* Worst-case of Remove-Largest? $O(h)$ with h being height of T
so can be $O(n)$ for n nodes

- how about requiring a complete binary tree?
 $O(h) = O(\log n)$

called max-heap

but need to check how to maintain.

* Heap-Remove-Largest (T) {
 compare LastNode \rightarrow key with T \rightarrow left \rightarrow key and T \rightarrow right \rightarrow key
 if (LastNode \rightarrow key \geq largest) {
 replace T \rightarrow key, T \rightarrow data w/ LastNode \rightarrow key / data
 }
 otherwise {
 replace T \rightarrow key, T \rightarrow data w/ Child \rightarrow key / data
 (Heap-Remove-Largest (Child, Candidate))
 }
}

move back to the root, and trickle down

* Heap-Insert (T, Current) {
 while (Current \rightarrow key $>$ Current \rightarrow parent \rightarrow key) {
 Swap Current and Current \rightarrow parent;
 Current $=$ Current \rightarrow parent;
 }
}

put in the back, and bubble up

* note: complete binary tree can be packed in an array

 max-heap is essentially a special array
 (not completely ordered, but follow some rules)
* Case 2: \[?? = k \]

- keys are words
- data are their explanations
- dictionary

Binary search revisited

\[
\text{Bin-Search}(k, \text{RangeL, RangeR}) \}\]

\[
middle = \ldots
\]

- if \(k < \text{middle} \)
 \[
 \text{Bin-Search}(k, \text{RangeL, RangeL-1})
 \]
- else if \(k > \text{middle} \)
 \[
 \text{Bin-Search}(k, \text{RangeR+1, RangeR})
 \]
- else
 \[
 \text{return location of middle}
 \]

- need
 \[
 \text{left subtree} < \text{root} < \text{right subtree}
 \]

- called binary search tree

- worst-case search time: \(O(h) \) w/ \(h \) being height of tree

- insert (also \(O(h) \))
 \[
 \text{if } (k < \text{middle})
 \]
 - insert to left-subtree
 \[
 \text{else if } (k > \text{middle})
 \]
 - insert to right-subtree

- delete (also \(O(h) \))
 - leaf: simple
 - one child: simple
 - two children: take right-most descendent of left-subtree as root

- join, split: READING ASSIGNMENT

- good binary search tree: balanced (\(h = O(\log n) \))
 \[
 \text{in practice: not always sure}
 \]

- randomly insert: yes in average

- challenge: binary search tree w/ still efficient insert/delete

Double A
heap: specially arranged complete binary tree
w/ application in simple priority queue
BST: specially arranged binary tree
w/ application in search (dictionary)
selection: general complete binary tree to process "tournament" data
w/ application in merging ordered lists

* l1: 9 8 7 3 1
 l2: 10 6 5 2

how to merge two
1. 9 8 7 6 5 3 2 1

output \(\max(\text{head}(l1), \text{head}(l2)) \)
remove the max from the associated list

\(O(N) \) for \(N \) elements (if removal is \(O(1) \))

* l1, l2, l3, l4?

output \(\max(\text{head}(l1), \text{head}(l2), \text{head}(l3), \text{head}(l4)) \)
remove

\(O(N \cdot \text{time}(\max)) \)
for \(k \) lists, \(\text{time}(\max) \) is \(O(k) \)

\(\Rightarrow O(Nk) \)
for naive implementation

* l1 9
 l2 8
 l3 10 6
 l4 5

Naive:
\[
\begin{align*}
(7, 5) & \quad (8, 10), (10, 5) \quad \Rightarrow \quad 10 \\
(7, 8) & \quad (8, 6), (8, 5) \quad \Rightarrow \quad 8 \\
(7, 6) & \quad (7, 5) \quad \Rightarrow \quad 7
\end{align*}
\]

\text{repeatedly checked}
* save time w/ tournaments

only (at most) the path from the new element to the root needs to be updated

\[O(h) = O(\log_2 k) \] to maintain and \[O(1) \] to find max
\[\Rightarrow O(N \log k) \] to merge \(k \) ordered lists w/ a total of \(N \) elements

called max-winner tree (textbook: min-winner)

note: a bottom-up tree (leaf \(\rightarrow \) root)

* the path from leaf-10 to root all stores leaf-10
to rematch, need to find "sibling" (e.g. 5, 8)
can simplify finding sibling by storing sibling in non-leaf nodes + overall winner

called (max-) loser tree
i.e. sibling

* Section 5.9: Forest (READING ASSIGNMENT)
balance game & trees
9 coins A B C D E F G H I
one of them heavier
two uses of balance

how to find it?

ABC ? DEF
\[
\begin{array}{c}
\text{A} \quad \text{B} \\
\text{C} \quad \text{D} \\
\text{E}
\end{array}
\]

A < B > C < D < E
A < C < B < D < E
A < C < B < D < E

a complete trinary tree!
leaf: outcomes
non-leaf: conditions

two uses of balance = two non-leaf levels
⇒ at most 9 possibilities

if 10 coins (outcomes), probably impossible
if 9 coins, need to physically check if reasonable (like above)

brainstorm:
12 coins, 1 of them heavier or lighter, 3 uses of balance
13
14 impossible, why?