Analysis Tools

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 27, 2012

H.-T. Lin (NTU CSIE) Analysis Tools

What We Have Done

@ list: singly, circular, doubly
@ recursion: linear (in class), binary, multiple (in reading)
@ asymptotic notations: big-O, big-©, big-Q

H.-T. Lin {NTU CSIE) Analysis Tools

What We Will Do

@ more about analysis tools

@ stack, queue, deque: “special” data structures that can be built on
“generic” ones (array, list)

@ difficult homework 3 for the spring break (to encourage people to
ask TA questions)

H.-T. Lin {NTU CSIE) Analysis Tools

Asymptotic Notations

@ goal: rough total rather than exact steps when input size large
@ why rough total? constant not matter much

compare two complexity functions f(n) and g(n) when n large

growth of functions matters
—n® would eventually be bigger than 1000n

@ which is faster? r 10n?
@ which is faster? nor n? of 2"
@ which is faster? 5nYor n?

S \ow

H.-T. Lin {NTU CSIE) Analysis Tools

Asymptotic Notations: Symbols

@ f(n) grows slower than or similar to g(n): f(n) = O(g(n))
—like £(n)[<]g(n)

@ f(n) grows faster than or similar to g(n): f(n) = Q(g(n))
—like £(n)[>]g(n)

@ f(n) grows similar to g(n): f(n) = ©(g(n))
—like f(n)[~]g(n)

(note: = in the asymptotic notations more like “c”)

H.-T. Lin {NTU CSIE) Analysis Tools

Asymptotic Notations: Definitions

@ f(n) grows slower than or similar to g(n):

f(n) = O(g(n)), iff exist ¢, ng such that f(n) < c-g(n) for all n > ny

L 'F(")

2N
f(n) = Q(g(n)), iff exist ¢, ny such that f(n) > c-g(n) for all n > ng

@ f(n) grows faster than or similar to g(n):

@ f(n) grows similar to g(n):

f(n) = ©(g(n)), iff f(n) = O(g(n)) and f(n) = 2(g(n))

H.-T. Lin {NTU CSIE) Analysis Tools

Analysis of Sequential Search

Sequential Search

fori< O0ton—1do
if list[i] == searchnum
return
end if
end for
return —1

@ best case (e.g. searchnum at 0): time ©(1)
@ worst case (e.g. searchnum at last or not found): time ©(n)
@ in general: time Q(1) and O(n)

H.-T. Lin {NTU CSIE) Analysis Tools

Analysis of Binary Search

@ best case (e.g. searchnum at
middle): time ©(1)

Binary Search
left + 0, right + n — 1

while /eft < right do @ worst case (e.g. searchnum
middle « floor((left+ right)/2) not found):
if list[middle] > searchnum because (right — left) is halved
| ’9fff<— middle + 1 in each WHILE iteration,
elsei : ; :
lstimicot] < searchrum needs time (log) terations
right <— middle — 1
else @ in general:
return middle time ©(1) and O(log n)
end if
end while
return —1)
often care about the worst case (and thus see O(-) often) J

H.-T. Lin {NTU CSIE) Analysis Tools

Asymptotic Notation: Prove from Definition

%ZV\ : (vf’ wéC-n 9. _‘:[h) -
Prove that log, nis O(n). 11zb l:):o 3(-“) N
T U
Informal thoughts: I £n)=0Gky
@ i.e., show that there exists ng and ¢ such that log, n < cn for
n = ng.
@ Inn<n-1<nforn=>1because g(n) = n— 1is the tangent line
of f(n)=Inn n-|
@ soln2log, n < nfor n > 1, where are ny and rf? lan
Formal proof: 1?7_5 T2
Take ng=....c=
forn>np,...solog,n > cn. That |s I092 n= O(n).

H.-T. Lin {NTU CSIE) Analysis Tools

Sequential and Binary Search

@ Input: any integer array list with size n, an integer searchnum
@ Output: if searchnum is not within list, —1; otherwise, othernum

DIRECT-SEQ-SEARCH
(list, n, searchnum)
fori+ 0ton—1do
if list[i] == searchnum
return
end if
end for
return —1

SORT-AND-BIN-SEARCH

(list, n, searchnum)
SEL-SORT(list, n)
return BIN-SEARCH(/ist, n, searchnum)

@ DIRECT-SEQ-SEARCH is O(n) time

@ SORT-AND-BIN-SEARCH is O(n?) time for SEL-SORT (Why?) and
O(log n) time for BIN-SEARCH

want: show asymptotic complexity of SORT-AND-BIN-SEARCH as its

bottleneck

H.-T. Lin (NTU CSIE)

Analysis Tools

Some Properties of Big-Oh

Theorem (3 B4)
iffy(n) = O(ge(n)). 2(n) = O(g2(n)) then fi(n) + f2(n) = O(ga(n))

@ Whenn>ny, fi(n (n)
@ Whenn> no, fh(n (n)

@ So, when n > max(ny, 3) 1(n) + f(n) < (c1 + &2)ge(n)

(n) <c192
(n) < c202

Ne ¢

H.-T. Lin {NTU CSIE) Analysis Tools

Some Properties of Big-Oh

Theorem (YA
itfy(n) = O(g1(n)), g1(n) = O(ga(n)) then fi(n) = O(ga(n))

@ When n > ny, fi(n) < c1g1(n)
@ When n > np, g1(n) < c292(n)
@ So, when n > max(ny, nz), fi(n) < c1c202(n)

H.-T. Lin {NTU CSIE) Analysis Tools

Some Properties of Big-Oh

Theorem (## &4)

itfi(n) = O(1(n)), £(n) = O(ga2(n)) and g1(n) = O(ga2(n)) then
fi(n) + f2(n) = O(gz2(n))

Proof: use two theorems above.

H.-T. Lin {NTU CSIE) Analysis Tools

Some Properties of Big-Oh

Iff(n) = amn™+ -+ ayn+ ap, then f(n) = O(n™)

Proof: use the theorem above.

similar proof for Q and ©)

H.-T. Lin {NTU CSIE) Analysis Tools

Some More on Big-Oh

RECURSIVE-BIN-SEARCH is O(log n) time and O(log n) space

e by A4 H , time also O(n)
@ time also O(nlog n)

e time also O(n?)

@ also O(2")

@ ...

prefer the tightest Big-Oh! |

H.-T. Lin {NTU CSIE) Analysis Tools

Practical Complexity

some input sizes are time-wise infeasible for some algorithms

when 1-billion-steps-per-second

n n nlog, n n? m n n'° 2n

10| 0.01us 0.03us 0.1us 1us 10us 10s 1us
20| 0.02us 0.09us 0.4us 8us 160us 2.84h 1ms
30| 0.03us 0.15us 0.9us 27,18 810us 6.83d 1s
40| 0.04ps 0.21pus 1.6us 64pus 2.56ms 121d 18m
50| 0.05us 0.28us 2.5us 12548 6.25ms 3.1y 13d
100 0.10us 0.66us 10us 1ms 100ms 3171y 4.-10"3y
108 1us 9.96us 1ms 1s 16.67m 3-10"3y 3.10%84y
104 10us 130us 100ms 1000s 115.7d 3-10%y
109 100us 1.66ms 10s 11.57d 3171y 3-10%y
109 1ms 19.92ms 16.67m 32y 3-10"y 3-10%y

note: similar for space complexity,
e.g. store an N by N double matrix when N = 500007

H.-T. Lin {NTU CSIE) Analysis Tools

