
Data Structures and Algorithms (NTU, Spring 2013) instructor: Hsuan-Tien Lin

Homework #5
TAs’ email: dsata AT csie DOT ntu DOT edu DOT tw

RELEASE DATE: 05/03/2013
DUE DATE: 05/16/2013, noon

As directed below, you need to submit your code to the designated place on the course website.

Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or get
negative scores and/or fail the class and/or be kicked out of school and/or receive other punishments for
those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

Both English and Traditional Chinese are allowed for writing any part of your homework (if the compiler
recognizes Traditional Chinese, of course). We do not accept any other languages. As for coding, either
C or C++ or a mixture of them is allowed.

This homework set comes with 200 points and 40 bonus points. In general, every home-
work set of ours would come with a full credit of 200 points.

5.1 Heaps and Hash Tables

(1) (20%) Describe an efficient algorithm (with pseudo-code or C/C++) that changes the priority
(key) of an arbitrary element in a max-heap. Briefly justify the time complexity of the algorithm.

(2) (20%) Hash function is everywhere. Use any search engine to study the “Bloom filter” and how
the hash function is used within. Explain the data structure briefly to the grading TA in your own
words. Also, cite the website that you learn the algorithm from.

(3) (20%) Do Exercise R-9.15 of the textbook.

(4) (15%) Do Exercise C-9.9(a) of the textbook.

(5) (15%) Do Exercise C-9.9(b) of the textbook.

(6) (Bonus 20%) Construct a perfect hash function that is efficiently computable for the following 32
programming/scripting languages. You need to explain why the hash function is perfect and why
it is efficiently computable to get the full bonus.

C, Java, C++, Objective-C, C#, PHP, Visual Basic, Python, Perl, Ruby,
JavaScript, Lisp, Pascal, Haskell, Scala, Fortran, Prolog, Assembly, Verilog,
Erlang, MATLAB, Bash, SmallTalk, Caml, Scheme, Go, Ada, Cobol, Awk, Tcl/Tk,
Delphi, Limbo

5.2 Decision Tree

In this problem, we will explore an application of trees in the area of Artificial Intelligence and Machine
Learning. Decision Tree is one of the earliest tool for Machine Learning. The non-leaf nodes of a decision
tree represent choices (factors) considered, while the leaf nodes represent final decisions under the choices.

1 of 4



Data Structures and Algorithms (NTU, Spring 2013) instructor: Hsuan-Tien Lin

For simplicity, we will consider the trees with binary factors—i.e., binary decision trees. Such a tree is
shown in Example 7.8 of the textbook.

For instance, the following tree1 is a binary decision tree for deciding whether to play golf. If the sky
is cloudy, we decide to play golf; if not, we check if it is windy—if so, we play golf only if it is not humid
and the sky is clear. On the other hand, if it is not windy, we do not play golf only when the sky is not
rainy but it is humid.

Such a decision tree is called a “classification tree.” It classifies different (sky, windy, humid) sit-
uations to decision categories play? = {yes, no}. The tree is not arbitrarily formed. In fact, it is
automatically learned by a program from a bunch of given examples. In other words, you can “teach”
the program with the examples. For instance, consider the following examples.

sky windy humid play?

clear true true no
clear true false yes
rainy true false no
rainy false true yes
clear false true no
clear false false yes
cloudy false true yes
clear false true no
cloudy true false yes
cloudy true true yes
rainy false true yes
cloudy false true yes
rainy true true no
rainy false true yes

The decision tree can be taught with the examples in a top-down recursive way. First, we need to
find the root branch. There are 9 yes and 5 no (9Y5N) in the examples above. If we consider a factor
of “sky is clear or not”, we can separate the 14 examples to two branches: 2Y3N for the clear branch
and 7Y2N otherwise; if we consider a factor of “sky is cloudy or not”, we can separate the 14 examples
to two branches: 4Y0N for the cloudy branch and 5Y5N otherwise. We can continue checking possible
branches.

One heuristic for making a good branching choice is to check the total confusion after branching.
The confusion of a mixture of aYbN is defined as

confusion(a, b) = 1−
(

a

a+ b

)2

−
(

b

a+ b

)2

.

1Thanks to our previous TA Chun-Sung Ferng for drawing.

2 of 4



Data Structures and Algorithms (NTU, Spring 2013) instructor: Hsuan-Tien Lin

and the total confusion after branching from (c+ e)Y(d+ f)N to cYdN and eYfN is

total(c, d, e, f) =
c+ d

c+ d+ e+ f
confusion(c, d) +

e+ f

c+ d+ e+ f
confusion(e, f).

For instance, the total confusion after branching by “sky is clear or not” is

5

14

(
1−

(
2

5

)2

−
(

3

5

)2
)

+
9

14

(
1−

(
7

9

)2

−
(

2

9

)2
)
.

The heuristic tries to find a branch such that the total confusion is the smallest, with ties arbitrarily
broken.

Now, after finding a good branch for the root, we separate the examples to two subsets: one for the
left-child of the root, one for the right-child of the root. The same branching strategy can be applied to
the two subsets to form the two sub-trees and the tree building continues recursively.

Recursively? What is the termination condition, then? Well, you do not need to branch if there is
no confusion left—that is, when the examples considered belong to the same final decision like aY0N or
0YbN. In such a case we declare a leaf with the final decision. Also, if we have too few “examples” in
the subset, a branching would be overly-explaining the data. So if the number of examples is no larger
than a certain criterion θ, we can stop branching. For instance, if θ = 5, then we would stop branching
with 3Y1N in the subset. In that case, the decision of the subset is simply the majority vote (in this
case, “Y”), with ties arbitrarily broken. The simple decision tree algorithm is listed as follows:

Decision-Tree(examples)
if no confusion in the examples or # examples ≤ θ then

build and return a leaf node with the majority vote of the examples as the final decision
else

find a branch such that the total confusion is smallest, store the branch in the root of the tree
separate examples to two subsets, one for the left-child and one for the right-child
set the left-subtree to be DecisionTree(example subset for the left-child)
set the right-subtree to be DecisionTree(example subset for the right-child)
return the tree

end if

The branch we discussed are on discrete factors. We can also branch on numerical (continuous) factors
by setting a proper threshold. For instance, a numerical factor may be the temperature and a branch
may be “is temperature greater than t?” The best threshold t can be found by “cleverly” searching all
possible thresholds.

Consider branching on one numerical variable with M examples. Trivially, there are only O(M)
possible “regions” of thresholds t, where all the thresholds within the same region are equivalent—that
is, they separate the M examples to two subsets in identical ways. For the O(M) regions, consider
choosing the median point of each region as the branching threshold. An intuitive way of evaluating the
total confusion of a branch may take O(M) per evaluation, and using that to pick the best branch would
take O(M2).

In this problem, we ask you to implement such a program that can be taught with examples of
numerical variables and produces the binary decision tree. One interesting thing about binary decision
trees is that you can output the tree as some C code if(...){...} else{...}. That is, after you teach
your program, it can automatically produce another program that can make future decisions.

(1) (Bonus 20%) Describe an O(M logM) algorithm for picking the best branching threshold from one
numerical variable with M examples. (Hint: Sorting can be done in O(M logM), and what next? )

(2) (30%) Implement the decision tree algorithm with either the slow or the fast way of deciding the
branching threshold. Your program should read the input examples that contain numerical values
(format to be announced online), and print out a piece of C code representing the decision tree
(format to be announced online).

(3) (20%) Illustrate the internal data structure you use to represent the decision tree. Please be as
precise as possible.

3 of 4



Data Structures and Algorithms (NTU, Spring 2013) instructor: Hsuan-Tien Lin

(4) (20%) Teach your decision tree with the following examples to learn a function f . Draw the tree
you get.

weight height age f(weight, height, age)

68 154 32 false
74 165 22 true
80 187 36 false
83 173 18 true
69 152 28 false
52 144 24 true
43 180 33 true
57 177 23 true

(5) (20%) Construct your own data set with at least 2 numerical factors and at least 6 examples.
Teach your program to make a decision tree of at least 2 levels with this data set. List the examples
as well as draw the tree found. Briefly explain the tree.

(6) (20%) Let’s set θ = 1. If, instead of branching by minimizing the total confusion, you do
a “random branching” by randomly pick one factor and branch with it. Due to randomness
you may end up revisiting some factors you have considered in the top levels. You can also do
“maximum total confusion branching” by branching with the maximum confusion factor instead of
the minimum confusion one. Using the data set in Problem 5.2(4), compare the depth of the tree
you get from “minimum total confusion branching” to the average depth of the trees you get from
“random branching” (over 1000 random runs) to the depth of the tree you get from “maximum
total confusion branching.” Briefly state your findings.

Submission File (Program) and Written Copy

Please upload your program as a single ZIP compressed file to CEIBA before the deadline. The zip file
should be like b86506054.zip, where the file name should be changed to your own school ID. The ZIP
file should contain the following items:

• code such that make tree would generate a program named tree, which reads examples and
outputs a piece of code for the decision tree according the format that will be announced online

• an optional README, anything you want the TAs to read before grading your code

For all the problems that require illustrations, please submit a written (or printed) copy in class or to
CSIE R217 before the deadline.

MEDAL USAGE: If you want to use the gold medals for this homework, please write down the number
of medals that you want on the first page of your printed copy (something like “use 2 medals”). Use
your medals wisely—usage cannot be retracted.

4 of 4


