
Data Structures and Algorithms (NTU, Spring 2013) instructor: Hsuan-Tien Lin

Homework #3
TAs’ email: dsata AT csie DOT ntu DOT edu DOT tw

RELEASE DATE: 03/22/2013
DUE DATE: 04/09/2013 (Tuesday!!!), 3:30pm (after class)

As directed below, you need to submit your code to the designated place on the course website.

Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or get
negative scores and/or fail the class and/or be kicked out of school and/or receive other punishments for
those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

Both English and Traditional Chinese are allowed for writing any part of your homework (if the compiler
recognizes Traditional Chinese, of course). We do not accept any other languages. As for coding, either
C or C++ or a mixture of them is allowed.

This homework set comes with 200 points and 30 bonus points. In general, every home-
work set of ours would come with a full credit of 200 points.

3.1 Asymptotic Complexity

In this problem, you can use any theorems in the textbook and any theorems on the class slides as the
foundation of your proof. You cannot use any other theorems unless you prove them first.

(1) (10%) Do Exercise R-4.24 of the textbook.

(2) (10%) Do Exercise R-4.26 of the textbook.

(3) (10%) Do Exercise C-4.8 of the textbook. (Note: need “proof”!)

(4) (10%) Do Exercise C-4.22 of the textbook.

(5) (10%) Prove or disapprove the following statement. “For non-negative functions f, g, h, if f(n) =
O(g(n)), then f(n) + h(n) = O(g(n) + h(n)).”

(6) (10%) Prove or disapprove the following statement. “If a < 1 or (a = 1 and b ≤ 0), then

2an
2+bn+c = O(2n

2

).”

(7) (10%) Do Exercise R-4.7 of the textbook.

(8) (10%) Do Exercise C-4.16(b) of the textbook.

3.2 Calculators

In this problem, you will be asked to implement two calculators: an “integer calculator” that works
on 4-byte integers and supports the arithmetic and bitwise operations in C; a “matrix calculator” that
works on 4-byte integer matrices and supports some of the operations in MATLAB.

(1) (60%) Implement the (signed) integer calculator (hw3 2 1.{c, cpp}). You can also assume that
the input will contain characters only from numbers, the needed operators, and ignore all other
characters (including space). You need to implement the following operations with the correct
precedence and associativity:

1 of 3



Data Structures and Algorithms (NTU, Spring 2013) instructor: Hsuan-Tien Lin

• multiplicative *, division / or modulo %

• binary add + or subtract -

• bitwise and &, exclusive or ^, or |, left shift << or right shift >>

• parentheses ()

• unary minus - or plus +

• bitwise not ∼

Your program should satisfy the following requirements.

• keep allowing the user to input a line of (i.e. read a line of length ≤ 1000, 000 from stdin)
infix expression that supports all the operations above on integers, until no more lines can be
read (EOF)

• show your stack operations on how to transform the infix expression to a postfix one

• show the corresponding postfix expression

• show the evaluated result, which should be exactly the same as the result computed by a usual
C statement on the same expression

You can assume that the expressions provided will be valid, non-ambiguous and non-conflicting to
the usual C expression. For instance, something like i++-j will not be used to test the program.

Please prepare THREE test cases that help the TA verify all the requirements above.
Then, print out the output of your program on those three cases in the written part.

(2) (Bonus 30%) Extend your integer calculator above to handle basic assignment = and the assignment
versions (when proper) of all the operators you have implemented (hw3 2 2.{c, cpp}). You can
assume that 26 variables of names ’a’, ’b’, · · · , ’z’ have been declared and initialized to 0 when the
integer calculator starts running. No other variables can be used for the calculator.

Please prepare THREE test cases that help the TA verify all the requirements above.
Then, print out the output of your program on those three cases in the written part.

(3) (60%) MATLAB is a commercial software for doing matrix calculations. A matrix in MATLAB
is declared with the following syntax [1 2 3; 4 5 6; 7 8 9; 10 11 12] which indicates a 4 by 3
matrix. You can assume that the matrix contains only integers. You can also assume that the input
will contain characters only from numbers, the needed operators and syntax symbols, and you can
ignore all other characters. There will be no operations inside the matrix declaration (except for
the unary + or -). You need to implement the following operations with the correct precedence.
Note that MATLAB operations are always left-associative. You can check the precedence here
http://www.mathworks.com/help/matlab/matlab_prog/operators.html#f0-38155

• parentheses (), for indicating the highest precedence

• transpose ’, where [1 2 0; 3 4 1]’ results in [1 3; 2 4; 0 1]. Note that MATLAB actu-
ally use conjugate transpose, but given that we are working with integers, there is no difference
between the conjugate transpose and the usual transpose.

• component-wise power .^, that takes a matrix and a integer. For instance, [1 2; 3 4] .^

2 results in [1 4; 9 16].

• unary plus +, where +[1 2; 3 4] results in [1 2; 3 4]

• unary minus -, where -[1 2; 3 4] results in [-1 -2; -3 -4]

• component-wise multiplication .*, which operates on two same-size matrices. For instance,
[1 2; 3 4] .* [5 6; 7 8] results in [5 12; 21 32]

• matrix multiplication, *, which operates on two matrices such that the number of columns
of the first matrix equals the number of columns of the second matrix. For instance, [1 2;

3 4; 0 1] * [5 6; 7 8] results in [19 22; 43 50; 7 8]. The same operator is used for
multiplying an integer to a matrix or a matrix to an integer. For instance, [1 2; 3 4] * 3

results in [3 6; 9 12].

2 of 3



Data Structures and Algorithms (NTU, Spring 2013) instructor: Hsuan-Tien Lin

• matrix addition/subtraction, + or -, which operates on two matrices of the same size. For
instance, where [1 2; 3 4] + [5 6; 7 8] results in [6 8; 10 12]. The same operator is
used for adding/subtracting an integer to/from a matrix or a matrix to/from an integer. For
instance, [1 2; 3 4] - 3 results in [-2 -1; 0 1].

• colon operator :, which creates a matrix of one row that contains an arithmetic progression.
For instance, 1:3:11 results in [1 4 7 10]. For simplicity, you can assume that the middle
operand will always be positive.

Your program should satisfy the following requirements.

• keep allowing the user to input a line of (i.e. read a line of length ≤ 1000, 000 from stdin) infix
MATLAB expression that supports all the operations above on integers and integer matrices,
until no more lines can be read (EOF)

• show the evaluated result, which should be exactly the same as the result computed by a usual
MATLAB statement on the same expression

You can assume that the expressions provided will be valid and non-ambiguous.

Please prepare THREE test cases that help the TA verify all the requirements above.
Then, print out the output of your program on those three cases in the written part.

For all problems, you need to “show the evaluated result” by printing out a single line of the form for
the integer calculator
RESULT: 1126

or for the matrix calculator
RESULT: [5 5 6 6; 1 2 3 4]

You can freely decide how you want to show your other parts (stacks, postfix) by printing out other lines.

Submission File (Program) and Written Copy

Please upload your program as a single ZIP compressed file to CEIBA before the deadline at 3:30pm
on Tuesday (04/09/2013). The zip file should be like b86506054.zip, where the file name should be
changed to your own school ID. The ZIP file should contain the following items:

• all the source code for your program.

• a Makefile to compile your code and run your program. The TAs will type make to compile your
source files to two (or three) programs. Then they will make run1 to test your homework 2.2(1),
make run2 to test your homework 2.2(2) (if possible), make run3 to test your homework 2.2(3).
In your Makefile, you should let each of your program redirect from a file ’./input’ as its stdin

and redirect to a file ’./output’ as its stdout.

• an optional README, anything you want the TAs to read before grading your code

For all the problems that require illustrations, please submit a written (or printed) copy in class or to
CSIE R217 before the deadline.

MEDAL USAGE: If you want to use the gold medals for this homework, please write down the number
of medals that you want on the first page of your printed copy (something like “use 2 medals”). Use
your medals wisely—usage cannot be retracted.

3 of 3


