Analysis Tools

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 12, 2013

Properties of Good Programs

- meet requirements, correctness: basic
- clear usage document (external), readability (internal), etc.

Resource Usage (Performance)

- efficient use of computation resources (CPU, FPU, etc.)?
 time complexity
- efficient use of storage resources (memory, disk, etc.)?
 space complexity

Space Complexity of List Summing

LIST-SUM(float array *list*, integer length *n*)

```
tempsum \leftarrow 0
for i \leftarrow 0 to n-1 do
tempsum \leftarrow tempsum + list[i]
end for
return tempsum
```

- array list: size of pointer, commonly 4
- integer n: commonly 4
- float tempsum: 4
- integer i: commonly 4
- float return place: 4

total space 20 (constant), does not depend on n

Space Complexity of Recursive List Summing

RECURSIVE-LIST-SUM(float array *list*, integer length *n*)

```
if n = 0

return 0

else

return list[n]+ RECURSIVE-LIST-SUM(list, n - 1)

end if
```

- array list: size of pointer, commonly 4
- integer n: commonly 4
- float return place: 4

only 12, better than previous one? (NO, why?)

12n

Time Complexity of Matrix Addition

MATRIX-ADD

(integer matrix a, b, result integer matrix c, integer rows, cols)

for
$$i \leftarrow 0$$
 to $rows - 1$ do
for $j \leftarrow 0$ to $cols - 1$ do
 $c[i][j] \leftarrow a[i][j] + b[i][j]$
end for
end for

- inner for: $R = P \cdot cols + Q$
- total: $(S+R) \cdot rows + T$

$$P \cdot rows \cdot cols + (Q + S) \cdot rows + T$$

Rough Time Complexity of Matrix Addition

$$P \cdot \textit{rows} \cdot \textit{cols} + (Q + S) \cdot \textit{rows} + T \\ P, Q, R, S, T \text{ hard to keep track and not matter much}$$

MATRIX-ADD

(integer matrix a, b, result integer matrix c, integer rows, cols)

```
for i \leftarrow 0 to rows - 1 do
for j \leftarrow 0 to cols - 1 do
c[i][j] \leftarrow a[i][j] + b[i][j]
end for
end for
```

- inner for: $R = P \cdot cols + Q = \Theta(cols)$
- total: $(S + R) \cdot rows + T = \Theta(\Theta(cols) \cdot rows)$

rough total: $\Theta(rows \cdot cols)$

Asymptotic Notations: One Way for Rough Total

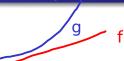
- goal: rough total rather than exact steps when input size large
- why rough total? constant not matter much

compare two complexity functions f(n) and g(n) when n large

growth of functions matters $-n^3$ would eventually be bigger than 1000n

- n² grows much faster than n
- n grows much slower than n^2 , which grows much slower than 2^n
- 3n grows "slightly faster" than n
 —when constant not matter, 3n grows similarly to n

Asymptotic Notations: Symbols



- f(n) grows slower than or similar to g(n): f(n) = O(g(n))
- f(n) grows faster than or similar to g(n): $f(n) = \Omega(g(n))$
- f(n) grows similar to g(n): $f(n) = \Theta(g(n))$
- n = O(n); n = O(10n); n = O(0.3n); $n = O(n^2)$; $n = O(n^5)$; · · · · (note: = more like " \in ")
- $n = \Omega(n)$; $n = \Omega(0.2n)$; $n = \Omega(5n)$; $n = \Omega(\log n)$; $n = \Omega(\sqrt{n})$; · · ·
- $n = \Theta(n)$; $n = \Theta(0.1n + 4)$; $n = \Theta(7n)$; $n \neq \Theta(5^n)$

7/18

Asymptotic Notations: Definitions

• f(n) grows slower than or similar to g(n):

$$f(n) = O(g(n))$$
, iff exist c, n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

• f(n) grows faster than or similar to g(n):

$$f(n) = \Omega(g(n))$$
, iff exist c, n_0 such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$

• f(n) grows similar to g(n):

$$f(n) = \Theta(g(n))$$
, iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

H.-T. Lin (NTU CSIE) Analysis Tools 03/12/2013 8 / 18