Stacks, Queues, Deques

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 27, 2012

H.-T. Lin {NTU CSIE) 5 Queues, Deques



@ object: a container that holds some elements
@ action: [constant-time] push (to the top), pop (from the top)

@ last-in-first-out (LIFO): # &4 , #&TF
@ very restricted data structure, but important for computers
—will discuss some cases later

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



A Simple Application: Parentheses Balancing

@ in C, the following characters show up in pairs: (), [I, {}, ™

good: {xXX(XXXXXX)XXxXX"xxxx"x}
bad: [ XK (XXHXHHX PR "xxxx"x}

@ the LISP programming language
(append (pow (x (+ 3 5) 2) 4) 3)

how can we check parentheses balancing? |

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Stack Solution to Parentheses Balancing

inner-most parentheses pair —> top-most plate
' BT ER): £RTFTR

Parentheses Balancing Algorithm

for each c in the input do
if c is a left character
push c to the stack
else if c is aright character
pop d from the stack and check if match
end if
end for

many more sophisticated use in compiler design )

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



System Stack

/7

e recall: function call & &7 89 EAA MR F ;
@ old (original) scrap paper: temporarily not used, TARE T @

System Stack: — %1% 4% , each paper (stack frame) contains
@ return address: where to return to the previous scrap paper

@ local variables (including parameters): to be used for calculating
within this function

@ previous frame pointer: to be used when escaping from this
function

some related issues: stack overflow? security attack? |

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Stacks Implemented on Array (5.1.4)

042 - M sh
N e
pate] 120 PP
Reﬂhdmg Assignment

be sure to go askfthe TAs or me if you are still confused

<teve  Ha PaS-\\"T‘M 0 {' f"*/f

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Stacks Implemented on Linked List (5.1.5)

hed_{ | —5[ ] —AT 1=t
N

oy
Reading Assignment

be sure to go ask the TAs or me if you are still confused

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Stack for Expression Evaluation (Supplementary)
?'\{“\r

@ precedence: {x,/} first; {+, —} later

alb—c+dxe—axc

@ steps vs.\'(
o f=a/b ab/ ¢C—dex +ace -
eg=fFf-c o~ o~
e h=d=xe
ei=g+h -S' h.
@ j=axc \/\f-—7

b=1i—] g.

Postfix Notation

same operand order, but put “operator” after needed operands
—can “operate” immediately when seeing operator
—no need to look beyond for precedence

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Postfix from Infix (Usual) Notation

@ infix:

((«3 / 4)- 5)+(§ . 7)} Qa . 9))

@ parenthesize:
3 /4 — 5 + 6 «x 7 — 8 % 9

e for every triple in parentheses, switch orders

(€ 4/)9’}(()%&)*% 5§ Qx—

@ remove parentheses

difficult to parenthesize efficiently |

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Evaluate Postfix Expressions

34/5 — 67 % +89 % —

how to evaluate? left-to-right, “operate” when see operator
3,4,/=0.75

0.75,5,- = -4.25

-4.25, 6,7, * = -4.25, 42 (note: -4.25 stored for latter use)
-4.25,42, + = 37.75

37.75, 8,9, * = 37.75, 72 (note: 37.75 stored for latter use)
37.75,72,-= ..

stored where?
stack so closest operands will be considered first!

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Stack Solution to Postfix Evaluation

Postfix Evaluation

for each token in the input do
if token is a number
push token to the stack
else if foken is an operator
sequentially pop operands a;_1,- - - , & from the stack
push token(ay, a1, a;—1) to the stack
end if
end for
return the top of stack

matches closely with the definition of postfix notation |

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



One-Pass Algorithm for Infix to Postfix

infix = postfix efficiently? |

@ at/, not sure of what to do (need later operands) so store
ab—-c+d+xe—axc

@ at-, knowthata/b gan be a b/ because - is of lower precedence
alb—c+d+xe—axc

o
@ at +, know that ? - c can ée ? ¢ - because + is of same
precedence but {-, +} is left-associative
alb—c+d+xe—axc

. al? / c
@ at *, not sure of what fo do (need later operands) so store
alb—c+d+«e—axc

stored where? stack so closest operators will be considered first! J

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Stack Solution to Infix-Postfix Translation

for each token in the input do
if foken is a number
output token
else if tokenis an operator
while top of stack is of higher (or same) precedence do
pop and output top of stack
end while
push token to the stack
end if
end for

@ here: infix to postfix with operator stack
—closest operators will be considered first

@ recall: postfix evaluation with operand stack
—closest operands will be considered first

@ mixing the two algorithms (say, use two stacks): simple calculator

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Some More Hints on Infix-Postfix Translation

for each token in the input do
if foken is a number
output token
else if tokenis an operator
while top of stack is of higher (or same) precedence do
pop and output top of stack
end while
push token to the stack
end if
end for

o for left associativity and binary operators
o right associativity? same precedence needs to wait
@ unary/trinary operator? same
@ parentheses? higest priority
@ at’(’, cannot pop anything from stack
—like seeing ™ while having '+ on the stack
@ at’), can pop until ‘(" —like parentheses matching

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Queues

@ object: a container that holds some elements

@ action: [constant-time] enqueue (to the rear), dequeue (from the
front)

o first-in-first-out (FIFO): ¥ &, ¥ &tk
@ also very restricted data structure, but also important for
computers

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Queues Implemented on Circular Array (5.2.4)

ST

p
hop

Reading Assignment

be sure to go ask the TAs or me if you are still confused

- M-
¢ M-\
T |
por 2
(23] S‘{ towt

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



WECR oub (o~ ended keu
dedk ol e

Deque = Stack + Queue + push_front
@ object: a container that holds some elements

@ action: [constant-time] push back (like push and enqueue),
f

pop_back (like pop), pop_front (like dequeue), push_front
7

@ application: job scheduling

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Deques Implemented on Doubly-linked List (5.3.2)

EPD’%D

1C(I?fgadmg As&gﬁﬁnent

be sure to go ask the TAs or me if you are still confused

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



Some Useful Implementations in C++

Standard Template Library (STL) J

container vector: dynamically growing dense array
container 1ist: doubly-linked list

container deque: “chunked” linked-list implementation of deque
container adapter stack: turning some container to a stack

1 | template <typename T, typename Container = deque<T> >
2 | class stack;

@ container adapter queue: turning some container to a queue

1 |template <typename T, typename Container = deque<T> >
2 | class queue;

H.-T. Lin {NTU CSIE) S Queues, Deques



Some Useful Implementations in C++

#include <vector>

#include <stack>

#include <queue>

using namespace std;

vector<int> intarray;

stack<char, vector<char> > charstackonvector;
queue<double> doublequeue ;

intarray .resize(20); intarray[3] = 5;
charstack.push_back('(’);

10 char ¢ = charstack.pop_back();

11 doublequeue . push_back(3.14);

12 double d = doublequeue. pop_front();

L= = T N = N - 1~ T

H.-T. Lin {NTU CSIE) Stacks, Queues, Deques



