Diversity

PROF. MICHAEL TSAI 2014/4/28

BER Performance under Fading: BPSK in Rayleigh fading

BER Performance under Fading: M-QAM in Rayleigh Fading

BER Performance under Fading: BPSK in Nakagami fading

Intuition: how does fading affect average BER?

• Average BER:

$$\overline{P_e} = \int_0^\infty P_e(\gamma) p_\gamma(\gamma) d\gamma$$

- γ : Signal-to-Noise Ratio (SNR) per bit
- $p_{\gamma}(\gamma)$: PDF of SNR (fading distribution divided by noise power)
- $P_e(\gamma)$: BER of a given SNR

Concept: Diversity

Space Diversity

Each pair separated by at least half the wavelength (accurate version: 0.38 wavelength)

Low correlation \rightarrow independent channels

Q: What's the minimum required separation between 2 antennas? (for 802.11g and 802.11a)

A: 12.5 cm for 2.4 GHz 5.17 cm for 5.8 GHz (which is what you see for a typical router)

Directional (Angle) Diversity

- Split the 360 degree receiving angle into different "sectors"
- Each will receive a portion of multipath components (MPC)
 - Extreme case: if the angle of each "sector" is very very small, then you only receive one MPC
 → no small scale fading
 - Different sets of MPCs go through different paths → low correlation!
- Antenna design:
 - Multiple sectors on the same antenna (switchable multiple antennas)
 - Steerable directional antenna (mechanical)

Ruckus ultra-diverse metro antenna

Four high-gain, horizonally polarized and two high-gain vertically polarized directional antenna elements are automatically controlled by an expert software system that determines the best antenna pair and signal path for any packet at any given time

New WiFi Access Points in the CSIE Building

- Ruckus Zoneflex 7962
- Currently in service in the CSIE building
- 802.11 a/b/g/n
- Over 4000 unique antenna patterns
 - Many "sectors", 3D too (from its appearance)
 - Select multiple "good" antennas for receiving
- Can be used to reduce interference too

Smart Antenna inside Ruckus Zoneflex 7962

Frequency Diversity

 Signals at two frequencies separated by at least one coherence bandwidth
 → low correlation!
 → independent! Bc

 f_1

Separated by at least

one coherence bandwidth

freq.

 f_2

- Small coherence bandwidth is sometimes good too
 - For frequency diversity, two transmissions do not need to be too far apart in frequency
- OFDM utilize this property too
 - Sub-carriers separated by at least one coherence bandwidth can transmit redundant information for **diversity (reliability)**
 - Sub-carriers within the same coherence bandwidth can transmit different information for increasing the **throughput**

Time Diversity

- Transmit the same packet

 (or a part of it) after Δt, Δt >
 T_c (coherence time).
 →low correlation
 →independent
- How to do this?
 - For channel with T_{pkt} < T_c, coding techniques can utilize this

 →transmit redundant information in the same packet, separated by T_c.
 - Retransmission conceptually uses this too.

Some related terms

• Micro-diversity:

to mitigate the effects of multipath fading (small-scale fading).

Macro-diversity:

to mitigate the effects of shadowing from buildings and objects (large-scale fading).

• In this lecture, we will talk about micro-diversity.

A More Formal Representation for Receiver Diversity

Array Gain

• Array Gain:

Improvements from getting the signals from multiple antennas

- Usually refers to the gain without fading
- More formally, SNR of the combined signal can be calculated as:

Setting
$$a_i = \frac{r_i}{\sqrt{N_0}}, i = 1, ..., M$$

 $\gamma_{\Sigma} = \frac{\left(\sum_{i=1}^M a_i r_i\right)^2}{N_0 \sum_{i=1}^M a_i^2} = \frac{\left(\sum_{i=1}^M \frac{E_s}{\sqrt{N_0}}\right)^2}{N_0 \sum_{i=1}^M \frac{E_s}{N_0}} = \frac{ME_s}{N_0}$

With fading, what is the average BER?

• Diversity gain:

the performance advantage as a result of diversity combining (in fading).

• Average BER:

$$\overline{P}_e = \int_0^\infty P_e(\gamma) p_{\gamma \Sigma}(\gamma) d\gamma$$

• Or we can express it as

$$\overline{P_e} = c \overline{\gamma}^{-m}$$

m: the diversity order

 When m=M (the number of branches), we say that the system achieves *full diversity order*.

Selection Combining (SC)

• Concept:

select the one branch with the best SNR and dump the rest.

• Advantage:

simple, no need to do co-phasing.

- Select the highest SNR: $\gamma_i = \frac{r_i^2}{N_i}$.
- In practice, SNR cannot be measured. Since $N_i = N_0, \forall i$, we can select the branch with the highest RSSI Strength instead: $r_i^2 + N_i$

Selection Combining (SC)

• The CDF of SNR after combining:

$$P_{\gamma\Sigma}(\gamma) = p(\gamma_{\Sigma} < \gamma)$$

= $p(\max[\gamma_{1}, \gamma_{2}, ..., \gamma_{M}] < \gamma)$
= $\prod_{i=1}^{M} p(\gamma_{i} < \gamma)$

- No close form expression to obtain the average BER
 → Use simulation to obtain the result.
- Sometimes branch correlation is not o
 →the performance will degrade
 →negligible when correlation < 0.5

BER Performance: BPSK with SC in Rayleigh fading

Threshold Combining

• Concept:

Use one branch and dump the rest. When this one is not good anymore (SNR drops below a threshold), randomly select another branch.

• Advantage:

Even simpler, no need to monitor the SNR of all branches.

- When there are only 2 branches, switch to the other branch when SNR is smaller than the threshold.
 - This is called Switch-and-Stay Combining (SSC)
- SSC has the same performance (outage probability) as SC, when setting the threshold = the minimum required SNR

Switch-and-Stay Combining (SSC)

Maximal-Ratio Combining (MRC)

• Concept:

Use all branches. We amplify the branch more when its SNR is larger.

• Advantage:

Make use of all branches \rightarrow best performance.

• Question:

How to set a_i so that the SNR after combining is maximized?

$$\gamma_{\Sigma} = \frac{\left(\sum_{i=1}^{M} a_i r_i\right)^2}{N_0 \sum_{i=1}^{M} a_i^2}$$

Maximal-Ratio Combining (MRC)

• Answer:

 a_i^2 should be proportional to the branch SNR $\frac{r_i^2}{N_0}$.

• After optimization, it turns out that

$$a_i^2 = \frac{r_i^2}{N_0}$$

• And the SNR after combining becomes

$$\gamma_{\Sigma} = \sum_{i=1}^{M} \frac{r_i^2}{N_0} = \sum_{i=1}^{M} \gamma_i$$

Note that this is linear scale, not in dB!

BER Performance: BPSK with MRC in Rayleigh fading

BER Performance: BPSK with SC in Rayleigh fading

Equal-Gain Combining (EGC)

• Concept:

Use all branches, but combine them with equal weight=1.

• Advantage:

Use the signal from all branches, but in a simpler way.

- $a_i = 1, \forall i$.
- The SNR after combining becomes

$$r_{\Sigma} = \frac{1}{N_0 M} \left(\sum_{i=1}^M r_i \right)^2$$

 EGC's performance is quite close to MRC, typically only has less than 1dB of power penalty.