Analysis Tools

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 27, 2012

What We Have Done

- list: singly, circular, doubly
- recursion: linear (in class), binary, multiple (in reading)
- asymptotic notations: big-O, big- Θ , big- Ω

What We Will Do

- more about analysis tools
- stack, queue, deque: "special" data structures that can be built on "generic" ones (array, list)
- difficult homework 3 for the spring break (to encourage people to ask TA questions)

Asymptotic Notations

- goal: rough total rather than exact steps when input size large
- why rough total? constant not matter much

compare two complexity functions f(n) and g(n) when n large

growth of functions matters $-n^3$ would eventually be bigger than 1000n

- which is faster? n² or 10n?
 which is faster? n or n² of 2n²
 which is faster? 5n or n?

Asymptotic Notations: Symbols

- f(n) grows slower than or similar to g(n): $\frac{f(n)}{f(n)} = O(g(n))$ —like $f(n) \le g(n)$
- f(n) grows faster than or similar to g(n): $\frac{f(n)}{f(n)} = \frac{\Omega(g(n))}{\Omega(g(n))}$ —like $f(n) \ge g(n)$
- f(n) grows similar to g(n): $f(n) = \Theta(g(n))$ —like $f(n) \approx |g(n)|$

(note: = in the asymptotic notations more like " \in ")

Asymptotic Notations: Definitions

• f(n) grows slower than or similar to g(n):

$$f(n) = O(g(n))$$
, iff exist c, n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
 $g(n) = \bigcap_{n \ge 1} (f(n))$

• f(n) grows faster than or similar to g(n):

$$f(n) = \Omega(g(n))$$
, iff exist c, n_0 such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$

• f(n) grows similar to g(n):

$$f(n) = \Theta(g(n)), \text{ iff } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$$

$$C_1, C_2, N_0 \qquad N_1, N_0$$

$$C_1, Q(n) \leq f(n) \leq C_2 Q(n)$$

H.-T. Lin (NTU CSIE) Analysis Tools 03/27/2012

Analysis of Sequential Search

Sequential Search for *i* ← 0 to *n* − 1 do if *list*[*i*] == searchnum return *i*end if end for return −1

- best case (e.g. searchnum at 0): time $\Theta(1)$
- worst case (e.g. searchnum at last or not found): time $\Theta(n)$
- in general: time $\Omega(1)$ and O(n)

Analysis of Binary Search

Binary Search

```
left \leftarrow 0, right \leftarrow n-1
while left \le right do
   middle \leftarrow floor((left + right)/2)
   if list[middle] > searchnum
     left \leftarrow middle + 1
  else if
   list[middle] < searchnum
     right \leftarrow middle - 1
  else
     return middle
  end if
end while
return -1
```

- best case (e.g. searchnum at middle): time ⊖(1)
- worst case (e.g. searchnum not found):
 because (right – left) is halved in each WHILE iteration, needs time Θ(log n) iterations if not found
- in general: time Ω(1) and O(log n)

often care about the worst case (and thus see $O(\cdot)$ often)

Asymptotic Notation: Prove from Definition

Prove that
$$\log_2 n$$
 is $O(n)$.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Informal thoughts:

- i.e., show that there exists n_0 and c such that $\log_2 n \le cn$ for $n \geq n_0$.
- In $n \le n-1 \le n$ for $n \ge 1$ because g(n) = n-1 is the tangent line of $f(n) = \ln n$
- so $\ln 2 \log_2 n \le n$ for $n \ge 1$, where are n_0 and c? ormal proof:

Formal proof:

Take
$$n_0 = \ldots, c = \ldots$$
;

for
$$n \ge n_0, \ldots$$
 so $\log_2 n \ge cn$. That is, $\log_2 n = O(n)$.

Sequential and Binary Search

- Input: any integer array list with size n, an integer searchnum
- Output: if searchnum is not within list, −1; otherwise, othernum

Direct-Seq-Search (list, n, searchnum)

```
for i \leftarrow 0 to n-1 do

if list[i] == searchnum

return i

end if

end for

return -1
```

SORT-AND-BIN-SEARCH (list, n, searchnum)

```
SEL-SORT(list, n)

return BIN-SEARCH(list, n, searchnum)
```

- DIRECT-SEQ-SEARCH is O(n) time
- SORT-AND-BIN-SEARCH is $O(n^2)$ time for SEL-SORT (Why?) and $O(\log n)$ time for BIN-SEARCH quality

want: show asymptotic complexity of SORT-AND-BIN-SEARCH as its bottleneck

Theorem (封閉律)

if
$$f_1(n) = O(g_2(n))$$
, $f_2(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_2(n))$

- When $n \ge n_1$, $f_1(n) \le c_1 g_2(n)$
- When $n \ge n_2$, $f_2(n) \le c_2 g_2(n)$
- So, when $n \ge \max(n_1, n_2)$, $f_1(n) + f_2(n) \le (c_1 + c_2)g_2(n)$

Theorem (遞移律)

if
$$f_1(n) = O(g_1(n))$$
, $g_1(n) = O(g_2(n))$ then $f_1(n) = O(g_2(n))$

- When $n \ge n_1$, $f_1(n) \le c_1 g_1(n)$
- When $n \ge n_2$, $g_1(n) \le c_2 g_2(n)$
- So, when $n \ge \max(n_1, n_2)$, $f_1(n) \le c_1 c_2 g_2(n)$

Theorem (併吞律)

if
$$f_1(n) = O(g_1(n))$$
, $f_2(n) = O(g_2(n))$ and $g_1(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_2(n))$

Proof: use two theorems above.

Theorem

If
$$f(n) = a_m n^m + \cdots + a_1 n + a_0$$
, then $f(n) = O(n^m)$

Proof: use the theorem above.

similar proof for Ω and Θ

Some More on Big-Oh

RECURSIVE-BIN-SEARCH is $O(\log n)$ time and $O(\log n)$ space

- by 遞移律, time also O(n)
- time also $O(n \log n)$
- time also $O(n^2)$
- also $O(2^n)$
- ..

prefer the tightest Big-Oh!

Practical Complexity

some input sizes are time-wise infeasible for some algorithms

when 1-billion-steps-per-second							
n	n	$n\log_2 n$	n^2	n^3	n^4	n ¹⁰	2 ⁿ
10	$0.01 \mu s$	$0.03 \mu s$	0.1 <i>μ</i> s	1 μ s	10 <i>μs</i>	10 <i>s</i>	1 <i>μ</i> s
20	$0.02\mu s$	$0.09 \mu s$	$0.4\mus$	8 μ s	160 μ s	2.84 <i>h</i>	1 <i>ms</i>
30	$0.03 \mu s$	$0.15\mu s$	$0.9\mu s$	27 μs	810 μ s	6.83 <i>d</i>	1 <i>s</i>
40	$0.04\mus$	$0.21\mus$	1.6 μ s	$64 \mu s$	2.56 <i>ms</i>	121 <i>d</i>	18 <i>m</i>
50	$0.05 \mu s$	$0.28 \mu s$	2.5 μ s	125 <i>μs</i>	6.25 <i>ms</i>	3.1 <i>y</i>	13 <i>d</i>
100	$0.10 \mu s$	$0.66 \mu s$	10 μ s	1 <i>ms</i>	100 <i>ms</i>	3171 <i>y</i>	4 · 10 ¹³ y
10 ³	1 μ s	9.96 <i>μs</i>	1 <i>ms</i>	1 <i>s</i>	16.67 <i>m</i>	3 · 10 ¹³ y	$3 \cdot 10^{284}$ y
10 ⁴	10 μs	130 μ s	100 <i>ms</i>	1000 <i>s</i>	115.7 <i>d</i>	$3 \cdot 10^{23} y$	
10 ⁵	100 μ s	1.66 <i>ms</i>	10 <i>s</i>	11.57 <i>d</i>	3171 <i>y</i>	$3 \cdot 10^{33} y$	
10 ⁶	1 <i>ms</i>	19.92 <i>ms</i>	16.67 <i>m</i>	32 <i>y</i>	3 ⋅ 10 ⁷ y	$3 \cdot 10^{43} y$	

note: similar for space complexity,

e.g. store an N by N double matrix when N = 50000?