, -⇒ -4.25
-4.25, 6, 7, *⇒ -4.25, 42 (note: -4.25 stored for latter use)
-4.25, 42, +⇒ 37.75
37.75, 8, 9, *⇒ 37.75, 72 (note: 37.75 stored for latter use)
37.75, 72, -⇒ ...

stored where?
stack so closest operands will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 15 / 25

guest
鉛筆



Evaluate Postfix Expressions

34/5− 67 ∗+89 ∗ −

how to evaluate? left-to-right, “operate” when see operator
3, 4, /⇒ 0.75
0.75, 5, -⇒ -4.25
-4.25, 6, 7, *⇒ -4.25, 42 (note: -4.25 stored for latter use)
-4.25, 42, +⇒ 37.75
37.75, 8, 9, *⇒ 37.75, 72 (note: 37.75 stored for latter use)
37.75, 72, -⇒ ...

stored where?
stack so closest operands will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 15 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Evaluate Postfix Expressions

34/5− 67 ∗+89 ∗ −

how to evaluate? left-to-right, “operate” when see operator
3, 4, /⇒ 0.75
0.75, 5, -⇒ -4.25
-4.25, 6, 7, *⇒ -4.25, 42 (note: -4.25 stored for latter use)
-4.25, 42, +⇒ 37.75
37.75, 8, 9, *⇒ 37.75, 72 (note: 37.75 stored for latter use)
37.75, 72, -⇒ ...

stored where?
stack so closest operands will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 15 / 25



Evaluate Postfix Expressions

34/5− 67 ∗+89 ∗ −

how to evaluate? left-to-right, “operate” when see operator
3, 4, /⇒ 0.75
0.75, 5, -⇒ -4.25
-4.25, 6, 7, *⇒ -4.25, 42 (note: -4.25 stored for latter use)
-4.25, 42, +⇒ 37.75
37.75, 8, 9, *⇒ 37.75, 72 (note: 37.75 stored for latter use)
37.75, 72, -⇒ ...

stored where?
stack so closest operands will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 15 / 25

guest
鉛筆



Evaluate Postfix Expressions

34/5− 67 ∗+89 ∗ −

how to evaluate? left-to-right, “operate” when see operator
3, 4, /⇒ 0.75
0.75, 5, -⇒ -4.25
-4.25, 6, 7, *⇒ -4.25, 42 (note: -4.25 stored for latter use)
-4.25, 42, +⇒ 37.75
37.75, 8, 9, *⇒ 37.75, 72 (note: 37.75 stored for latter use)
37.75, 72, -⇒ ...

stored where?
stack so closest operands will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 15 / 25



Evaluate Postfix Expressions

34/5− 67 ∗+89 ∗ −

how to evaluate? left-to-right, “operate” when see operator
3, 4, /⇒ 0.75
0.75, 5, -⇒ -4.25
-4.25, 6, 7, *⇒ -4.25, 42 (note: -4.25 stored for latter use)
-4.25, 42, +⇒ 37.75
37.75, 8, 9, *⇒ 37.75, 72 (note: 37.75 stored for latter use)
37.75, 72, -⇒ ...

stored where?
stack so closest operands will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 15 / 25

guest
鉛筆



Stack Solution to Postfix Evaluation

Postfix Evaluation
for each token in the input do

if token is a number
push token to the stack

else if token is an operator
sequentially pop operands at−1, · · · ,a0 from the stack
push token(a0,a1,at−1) to the stack

end if
end for
return the top of stack

matches closely with the definition of postfix notation

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 16 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



One-Pass Algorithm for Infix to Postfix

infix⇒ postfix efficiently?

at /, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

at -, know that a / b can be a b / because - is of lower precedence

a/b − c + d ∗ e − a ∗ c

at +, know that ? - c can be ? c - because + is of same
precedence but {-, +} is left-associative

a/b − c + d ∗ e − a ∗ c

at *, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

stored where? stack so closest operators will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 17 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆



One-Pass Algorithm for Infix to Postfix

infix⇒ postfix efficiently?

at /, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

at -, know that a / b can be a b / because - is of lower precedence

a/b − c + d ∗ e − a ∗ c

at +, know that ? - c can be ? c - because + is of same
precedence but {-, +} is left-associative

a/b − c + d ∗ e − a ∗ c

at *, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

stored where? stack so closest operators will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 17 / 25

guest
鉛筆



One-Pass Algorithm for Infix to Postfix

infix⇒ postfix efficiently?

at /, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

at -, know that a / b can be a b / because - is of lower precedence

a/b − c + d ∗ e − a ∗ c

at +, know that ? - c can be ? c - because + is of same
precedence but {-, +} is left-associative

a/b − c + d ∗ e − a ∗ c

at *, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

stored where? stack so closest operators will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 17 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



One-Pass Algorithm for Infix to Postfix

infix⇒ postfix efficiently?

at /, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

at -, know that a / b can be a b / because - is of lower precedence

a/b − c + d ∗ e − a ∗ c

at +, know that ? - c can be ? c - because + is of same
precedence but {-, +} is left-associative

a/b − c + d ∗ e − a ∗ c

at *, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

stored where? stack so closest operators will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 17 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



One-Pass Algorithm for Infix to Postfix

infix⇒ postfix efficiently?

at /, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

at -, know that a / b can be a b / because - is of lower precedence

a/b − c + d ∗ e − a ∗ c

at +, know that ? - c can be ? c - because + is of same
precedence but {-, +} is left-associative

a/b − c + d ∗ e − a ∗ c

at *, not sure of what to do (need later operands) so store

a/b − c + d ∗ e − a ∗ c

stored where? stack so closest operators will be considered first!

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 17 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stack Solution to Infix-Postfix Translation

for each token in the input do
if token is a number

output token
else if token is an operator

while top of stack is of higher (or same) precedence do
pop and output top of stack

end while
push token to the stack

end if
end for

here: infix to postfix with operator stack
—closest operators will be considered first
recall: postfix evaluation with operand stack
—closest operands will be considered first
mixing the two algorithms (say, use two stacks): simple calculator

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 18 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Stack Solution to Infix-Postfix Translation

for each token in the input do
if token is a number

output token
else if token is an operator

while top of stack is of higher (or same) precedence do
pop and output top of stack

end while
push token to the stack

end if
end for

here: infix to postfix with operator stack
—closest operators will be considered first
recall: postfix evaluation with operand stack
—closest operands will be considered first
mixing the two algorithms (say, use two stacks): simple calculator

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 18 / 25



Stack Solution to Infix-Postfix Translation

for each token in the input do
if token is a number

output token
else if token is an operator

while top of stack is of higher (or same) precedence do
pop and output top of stack

end while
push token to the stack

end if
end for

here: infix to postfix with operator stack
—closest operators will be considered first
recall: postfix evaluation with operand stack
—closest operands will be considered first
mixing the two algorithms (say, use two stacks): simple calculator

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 18 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Some More Hints on Infix-Postfix Translation

for each token in the input do
if token is a number

output token
else if token is an operator

while top of stack is of higher (or same) precedence do
pop and output top of stack

end while
push token to the stack

end if
end for

for left associativity and binary operators
right associativity? same precedence needs to wait
unary/trinary operator? same

parentheses? higest priority
at ’(’, cannot pop anything from stack
—like seeing ’*’ while having ’+’ on the stack
at ’)’, can pop until ’(’ —like parentheses matching

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 19 / 25

guest
鉛筆

guest
鉛筆



Some More Hints on Infix-Postfix Translation

for each token in the input do
if token is a number

output token
else if token is an operator

while top of stack is of higher (or same) precedence do
pop and output top of stack

end while
push token to the stack

end if
end for

for left associativity and binary operators
right associativity? same precedence needs to wait
unary/trinary operator? same

parentheses? higest priority
at ’(’, cannot pop anything from stack
—like seeing ’*’ while having ’+’ on the stack
at ’)’, can pop until ’(’ —like parentheses matching

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 19 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆



Some More Hints on Infix-Postfix Translation

for each token in the input do
if token is a number

output token
else if token is an operator

while top of stack is of higher (or same) precedence do
pop and output top of stack

end while
push token to the stack

end if
end for

for left associativity and binary operators
right associativity? same precedence needs to wait
unary/trinary operator? same

parentheses? higest priority
at ’(’, cannot pop anything from stack
—like seeing ’*’ while having ’+’ on the stack
at ’)’, can pop until ’(’ —like parentheses matching

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 19 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Some More Hints on Infix-Postfix Translation

for each token in the input do
if token is a number

output token
else if token is an operator

while top of stack is of higher (or same) precedence do
pop and output top of stack

end while
push token to the stack

end if
end for

for left associativity and binary operators
right associativity? same precedence needs to wait
unary/trinary operator? same

parentheses? higest priority
at ’(’, cannot pop anything from stack
—like seeing ’*’ while having ’+’ on the stack
at ’)’, can pop until ’(’ —like parentheses matching

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 19 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆



Some More Hints on Infix-Postfix Translation

for each token in the input do
if token is a number

output token
else if token is an operator

while top of stack is of higher (or same) precedence do
pop and output top of stack

end while
push token to the stack

end if
end for

for left associativity and binary operators
right associativity? same precedence needs to wait
unary/trinary operator? same

parentheses? higest priority
at ’(’, cannot pop anything from stack
—like seeing ’*’ while having ’+’ on the stack
at ’)’, can pop until ’(’ —like parentheses matching

H.-T. Lin (NTU CSIE) Stacks, Queues, Deques 03/24/2014 19 / 25

guest
鉛筆

guest
鉛筆

guest
鉛筆

guest
鉛筆


