Lab 1 Camera Communication

Platform – Same as in-class #2

- USRP + LED as Tx
- Raspberry pi camera
- Boost your data rate !! Up to 8kbps

Camera

- Raspberry pi
- Frame rate 30fps
- Shutter speed = 1us
- Resolution 1920*1080

Grading criteria

- Unawareness + workable 20%
 - Intensity stays constant over any 15ms (60Hz)
 - Transmit 8bps (in-class #2)
- Baseline 40%
 - 128 bps
- Boost data rate 30%
 - 5% for each 2x. Maximum rate up to $128 \times 2^6 = 8192$ bps
- Report 10%
 - Encode / decode explanation + work division

How rolling shutter works?

Find signal start

Preamble

- Indicate the start(/end) of the signal
 - Tx / Rx do not sync
 - E.g. Tx transmits -> random (10ms, 100ms) -> Rx camera start
- Unique symbol (sequence)
 - Unused frequency in FSK
 - Long bright/dark in Manchester coding
 - May not follow symbol duration
 - Need to have a clear "ending"
 - Counter example : long bright + 1st symbol Manchester '0' (bright/dark)

Signal Loss handling

T_r Calculation

- Transmit a data of known frequency
- Calculate the strip width
- Example : transmit 1 kHz cosine wave, 1 bright + 1 dark = 1ms = 1 strip
- 19 strips in image (1 black + 1 white) occupying 888 pixels

•
$$T_r = \frac{1ms}{\#rows\ per\ cycle} = \frac{1ms}{(888/19)} = 21.4us$$

Signal Loss handling — long symbol

- Symbol duration > Gap
 - Each symbol will be captured
 - e.g. 1/30 s
- Each symbol carry multiple bits
 - Multiple frequencies in FSK
 - Multiple amplitude in ASK

Signal Loss handling — long symbol

- Each symbol will last over 1 frames
- Large symbol more complex decoding
- Reference
 - RollingLight: http://www.csie.ntu.edu.tw/~hsinmu/wiki/_media/pap er/mobisys15.pdf

Symbol splitter (optional)

- A fixed small symbol << symbol duration
- between 2 symbols to split symbol (in case 2 consecutive same symbols)
- Similar to preamble, maybe a unique intensity in ASK or frequency in FSK

Signal Loss handling – short symbol

- Symbol duration < Gap and frame
 - Some symbol loss
- Need to calculate symbol loss rate

Signal Loss handling – small symbol

- Single frame contains multiple symbol
- Small symbol heavy coding + parity to recover
 - Coding rate > symbol loss rate
 - https://en.wikipedia.org/wiki/Forward_error_correction #List_of_error-correcting_codes

Sequence number (optional)

- Detect loss symbol in time gap
- "number" each symbol
 - E.g. 24 symbols into 3 groups { A,B,C }, 8 symbols in each group = 3 bit per symbol
- Transmit symbol in group order (cyclic)
 - data = [110] [001] [010] [111] [101] [000]
 - Sym. = [A6] [B1] [C2] [A7] [B5] [C0]
- If group order skipped in decode -> symbol loss
 - E.g. [A6] [B1] [A7] -> [C?]

Lab #1 : CamCom

- Tx
 - USRP control LED
 - Fixed Sampling rate: 200K
 - 1 = bright, 0 = dark. Linear scale (0.5 = half intensity)
 Sample MATLAB file create bin file
 - https://drive.google.com/file/d/0B_Z-TUMjZ2A8ZDNLM0FMQ0U1TUU/view
 - Upload your bin file through
 - scp teamN_v#.bin wn@10.5.7.182:~/ook-vlc/
 - Password: wnfa2017

Lab #1 : CamCom

- Rx
 - Raspberry camera
 - Fixed 30fps 1920*1080 mp4
 - Captured video in
 - http://mvnl.csie.ntu.edu.tw/~wnfa/wn17fall/
 - CLEAR in 10/1 (Sun.) 23:59
 - test.mp4 sample video for 1kHz cosine wave
 - Download the video and decode
 - Read video sample code in
 - https://www.dropbox.com/s/5zx14ozqg408san/OOKRxDemo.m ?dl=0

Grading criteria

- Demo: Unawareness + workable 20%
 - Intensity stays constant over any 15ms (60Hz)
 - Transmit 8bps (in-class #2)
- Demo: Baseline 40%
 - 128 bps
- Demo: Boost data rate 30%
 - 5% for each 2x. Maximum rate up to $128 \times 2^6 = 8192$ bps
- Report 10%
 - Encode / decode explanation + work division

Demo

- 10/26 (Thur.)
- 15 min per team
- Whole day available, book the time slot at https://docs.google.com/spreadsheets/d/1Gt0kPk DGTFpR8MTsswOTMN4ZozkOdAH661KgcRgJloc/edi t?usp=sharing
- Please feel free to email us if both of you are not available

Submit

- courses.dlc.ntu.edu.tw
 - Lab > Lab1
 - .zip containing encode.m/ decode.m/ report.pdf