Stacks and Queues

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 21-22, 2011

H.-T. Lin (NTU CSIE)

Stacks (Sec. 3.1): Abstract Data Type

@ object: a container that holds some elements
@ action: push (to the top), pop (from the top)

@ last-in-first-out (LIFO): # &4 , #&TF
@ very restricted data structure, but important for computers
—will discuss some cases later

H.-T. Lin (NTU CSIE) Stacks and Queues 03/21-03/22, 2011

A Simple Application: Parentheses Balancing

@ in C, the following characters show up in pairs: (), [I, {}, ™

good: {xXX(XXXXXX)XXxXX"xxxx"x}
bad: [XK (XXHXHHX PR "xxxx"x}

@ the LISP programming language
(append (pow (x (+ 3 5) 2) 4) 3)

how can we check parentheses balancing? |

H.-T. Lin (NTU CSIE) Stacks and Queues 03/21-03/22, 2011 2/20

Stack Solution to Parentheses Balancing

inner-most parentheses pair —> top-most plate
' BT ER): £RTFTR

Parentheses Balancing Algorithm

for each c in the input do
if c is a left character
push c to the stack
else if c is aright character
pop d from the stack and check if match
end if
end for

many more sophisticated use in compiler design)

H.-T. Lin (NTU CSIE) Stacks and Queues 03/21-03/22, 2011

System Stack

e recall: function call & £#7 89 A58 R
@ old (original) scrap paper: temporarily not used, TARE T @

System Stack: — %1% 4% , each paper (stack frame) contains
@ return address: where to return to the previous scrap paper

@ local variables (including parameters): to be used for calculating
within this function

@ previous frame pointer: to be used when escaping from this
function

some related issues: stack overflow? security attack? |

H.-T. Lin (NTU CSIE) Stacks and Queues 03/21-03/22, 2011

Stacks with Fixed C Array (Part of Sec. 3.1)

Reading Assignment

be sure to go ask the TAs or me if you are still confused

H.-T. Lin (NTU CSIE) Stacks and Queues 03/21-03/22, 2011 5/20

Stacks with Dynamically Growing Array (Sec. 3.2)

when stack full, grow array by size M

successful (direct) growth: constant time 1: !

if unlucky, growth by copying: O(capacity) :@

M = 1 or any constant: very conservative
—uworst case, O(n?) for n pushes (why?) :

M = capacity:
—growth when exceeding 1, 2, 4, 8, 16, ...
—each growth takes time around 1, 2, 4, 8, 16, ...
—when n pushes with n = 13?
?w& . \70
oud 5 AFTNETE 205

—2§< n < 2k+1 time 2k*1 — 1 on growth and n on pushes
—O(n) for n pushes

H.-T. Lin (NTU CSIE) Stacks and Queues 03/21-03/22, 2011

6/

20

Stack for Expression Evaluation (Sec. 3.6)

alb—c+dxe—axc

@ precedence: {x,/} first; {+, —} later
@ steps

v /
e f=a/b > - ¢ —
oQ‘Zf/—C XC/\/ =2 &b/
e h=d=xe e %
ei=g+h Gh +t S alb/c-deh=
ol=i-j U] - = ab/ C-de XY &CF-

Postfix Notation

same operand order, but put “operator” after needed operands
—can “operate” immediately when seeing operator
—no need to look beyond for precedence

H.-T. Lin (NTU CSIE) Stacks and Queues 03/21-03/22, 2011

Postfix from Infix (Usual) Notation

347 8 - bnx % Y4 x -

@ infix: e 4% 4e AT 7 7
3 /4 -5 +6 7 — 8 % 9

@ parenthesize:

(o 792 5)fe » D)= (s« 9))

e for every triple in parentheses, switch orders

(E+N5-)) (3% -)

@ remove parentheses

34/ - b K X ¥9% -

difficult to parenthesize efficiently |

H.-T. Lin (NTU CSIE) Stacks and Queues 03/21-03/22, 2011 8/20

