Linked Lists

Prof. Michael Tsai
2017/3/14

What’s wrong with Arrays!?

* Inserting a new element

I 3 New 4 2 5

* Deleting an existing element

* Time complexity= O(??)

Complexity for the array implementation

Dynamic Array Linked List
(Expand to twice of the | (What we are learning
original space when full) | today)

Indexing N

(Get a particular
element)

Insert/Delete at
the head

Insert/Delete at
the tail

Insert/Delete in
the middle

Wasted space

New friend: Linked List

* How do we arrange the data, such
|. We can arbitrarily change their order,
2. But we still keep a record of their order?

* Answer:
* The order of the elements can be arbitrary,

e But, we store “which is the next” in addition to the data.

index [0] [1] [2] [3] [4]

data I 2 J i C
Which is 4 0 I | 3
the next

head |

Conceptually, it looks like this:

Start
“J 2 M C 7 Null
Actual implementation
index [0] [1] [2] [3] [4]
data M 5 J 7 C
Which is the next 4 0 l - 3

head 2

Add an additional element!?

Start
J 54 M C
y
index [0] [1] [2] [3] [4]
data ! = 7 | C
Which is the next 4 5 I I 3

head 2

[5]

7

Null

F YA

7

Remove an existing element!

index
Bl
F—EH
EELE

[0]

[1]

[2]
3

[3]
VA

[4]

[5]

7

Null

O© 00 JO LW+

Code segments:
Struct and create a new node.

//Structure declaration for the 1ist node
struct ListNode {

int data;

struct ListNode *next;

s

//Create a new node
struct ListNode xnew;
new= (struct ListNode*)malloc (sizeof (struct 1listNode));

Code segments:
accessing the structure members

* new is a pointer , pointing at a variable of type struct listNode.
* How do we obtain the member data in this variable?

* Answer: by

* (*new) .data

. Or,

* new—>data

e How about next!?
* (*new) .next

* new—>next

Code segments: head
accessing the next node Vi« 551

—————————

* Assume head points at the first node

* How do | get the value of next in the “55| node™?

struct ListNode {
int data;
struct ListNode =*next;

|

_~ W N =

0 ~JO Tl W -

head
Create two nodes =

(Insert from the head) "% >
struct ListNode xhead, *tmp;
tmp= (struct ListNodex)malloc (sizeof (struct ListNode));
if (tmp==NULL)
exit (-1); // exit program on error
tmp->data=551;
tmp—>next=NULL;

head=tmp;
tmp= (struct ListNodex)malloc (sizeof (struct ListNode));

tmp->data=342;
tmp—->next=head;

head=tmp;

Insert a new node after a certain node

struct ListNode *x;
//Pointing at the node before the location to

//be inserted

struct ListNode #*new;

new= (struct ListNodex)malloc (sizeof (struct ListNode));
new—>data=123;

CO O OUix O N =

Do we process new->next first or x—>next first?

1 new—->next=x->next;
2 x—->next=new;

new

123

34?2 342 551

Deleting a node

struct ListNode =*head; //Pointing at the head node
struct ListNode *x;

//Pointing at the node to be deleted

struct ListNode *trail;

//Pointing at the node before the node to be //deleted

Ui O N =

* Two possible conditions: x is/is not the head node

1 if (trail)

2 //x 1s not the first node 551
3 trail->next=x->next; head X

4 else

5 head=x—->next; 342

6 free(x); i .

342 342 551

Examples: Traverse and Print

* Traverse (and print) linked list

struct ListNode *tmp;

for (tmp=head; tmp!=NULL; tmp=tmp->next) {
printf ("sd", tmp->data);

// you can do other processing here too

}

Ol O DN =

0 ~J O Ol W+

Correct the code below: Find

*Find the location before a node with a particular
data value

int a=123; //123 is the data to look for
struct ListNode *tmp;
for (tmp=head; tmp!=NULL; tmp=tmp->next) {
i1f (tmp-—>next->data==a)
break;
//when breaking, tmp is what we are looking for

* This code segment would crash in certain conditions.
Correct it!

Comparison of complexity

Array Dynamic Array Linked List
(Expand to twice of the
original space when full)

Indexing O(l) O(l)
(Take a particular

element)

Insert/Delete at O(n), only feasible O(n)
the head if not full

Insert/Delete in O(n), only feasible O(n)
the middle if not full

Wasted space 0 (when full) O(n)
(up to half of the
space empty)

Insert/Delete at O(l), only feasible O(l), if not full
the tail if not full O(n), if full

16

Discussion

* When should we use array?
* When should we use linked list?

* Explain why.

Example: Stacks & Queues

« IR Z—BMECBAZZ IR ZstackEiqueue

« MIRER I E Refficient
« BIHNINRE —staclom [, MELE —EERERIE
« AZO) L T_T

o BZ5R: IR Linked ListZE B &

Stack

« 2EREZR SEstackle? (BB EEMEZMoperation)
* push & pop
. BRI RO

head

afl T 2 Null

\}L\{\\

&
e 19: push("E2”)
* head’= {Fstack top
o 'REEZ code!?
* #8popliE?

Queue

o« $8{lIstackI1EE
- NEEEHER —EIEIE
« WIEE, IEEW

front

=z ~
B A

« 'REEZE? (DeQueue)
struct ListNode* tmp;
tmp=front;
front=front->1link;
tmp data=tmp->data;
free (tmp) ;

return tmp data;

rear

Null

\%’? - i

« BB EERL
EEZnew e 25 HInode
Fear-=next=new;

* new->next=NULL;

®* rear=new,

new

rear

> B

%{\\

21

2: {llinked list/sz 28 2R

3 14 5 o |)
a
4=4 =
| ° 2 8 3 14
b
=
TSR

9] wd|qoJd O] € IYdUBWNIEY ;3 k=

_/

Singly v.s. doubly linked list

Singly linked list:

head
Doubly linked list:

head

* When do you need to use doubly linked list?
* Singly linked list: can only traverse forward, not backward
* (go all the way back to the head)

* When we need to frequently traverse backward: use doubly linked list

* Trade-offs:

* Space for two pointers (instead of one) (see: http://goo.gl/qifrq2)
 Additional time to process the pointers when inserting, deleting.

Recycling

* Return the memory occupied by the nodes to the system when done. (Why?)

* O(n) time to return all the nodes

* Alternative: recycling! Collect all “deleted nodes”, and use them when necessary.
* Goal: O(l) time for both delete and new (from recycled nodes)

* How
recycled head

2 3 14 2 8 10

* Key: slow to find the tail (obviously, not O(I) time operation)
* Can we avoid using the tail pointer?

Sol: Circular List

* head pointer points at the tail.

* The tail node’s next pointer points to the head node (instead of
setting it as NULL).

* Easy to connect the entire list with another list!
Place the entire list to the recycled list=O(1) !!

‘)

3 14 2 8 I 0

temp

recycled head head

* We can also have doubly circular linked list!

Let’s review!

* The types of linked lists that we introduced today:

* Singly linked list
 Circular
* Non-circular (chain)

* Doubly linked list
* Circular
* Non-circular (chain)

(If time permits) Practice Problems

* Given a (singly) linked list of unknown length, design an algorithm to
find the n-th node from the tail of the linked list. Your algorithm is
allowed to traverse the linked list only once.

* Reverse a given singly linked list using the original link nodes.

