Hsuan-Tien Lin

Dept. of CSIE, NTU

May 16—-17, 2011

H.-T. Lin (NTU CSIE) Saorting 05/16-05/17, 2011



What We Have Done

Selection Sort, Tournament Sort
Bubble Sort

Insertion Sort

Merge Sort

Heap Sort

BST (Tree) Sort

Reading Assignment:
Motivation of Sorting

H.-T. Lin (NTU CSIE) Saorting 05/16-05/17, 2011 1/13



Selection Sort: Review and Refinements

idea: linearly select the minimum one from “unsorted” part;
put the minimum one to the end of the “sorted” part ’

Implementations

@ common implementation: swap minimum with a[/] for putting in
i-th iteration

@ rotate implementation: rotate minimum down to a[i] in i-th iteration
@ linked-list implementation: insert minimum to the i-th element

@ space O(1): in-place

@ time O(n?) and ©(n?)

o rotate/linked-list: stable by selecting minimum with smallest index
—same-valued elements keep their index orders

@ common: unstable

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011



Tournament Sort: Review and Refinements

idea: selection sort with winner tree (or loser tree)
rather than select linearly

@ space O(n)
@ time O(nlogn)
@ a good representative of O(nlog n) family; hardly really used

H.-T. Lin (NTU CSIE) Saorting 05/16-05/17, 2011



Merge Sort: Review and Refinements

idea: replace winner tree with merge tree;
the root would then be the sorted result

Implementations

@ naive implementation: build the whole tree0(n log n) space
@ level implementation: keep only level of tree per iter. O(n) space

@ linked-list implementation: keep only one linked list in one iter.
(with sub-lists of length 2¥) O(1) space

recursive implementation: top-down Q(log n) space for stack call
natural: use inititally ordered sub-lists as leaf (2(n) space for heads

time O(nlog n)

usually stable (if carefully implemented), parallellize well
popular in external sort with extension to k-way merge
(using winner tree)

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 4/13



Heap Sort: Review and Refinements

idea: max-tournament sort with a max-heap in original array
rather than external winner tree

@ space O(1)

@ time O(nlogn)

@ not stable

@ favorable over merge sort on embedded system (constant space)

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 5/13



Bubble Sort: Review and Refinements

idea: swap disordered neighbors repeatedly J

@ space O(1)

e time O(n?)

@ stable

@ adaptive: can early stop

@ a deprecated choice except in very specific applications with a few
disordered neighbors or if swapping neighbors is cheap (old tape
days)

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 6/13



Insertion Sort: Review and Refinements

idea: insert a card from the unsorted pile to its place in the sorted pile |

Implementations

@ naive implementation: sequential search sorted pile from the front
O(n) time per search, O(n) per insert

@ backwise implementation: sequential search sorted pile from the
back O(n) time per search, O(n) per insert

@ binary-search implementation: binary search the sorted pile
O(log n) time per search, O(n) per insert

@ linked-list implementation: same as naive but on linked lists
O(n) time per search, O(1) per insert

@ skip-listimplementation: doable but a bit overkill (more space)

@ rotation implementation: neighbor swap rather than insert
(gnome sort)

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 TI1c



Insertion Sort: Review and Refinements (ll)

@ space O(1)

e time O(n?)

@ stable

@ backwise implementation adaptive

@ usually preferred over bubble (faster) and over selection (adaptive)

H.-T. Lin (NTU CSIE) Saorting 05/16-05/17, 2011 8/13



Shell Sort: Introduction

idea: adaptive insertion sort on every k; elements;
adaptive insertion sort on every k; elements; - - -
adaptive insertion sort on every k,, = 1 element

insertion sort with “long jumps”

space O(1), like insertion sort

time: difficult to analyze, often faster than O(n?)

unstable, adaptive n~{3/2}, nlog™2n

usually good practical performance and somewhat easy to
implement

H.-T. Lin (NTU CSIE) Sorting 05/16-05/17, 2011 9/13



Tree Sort: Review and Refinements

5,7,3,2,1,4,6,8

TreeSort(3, 2, 1, 4), 5, TreeSort(7, 6, 8)

idea: replace heap with a BST;
an in-order traveral outputs the sorted result ’

@ space O(n)

e time: worst O(n?) (unbalanced tree), average O(nlog n)
@ unstable

@ suitable for stream data and incremental sorting

H.-T. Lin (NTU CSIE) Sorting 05/16—05/17, 2011



Quick Sort: Introduction

idea: simulate tree sort without building the tree |
make a[0] the root of a BST name a[0] the pivot
fori—1,---,n—1do fori<~1,.-- .n—1do
if a[i] < a[0] if a[i] < a0]
insert a[/] to the left-subtree put a[/] to the left pile of the
of BST pivot
else else
insert &[i] to the put a[i] to the right pile of
right-subtree of BST the pivot
end if end if
end for end for
in-order traversal of left-subtree, output quick-sorted left; output
then root, then right-subtree a[0]; output quick-sorted right

H.-T. Lin (NTU CSIE) Sorting 05/16—05/17, 2011 11/13



Quick Sort Simulation

6,1,4,9,7,8,3,10,2,5

popular implementation
[[31], 1, 4, [5], [2], [[6]], [8], 10, [7], [9]

paper implementation
(14325)6(97810)
(0)1(4325))6(97810)
(01(32)4(5))6(97810)
(01(((2)3())4(5))6(97810)
(123456 ((78)9(10))
(123456 ((() 7(8))9(10))
(12345678910)

H.-T. Lin {NTU CSIE) Sorting 05/16—0517, 2011



Quick Sort: Introduction (II)

Implementations
@ naive implementation: pick first element in the pile as pivot
@ random implementation: pick a random element in the pile as pivot

@ median-of-3 implementation: pick median(front, middle, back) as
pivot

space: worst O(n), average O(log n) on stack calls
time: worst O(n?), average O(nlog n)
not stable

usually best choice for large data (if not requiring stability), can be
mixed with other sorts for small data

H.-T. Lin (NTU CSIE) Sorting 05/16—05/17, 2011 13/13



