
A Secure Multicast Protocol with Copyright Protection

Hao-hua Chu
Department of Computer

Science, University of Illinois
at Urbana-Champaign

1304 West Springfield Avenue
Urbana, IL 61801, U.S.A.

Lintian Qiao
Department of Computer

Science, University of Illinois
at Urbana-Champaign

1304 West Springfield Avenue
Urbana, IL 61801, U.S.A.

Klara Nahrstedt
∗

Department of Computer
Science, University of Illinois

at Urbana-Champaign
1304 West Springfield Avenue

Urbana, IL 61801, U.S.A.

ABSTRACT
We present a simple, efficient, and secure multicast protocol
with copyright protection in an open and insecure network
environment. There is a wide variety of multimedia ap-
plications that can benefit from using our secure multicast
protocol, e.g., the commercial pay-per-view video multicast,
or highly secure military intelligence video conference. Our
secure multicast protocol is designed to achieve the follow-
ing goals. (1) It can run in any open network environment.
It does not rely on any security mechanism on intermediate
network switches or routers. (2) It can be built on top of
any existing multicast architecture. (3) Our key distribution
protocol is both secure and robust in the presence of long
delay or membership message. (4) It can support dynamic
group membership, e.g., JOIN/LEAVE/EXPEL operations,
in a network bandwidth efficient manner. (5) It can provide
copyright protection for the information provider. (6) It
can help to identify insiders in the multicast session who are
leaking information to the outside world. We have imple-
mented a prototype system which validates our secure mul-
ticast protocol and evaluated it against various performance
matrices. The experimental results are very encouraging,
but also show where new engineering approaches need to be
deployed to conform fully to the design goals.

Keywords
Multicast security, copyright protection, key distribution,
watermark

∗This research is supported by National Science Founda-
tion Career Grant NSF-CCR-96-23867, Research Board of
University of Illinois at Urbana-Champaign and Air Force
Grant, Number F30602-97-2-0121. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation. For further
author information, e-mail huawang,klara@uiuc.edu

1. INTRODUCTION
We present a simple, efficient, and secure multicast protocol
with copyright protection in an open and insecure network
environment. There is a wide range of multimedia applica-
tions that can benefit from using our secure multicast pro-
tocol, e.g., the commercial pay-per-view video multicast, or
highly secure military intelligence video conference. Our se-
cure multicast protocol is designed to achieve the following
goals:

• Security in Open Network Environment
We assume that group members, who can be either
or both senders and receivers, are in an open network
environment. This means that the multicast streams
may travel through intermediate switches or routers
which may or may not have any security mechanism.
Therefore, our secure multicast protocol must not de-
pend on any of the intermediate network components
for security support.

• Multicast Architecture Independence
Our secure multicast protocol can be implemented on
top of any existing multicast protocols: M-OSPF [54],
DVMRP [54], CBT [6], or PIM [23]. We achieve this
by encrypting or decrypting data on the endpoint hosts
before sending it to or after receiving it from the un-
derlying multicast protocol.

• Robust Dynamic Membership Support
Lost packets and long network delay are prevalent
in any open network environment, e.g. the Internet,
where the traffic congestion level and bandwidth avail-
ability for members in the same multicast group can
vary significantly. As a result, the key distribution
protocol must deal gracefully with lossy or long delay
unreliable multicast channels.

• Real-time Encryption
In order to provide secure data transmission, it is nec-
essary to design encryption algorithms for multimedia
data because of their special characteristics, such as
their coding structure, large amount of data, and real-
time constraints. In particular, we are interested in
the secure algorithms for MPEG video streams. The
MPEG video encryption algorithm should aim towards
efficient and real-time processing so that they can be-
come an integral part of the video delivery process and

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200242

at the same time preserve the highest security level and
compression ratio.

• Copyright Protection
We assume that the content provider needs to have
copyright protection for multicast video data, so that
the rightful ownership of the video data can be iden-
tified. We apply the watermark technique to encode
the ownership information into the video data.

• Leakers Identification
It is possible that some legal group members in the
multicast session may leak the multicast data to non-
members for free or for a profit. The leaking of this
multicast stream may cause a security or copyright vi-
olation, and the consequence can be severe depending
on the type of multicast applications. In case of a
military intelligence conference, a spy may gain clear-
ance to be a legal group member and then leaks the
multicast content to hostile foreign agencies. By em-
bedding an unique watermarking sequence inside the
multicast stream for different receivers, our multicast
protocol enables the content providers and the group
leader to identify the leaker(s) after the leaked data is
discovered and analyzed.

There are many works in group key distribution[2, 1], real-
time video encryption[3, 32, 34, 45, 38], copyright protec-
tion[49, 47, 30, 28] and leakers identification[29, 14, 19]. We
made the first attempt to integrate the problem of multicast
key distribution, real-time video encryption, copyright pro-
tection, leakers identification in our previous work [20] by
proposing a secure multicast protocol with copyright pro-
tection. The major contributions of this paper over our pre-
vious work are: (1) We extend the related work in the area
of key distribution, real-time encryption and watermarking,
(2) We modify the secure multicast protocol by using sym-
metric key cryptosystem instead of asymmetric key cryp-
tosystem, (3) We apply and enhance the collusion-secure
algorithm given by Boneh and Shaw[11] in our multicast
watermark protocol to address the collusion problem while
in our previous work we only give a brute force solution, (4)
We propose a simple real-time encryption algorithm based
on permutation operations, and (5) We add real testbed
implementation and experimental results, which prove the
feasibility of our secure multicast protocol.

We organize the remainder of the paper as follows: section
2 describes the related work; section 3 presents our key dis-
tribution protocol; section 4 presents our multicast water-
mark protocol; section 5 presents our implementation and
experiment; section 6 states our conclusion; and appendix A
provides a list of definitions for the various notations used
in this paper.

2. RELATED WORK
2.1 Multicasting Schemes and Security Issues
The existing multicast security protocols are all focused on
the problem of key management. The goal of the key man-
agement is to distribute the group key securely to the group
members who can then use it to encrypt or decrypt the mul-
ticast data. They deal with issues like bandwidth scalability
and the number of key messages exchanged with increasing

group size. According to Rafaeli[40], group key distribution
can be divided into three main categories: centralized ap-
proach, distributed subgroup approach and distributed ap-
proach. There is a large body of work in each category, such
as the centralized approach in the Group Key Management
Protocol(GKMP)[27, 26], Secure Lock[18], Hierarchical Bi-
nary Tree[55, 56], One-way Function Tree[4]; the distributed
subgroup approach in Iolus[35], Intra-domain Group Key
Management[25], Kronos[43], Marks[13]; and the distributed
approach in Cliques[48], Octopus Protocol[9], Distributed
Hierarchical Binary Tree,[41], Distributed Flat Table[55].
Below we will outline in detail some of the approaches, which
have the most impact on our solution.

2.1.1 Core Based Tree Key Distribution
The Core Based Tree (CBT) key distribution by Ballardie
[5] is based on the hard state multicast protocol like the
Core Based Tree[6] where the multicast routers permanently
maintain the state of the multicast tree, e.g. their adjacent
routers in the tree. The key distribution algorithm can take
advantage of the hard state approach by appending various
security information into the hard state of the tree, e.g., the
access control list (ACL), the group key, and the key en-
crypting key (which is used for re-keying the group key).
The algorithm contains the following steps: (1) the initi-
ating host first communicates, via asymmetric encryption,
the ACL to a core router, (2) the core router generates the
group key and the key encrypting key, (3) when a new non-
core router joins to become a part of the multicast tree, the
core router authenticates the new non-core router and passes
the security information using asymmetric encryption to the
non-core router, and (4) as the multicast tree expands, the
authenticated non-core router further authenticates other
new incoming non-core routers and distributes the security
information.

This distributed key distribution approach has an efficiency
improvement over a centralized key distribution approach
where the group key is distributed to the group members
by only one or a few centralized servers. However, the se-
curity level of the CBT key distribution scheme is based on
a strong assumption that the involved multicast routers can
be trusted not to leak the security information. In addition,
the key distribution algorithm does not address dynamic
membership operations such as JOIN/LEAVE/EXPEL.

2.1.2 Hierarchical Tree Key Distribution

Members 87654321

K1 K2 K3 K6 K7K4 K5 K8

Ka Kb Kc Kd

Ke Kf

Kg

Figure 1: Hierarchical tree key distribution

The Hierarchical tree key distribution by Wallner [56] is an
efficient and scalable approach that supports dynamic group

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200243

membership. The algorithm contains the following steps.
(1) Each multicast group contains a key server which main-
tains a rooted tree structure, and each leaf node corresponds
to a group member as shown in Figure 1. (2) Each node
in the tree contains a key–each leaf node holds a pairwise
key established between the server and the member (e.g.,
K1, K2, .., K8), each intermediate node holds a key gener-
ated by the server (e.g., Ka, Kb, ...Kf), and the root node
holds the group key which is used to encrypt the data (e.g.,
Kg). (3) The server sends to each group member a sequence
of keys on the path from his/her leaf node to the root. (4)
Each key is encrypted with the previous key in the sequence
to ensure security.

We will illustrate it with the example in Figure 1. Mem-
ber 1 first establishes the pairwise key K1 with the server,
and it receives the sequence of intermediate and group keys
(Ka, Ke, Kg), where Ka is encrypted with K1 ({Ka}K1

1),
{Ke}Ka , and {Kg}Ke . To expel a member from the group,
intermediate and group keys on the path from the expelled
member’s leaf node to root must be changed. For exam-
ple, the removal of member 1 from the multicast group
requires that the server generates new keys (K′

a, K′
e, K

′
g).

Each new key is encrypted using its two immediate child
keys: ({K′

a}K2 , {K′
e}K′

a
, {K′

e}Kb , {K′
g}K′

e
, {K′

g}Kf). This
new sequence is assembled into one rekey message which
is then multicasted to all members using a multicast chan-
nel. Upon receiving the rekey message, the members decrypt
only those keys that they need and no more. For exam-
ple, member 2 can decrypt (K′

a, K′
e, K

′
g), members 3-4 can

decrypt only (K′
e, K

′
g), and members 5-8 can decrypt only

(K′
g). Given a group size of N , each membership update op-

eration (JOIN/LEAVE/EXPEL) requires one rekey message
that contains Log(N) number of keys. Some improvements
can be found in the work by Balenson[4] et al, Canetti[15]
et al, Perrig[36] et al, Banerjee[7] et al, and Hardjono [25,
24] et al.

2.1.3 Iolus
Iolus key distribution by Mittra [35] divides the group into
regional subgroups, and each subgroup is managed by a
trusted Group Security Intermediary (GSI). Each subgroup
is treated almost like a separate multicast group with its
own subgroup key and its own multicast channel. The GSI
in each subgroup manages its subgroup key distribution and
authenticates new members joining/leaving its subgroup.
The advantage is that the subgroup runs independently
of each other, and the GSI can perform dynamic member
operations efficiently and independently without involving
members of other subgroups. To bridge data across the
subgroups, the GSIs use another separate multicast chan-
nel managed by the Group Security Controller (GSC). As a
result, each data transmission requires three different mul-
ticasts. The sender first multicasts data in its subgroup
channel. When the sender’s GSI receives the data, it mul-
ticasts the data to the other GSIs. Then the other GSIs
multicast the data to their subgroup members through their
subgroups’ multicast channels.

Iolus, similar to the CBT approach, depends on the security

1We will use the common notation {X}K to denote that X
is encrypted with K.

level of the various GSIs residing at various locations in the
network. Its overhead contains the three multicast trans-
missions per data transmission, the management of multiple
subgroups, and their multicast channels.

2.1.4 Cliques
Steiner[48] et al described Cliques, which is an extension to
the Diffie-Hellman(DH) key agreement protocol. The mul-
ticast group agrees on a pairs of primes q and α such that α
is primitive modq. Each group member has a secret number
xi. The protocol consists of upflow and downflow stages.
Assuming a group has n members, the first member calcu-
lates the first value αx1 and passes it to the next member.
In round i (i ∈ [1, n− 1]) of the upflow stage, the ith mem-
ber receives the set of intermediary values, raises them to
its own secret number, generates a new set and unicasts to
the (i + 1)th user a collection of i values. Of these values,
i − 1 are intermediate and one is cardinal. The last mem-
ber raises all intermediate values to its secret value. In the
downflow stage, the last member multicasts the whole set
of intermediate values. Each group member extracts its re-
spective intermediate values and can easily calculate the key
k = αx1x2...xn mod q.

This protocol achieves secure and efficient key agreement in
the context of dynamic peer groups. However, the solution
does not scale well to large groups since the size of upflow
and downflow messages increases linearly, and the number of
exponential operations also increases linearly with the size
of group members.

2.1.5 MARKS
Briscoe[13] et al proposed MARKS. It slices the time-length
of a multicast session into small portions of time and uses a
different key for encrypting each slice. The encryption keys
are leaves in a binary hash tree that is generated from a
single seed. The key sequence is constructed as follows:

1. The sender randomly generates an initial state seed value
s(0, 0).

2. The sender decides on the required maximum tree depth
D, which will lead to a maximum key sequence length N0 =
2D before a new initial seed is required.

3. The sender generates two left and right first level inter-
mediate seed values by applying respectively the left and
right blinding functions to the initial seed.

4. The same algorithm is applied to the following levels until
the expected depth is reached.

If a receiver is granted access from time slice m to time
slice n, the sender unicasts a set of seeds to the receiver.
The set consists of the intermediate seeds closest to the tree
root that enable calculation of only the required range of
keys, any key outside the range cannot be calculated. This
protocol only works if the leaving time of a member is fixed
when the member joins the group, and it can not be used
in situations when a membership change requires change of
the group key.

2.1.6 Kronos

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200244

Setia et al [43] proposed Kronos, which is based upon the
idea of periodic group rekeying. They showed that in a
large, highly dynamic group, the frequency of re-keying on
each membership change becomes the primary bottleneck
for scalable group re-keying. In Kronos, group re-keys are
not driven by member join or leave requests. Instead, all the
member join and leave requests that have accumulated dur-
ing periodic intervals are processed, and the new multicast
traffic encryption key is securely transmitted to the existing
members of the group.

2.1.7 Our Approach
We have designed a secure multicast protocol with copyright
protection which belongs to the centralized approaches. Our
approach relies on a group leader that in synchrony with
the sender (1) authenticates group members, (2) verifies the
validity of messages, and (3) distributes message keys. More
detailed discussion is presented in sections 3 and 4.

2.2 Real-time Video Encryption Issues
There already exist several encryption algorithms to secure
MPEG video. The most straight forward method is to en-
crypt the entire MPEG stream using standard encryption
methods. This is called the naive algorithm approach[3].
The greatest concern about this approach is the speed of
processing during playback due to the large size of MPEG
files.

Another method to secure MPEG streams is the selective en-
cryption algorithm[32, 33], which encrypts only the I-frames
of MPEG streams. Agi and Gong[3] have shown that great
portions of the video are still visible partly because of in-
terframe correlation and mainly from unencrypted I-blocks
in the P and B frames. Therefore, selective method of only
encrypting I frames may not work.

Meyer and Gadegast[34] have designed a MPEG-like bit-
stream SECMPEG that incorporates selective encryption
and additional header information, and has high-speed soft-
ware execution. But SECMPEG is not compatible with
standard MPEG. A special encoder/decoder would be re-
quired to view unencrypted SECMPEG streams.

A proposal targeting at integration of compression and en-
cryption of MPEG streams into one step is presented by
Tang[51], where the basic idea is to use a random permuta-
tion list to replace the zig-zag order to map the individual
8x8 blocks to a 1x64 vector. This algorithm adds very little
overhead to the video encryption and decryption process.
But changing the zig-zag order to a random order will re-
sult in image size increase of about 25% to 60%, which is
not tolerable because it defeats the purpose of compression.

Shi and Bhargava[45, 44] have developed fast MPEG video
encryption algorithms which use a secret key randomly
changing the sign bits of all DCT coefficients and the sign
bits of motion vectors.

In one of our previous work Qiao and Nahrstedt[38] have de-
veloped the Video Encryption Algorithm(VEA), which uti-
lizes the statistical behavior of MPEG compressed video and
provides efficient, fast and secure encryption by encrypting

one half of a frame with DES/IDEA, and the other half of
the frame with “one-time-pad” generated from the frame.

In this paper, we use a simplified real-time video encryption
algorithm which only involves permutation of the video data.
It is much faster than DES and can be used in applications
which do not require high security but have a strict real-time
constraints.

2.3 Watermarking Issues
During the past few years, a number of digital watermark-
ing methods has been proposed. Among the earliest works,
L.F. Turner[52] has proposed a digital audio watermarking
method which substitutes the least significant bits of ran-
domly selected audio samples with the bits of an identifica-
tion string (watermark). Similar idea can also be applied to
images[53] . There are many other proposals for watermark-
ing such as Tanaka’s schemes[50] which use the fact that the
quantization noise is typically imperceptible to users, Bras-
sil’s methods[12] for textual document images, Caronni’s ge-
ometric patterns (also called tags)[16], Steinbach, Dittmann
and C. Vielhauer’s PlataJanus for audio watermarking [47].
Some watermark algorithms on digital image and video can
be found in the work of Zeng and Liu[57], Barni[8], Koch and
Zhao[31], and Hartung[28], Suhail and Dawoud[49], Sridhar,
Li and Nascimento[46], Kang, Kim and Han[30].

Craver, Memon, Yeo, and Yeung[22] address an important
issue of rightful ownership. They provide an attack (CMYY
attack) counterfeit watermarking scheme that can be per-
formed on a watermarked image to allow multiple claims
of rightful ownerships. They also define so called Non-
invertible watermarking scheme. Qiao and Nahrstedt [39]
address and prove the non-invertibility property. Schemes
applying to MPEG video stream and uncompressed video
stream are designed.

In the multicast environment, the problem is that if all users
share the same data with the same watermark, it is impos-
sible to identify the user who leaked illegally data to the
public.

Brown, Perkin and Crowcroft[14] proposed Watercasting, a
distributed watermarking scheme of multicast media. In
Watercasting, the source creates n differently watermarked
copies of each media packet, where n is greater than the
depth of the multicast group tree. Routers at the nodes in
the multicast tree forward all but one of those packets out of
each downstream interface on which there are receivers, and
each last hop router forwards exactly one packet onto the
subnet with the receiver. In this way, each receiver can have
a stream with a unique combination of watermarked packets.
Problem with this approach is that support in routers like
reliable multicast is needed, and the log must keep the state
of the entire network during the transmission.

Judge and Ammar[29] proposed watermarking multicast
video with a hierarchy of intermediaries, which they called
WHIM. It places a hierarchy of intermediaries as end sys-
tems in the network and forms an overlay network between
them. Watermark is generated based on the receiver’s lo-
cation in the network and is inserted into the content in-
crementally as it traverses the network. Like Watercasting,

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200245

WHIM also adds some additional requirements to the net-
work.

Chor et al.[19] proposed to multicast the same data, but
to embed different encryption keys into the data. Each user
would know where to look for his own key to decode the con-
tent. This idea was applied in their Traitor Tracing system
for broadcast encryption. The problem with this approach
is that some of the users can collaborate and change data
in an unauthorized way. We call this problem the collu-
sion problem, which was first addressed by Blakley et al[10].
Boneh and Shaw[11] give a collusion-secure fingerprinting
scheme for digital data. They ask and answer the following
question: if each user receives a different key of length m,
and c users collude together to generate a new key, then how
do we design the key set for all users such that based on the
new key (created through collusion) we can find at least one
member in the c-collusion group with error probability less
than ε. Boneh and Shaw proved constructively that if the
size of the multicast group is N and the size of the collu-
sion group is c, then the generated key length must have the
length of O(c4log(N/ε)log(1/ε)) to be c-secure with ε error.
The problem with this approach is that we need to know the
user group size N in advance to decide how many keys to
generate. This is an issue in multicast where members can
dynamically join and leave as we discuss in section 4. In our
approach we apply the Boneh and Shaw’s algorithm to the
multicast multimedia environment and allow arbitrary user
group size as shown in section 4.2.2.

3. KEY DISTRIBUTION ALGORITHM
Our key distribution algorithm is designed to achieve the
goals described in section 1: (1) security in open network
environment, (2) multicast architecture independence, and
(3) robust dynamic membership support.

To startup a new secure multicast group, our key distribu-
tion algorithm requires only a group leader to be started.
The group leader has the authority and the necessary in-
formation to accept/reject new membership requests. For
example, the group leader may be given an access control
list (ACL) which it can check if a new member can join it, or
it can accept and verify a payment information as a mean for
a new member to be admitted into the multicast group. We
also assume that the address of the group leader is known to
anyone who is interested to join the secure multicast group.

To join a secure multicast group, a requesting member first
sends a JOIN request to the group leader using a secure
unicast channel. The group leader checks, e.g., its ACL,
to decide to either accept or reject the JOIN request. The
JOIN request contains the identity of the requesting mem-
ber. We assume that both the requesting member and the
group leader can properly authenticate each other in the
secure unicast channel (e.g., via SSL) by presenting their
certificates issued by well-known CAs (certificate authority)
who authenticate their public keys. If the JOIN request is
accepted, the group leader generates a unique member id
uid that identifies the requesting member. The member id
is then communicated to the requesting member. In addi-
tion to the unique member id, the multicast session needs
to establish a symmetric key Kuid between the group leader
and the requesting member uid for later use in the multicast

session. If the secure unicast channel is setup using Diffie-
Hellman, we can use the symmetric session key established
between group leader and the requesting member uid. If the
secure unicast channel is setup using RSA, the group leader
would need to generate a symmetric key Kuid for the re-
questing member and transmits it to the new member. The
member can now begin to send and to receive data according
to the steps described in the following subsection.

3.1 Data Transmission
Data transmission can be divided into three phases as shown
in Figure 2: (1) the sending phase when the sender multi-
casts an encrypted data message, (2) the verification phase
when the group leader multicasts a verification message that
contains the key for decrypting the data message, and (3)
the receiving phase when the receivers receive both the data
and verification messages and decrypt the data. We now
describe these three phases in details.

3.1.1 The Sending Phase
The first stage involves the sender constructing a data mes-
sage that contains 3 components as shown in Figure 2 (step
S1). The first component contains the sender’s member id
(suid) and a message id (msgid). Each sender maintains a
msgid counter, which is initialized to 0 and is incremented
for every new message created. The (suid, msgid) pairs
uniquely identify a message in the multicast session.

The second component of the message contains the data
encrypted (via symmetric encryption) with a message key
Kmsg. The key is used only once for the current message,
and a new key is randomly generated by the sender for the
next message. The key generation can use any secure key
generation algorithms which satisfy the property that keys
cannot be predicted from the previous and subsequent gen-
erated keys.

The third component of the message contains the message
key Kmsg encrypted with the symmetric key Ksuid be-
tween the group leader and the sender. Ksuid is established
between the sending group member and the group leader
when the sending group member joins the multicast session
through a secure unicast channel with the group leader. All
three components are assembled into one data message. The
sender multicasts the following data message in the multi-
cast channel:

{(suid, msgid), {suid, msgid, data}Kmsg , {Kmsg}Ksuid}

When the data message is received from the multicast chan-
nel, members cannot decode the data yet because they do
not have the message key Kmsg. Only the group leader has
Ksuid which can be used to decode Kmsg.

Note that suid and msgid are repeated in the second com-
ponent of the data message, so that an attacker cannot con-
fuse the receivers by sending another message with the same
(suid, msgid) but with different data. These attacks are de-
scribed in section 3.1.4.

3.1.2 The Verification Phase

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200246

The second phase involves the group leader as shown in Fig-
ure 2 (steps V1-V4). Upon receiving the data message from
the sender, the group leader looks up its current member-
ship list to check that the sender is indeed a valid group
member in (V1). Then it decrypts the third component of
the data message using its symmetric key with sender Ksuid

to obtain the message key Kmsg in (V2). It also decrypts
the second component of the data message to verify that the
(suid, msgid) pairs are the same between the first compo-
nent and the second component in the data message in (V3).
This is needed to ensure that Kmsg is indeed corresponding
to message msgid from suid.

When both validation checks succeed, the group leader pre-
pares a verification message which contains three compo-
nents. The first component is the message tag (suid, msgid).
The second component is a V ALID symbol indicating that
the data message (suid, msgid) has been verified by the
group leader. The third component contains a sequence of
slots where each valid member in the current membership
list has a corresponding slot. The slot contains the pairs uid
and Kmsg encrypted with the symmetric key between the
group leader and the corresponding member Kuid , so that
only member uid can decrypt Kmsg from reading this slot.

All three components are assembled into one verification
message which is then signed with the private key of the
group leader (Kpri

gl). The group leader multicasts the fol-
lowing valid verification message in the multicast channel in
(V4).

{(suid, msgid), V ALID, (uid1, {Kmsg}Kuid1
),

(uid2, {Kmsg}Kuid2
), ..,

(uidn, {Kmsg}Kuidn
)}

K
pri
gl

It is also possible that one of the verification checks fails, e.g.,
the sender does not belong the group. The group leader pre-
pares an invalid verification message containing the message
tag (suid, msgid) and an INV ALID symbol. The verifica-
tion message is signed with the private key of the group
leader. Since the data message is invalid, there is no need
for the receivers to decrypt the counterpart data message.
Hence the message key Kmsg is not included in the verifi-
cation message. The group leader multicasts the following
invalid verification message:

{(suid, msgid), INV ALID}
K

pri
gl

3.1.3 The Receiving Phase
The third phase involves the receiver listening on the
multicast channel as shown in Figure 2 (steps R1-R7).
Upon receiving a data message, the receiver separates the
data message into three components. Since the receiver
may not have received its counterpart verification message
which contains the necessary message key Kmsg to decode
the data, the receiver stores the encrypted data compo-
nent {suid, msgid, data}Kmsg along with the message tag
(suid, msgid) in the first component as its lookup index in
a data queue in (R2).

Upon receiving a verification message, the receiver decrypts

it with the public key of the group leader to reveal the mes-
sage tag (suid, msgid) in (R3-R4). If the verification mes-
sage contains the V ALID symbol, the receiver uses his/her
assigned uid and searches for his/her slot that contains the
message key Kmsg in the verification message in (R5). After
the message key is decrypted, the receiver uses the message
tag to retrieve the corresponding encrypted data component
from the data queue in (R6). Then the receiver can decrypt
the data with the message key in (R7). If the verification
message contains the INV ALID symbol, the receiver sim-
ply removes the corresponding encrypted data component
from the data queue.

Two other scenarios can arise due to the variable network
delay or lost messages. (1) The receiver may receive a verifi-
cation message before its counterpart data message arrives.
Then the receiver needs to buffer the verification message in
a verification queue till its data message arrives. (2) Some
data or verification messages may get lost in the network so
that some receivers may never receive them. As a result, the
counterpart message to that lost message may remain in the
queues forever. For example, if a data message is lost but
the counterpart verification message is received, the verifi-
cation message may remain in the verification queue forever.
The receiver can use a time-out-and-drop or overflow-and-
drop policy to maintain a bounded queue size: if a message
remains in the queue for more than some time period, it is
dropped; or if the message queue exceeds a size limit, the
earliest arrived message is dropped.

3.1.4 Attacks
To avoid computational overhead associated with digital sig-
nature and asymmetric encryption, data messages are sym-
metrically encrypted but not signed. This leads to some
possible attacks by sending invalid messages to confuse re-
ceivers so that they cannot distinguish if a message is valid
or not. We describe these attacks and how our protocol
handles them.

In the first attack, an attacker pretends to be suid. The
attacker multicasts an invalid data message with the same
message tag (suid, msgid) as a valid data message from a
valid sender, but with a false data′, K′

msg, and K′
suid.

{(suid, msgid), {suid, msgid, data′}K′
msg

, {K′
msg}K′

suid
}

The group leader and group members would receive two
data messages with the same message tag (suid, msgid),
a valid one from the sender suid and an invalid one from
the attacker. Upon receiving the attacker’s data message,
the group leader follows steps in verification phase - it lo-
cates suid in the message tag, it applies the shared secret
key Ksuid to decrypt K′

msg from {K′
msg}K′

suid
, and then

applies K′
msg to decrypt {suid, msgid, data′}K′

msg
. Since

the attacker does not know Ksuid (note that K′
suid 6=

Ksuid), the group leader gets garbage from decrypting
{suid, msgid, data′} which will not match the message tag.
So the group leader would multicast an invalid verifica-
tion message on (suid, msgid). When the group leader
receives the valid data message from sender suid, it also
multicasts a valid verification message on (suid, msgid). In
other words, a group member receives two verification mes-

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200247

sages corresponding to the same (suid, msgid), one for the
attacker’s data message and one for the valid data mes-
sage. The question is how a group member can distin-
guish which data message is the valid one. Upon receiv-
ing a validation message, a group member follows the steps
in the receiving phase - it locates the message key Kmsg,
and applies Kmsg to decrypt {suid, msgid, data}Kmsg (and
{suid, msgid, data′}K′

msg
) from both valid and invalid data

messages. The valid data message yields correct results with
matching message tag, whereas the invalid data message
yields garbage with incorrect message tag.

The first attack assumes that the attacker does not join
the multicast session to become a valid group member, and
the attacker cannot get Kmsg. In the second attack, we
assume that the attacker is a valid group member. After
the attacker receives a verification message corresponding
to (suid, msgid), the attacker can obtain Kmsg. Then the
attacker multicasts the following invalid data message using
the same message key Kmsg as in the valid data message:

{(suid, msgid), {suid, msgid, data′}Kmsg , {Kmsg}K′
suid

}

In the second attack, the attacker does not have Ksuid. So
the group leader can still distinguish if a message is valid or
invalid. However, a receiver cannot do so, because both valid
and invalid data messages have the same message key Kmsg.
A solution is that the group leader can detect if the attack
comes from a valid group member or not, by checking if the
attacker’s message also has the same message key Kmsg as
the valid message. If the attack comes from a valid group
member, the group leader multicasts an invalid-all message
which tells receivers to discard all data messages with the
message tag (suid, msgid).

{(suid, msgid), INV ALID = ALL}
K

gl
pri

The above solution does not solve the problem where an
attacker can cause valid data messages to become invalid.
A secure solution is that a sender signs all data messages
using its private key, so that receiving group members and
the group leader can verify the sender of data messages. It
is more expensive computationally given that asymmetric
encryption is involved.

{(suid, msgid), {data}Kmsg , {Kmsg}Ksuid}K
priv
suid

3.2 Dynamic Membership Operations
Our secure multicast protocol supports three dynamic mem-
bership operations: a potential member can JOIN the group,
an existing member can LEAVE the group, and the group
leader can EXPEL an existing member. For the JOIN op-
eration, the group leader allocates a new member id to
the new member, and adds an additional message key slot
(uid, {Kmsg}Kuid) into the verification messages. For the
LEAVE and EXPEL operations, the group leader removes
the message key slot corresponding to the leaving or expelled
member from the verification messages. These operations
are simple without any additional rekey messages or com-
putational overhead to the existing group members and the
group leader.

Our key distribution protocol can also support a SUSPEND
operation which denies access to a group member for a time
duration. For the SUSPEND operation, the group leader

temporarily removes message key slots corresponding to sus-
pended members from verification messages. This does not
require any additional re-JOIN and re-authentication opera-
tions. The decision of suspension can be made by the group
leader based on credentials (e.g. age) of members. The
SUSPEND operation is very useful for a video-on-demand
multicast where minors are temporarily suspended from see-
ing inappropriate materials.

Dynamic membership operations, including JOIN, LEAVE,
SUSPEND and EXPEL, generate simple messages ex-
changed through a secure unicast channel between a mem-
ber and its group leader. This secure unicast channel must
ensure proper authentication of both the member and its
group leader. This can be done by using a SSL connection
where both the sender and the receiver authenticates each
other through well-known CAs.

We will show that our key distribution algorithm is robust
and secure in the presence of long network delay or lost mes-
sages. Note that a lost message is equivalent to a message
suffering an infinitely long delay. We consider the following
two scenarios. (1) The group leader does not receive the
data message in time, so it will not multicast the counter-
part verification message which contains the message key to
the data message. As a result, no members can decrypt the
counterpart data message and it will be eventually dropped
from the members’ data queues according to the time-out-
and-drop or the overflow-and-drop policy. Our security pol-
icy does not guarantee that all valid messages are received
by the members. However, it can guarantee that expelled
or non-members cannot decode any data in the presence of
long network delay or lost messages. (2) Some receivers do
not receive either the data or the verification message in
time so that they won’t be able to decrypt that lost mes-
sage. However, since our key distribution algorithm uses a
new key for every new data message2, a lost message has no
adverse effects on the future messages.

We also note that our key distribution protocol does not
depend on any intermediate nodes for security. The
group members authenticate directly with the group leader
through secure unicast connections when they first join. The
secure unicast connections can be closed after the authen-
tication process and they are no longer used during data
transmission. The encryption and decryption are done at
the endpoint hosts only. Our key distribution protocol ap-
plies encryption on the data before sending it to the under-
lying multicast protocol, and it applies decryption on the
data after receiving it from the underlying multicast pro-
tocol. This means that our key distribution protocol can
be implemented on top of any multicast architecture. Our
end-host solution is especially applicable to the M-OSPF or
DVMRP multicast architecture where the multicast server
simply floods the multicast messages across network, and

2In our implementation we apply a new key to a group of
data messages, e.g. new key for every 300 frames. We do this
to improve the network bandwidth overhead as described in
section 3.3. If the key is lost, all 300 frames, corresponding
to 10 seconds of video, are not decryptable, hence lost to the
viewer. However, we believe that 10 seconds (even up to 40
seconds) of lost frames will not have major adverse effects
on 1-2 hours of viewing/conferencing experience.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200248

the multicast messages are available to everyone listening
over the network.

3.3 Overhead Analysis
The dominating network bandwidth overhead in our key dis-
tribution algorithm is in the verification messages. The size
of the verification message grows linearly with the group
size N because it contains N copies of message keys, each
is encrypted for each group member. The verification mes-
sage is multicasted once for every multicasted data message.
Let M be the number of key messages multicasted per sec-
ond (or the message rate) and K be the size (in bits) of
one slot in the third component of verification message (
(uid, {Kmsg}Kuid) in section 3.1.2), the network bandwidth
overhead is O(N ∗M ∗K) bits.

The storage requirement at the group member consists of
(1) the public keys of all senders and the group leader, (2)
his/her assigned member id, and (3) two queues for the
data/verification messages. The number of senders is usu-
ally very small (a constant) relative to the size of the group,
e.g. the pay-per-view video application has only one sender.
The size of message queue is bounded by a constant due to
the time-out-and-drop or the overflow-and-drop policy de-
scribed in section 3.1.3.

At a first glance, our key distribution algorithm does not
seem to be scalable in terms of network bandwidth overhead
in comparison with other optimal secure multicast protocols.
But this may not be true considering dynamic group mem-
bership. We compare our overhead with the Hierarchical
Tree Key Distribution[56] in Table 1.

In the Hierarchical Tree protocol, the dominating overhead
is in the rekey message which has a size O(log(N))∗K′ bits,
where K′ is the key size (in bits), N is the group size and
O(logN) is the number of keys a member holds. The rekey
message is multicasted for every membership change. Let
p be a percentage of members who are leaving or joining
the group per second, the number of membership change
per second in a group of size N is p ∗ N . This results in
p∗N rekey messages generated per second, and the network
bandwidth overhead is O(p ∗ N ∗ log(N) ∗ K′) bits. As for
the storage overhead, each member needs to store the keys
from its leaf to the root which is O(log(N)) bits.

For the network bandwidth overhead comparison between
our protocol and the Hierarchical Tree protocol, it is O(N ∗
M ∗ K) vs. O(p ∗ N ∗ log(N) ∗ K′). Factoring out the
common factor N and the constant K and K′, it becomes
M vs. p ∗ log(N). M is the message rate at which key
is changed and it is usually a constant. For example, if
a standard pay-per-view MPEG-2 video multicast runs at a
message rate of 30 frames per second and key is changed per
each data message, then M = 30. On the other hand, if key
is changed only once a second, i.e., one per every 30 frames,
then M = 1. In our implementation we change keys every
300 to 1200 frames to improve performance. In a multicast
group where group members join and leave frequently, p can
be assumed to be between 0.1 and 1. Given a reasonably
large group size, e.g. N = 1000, p = 0.1, then M = 1
(change the key every 1 second) is as good as p ∗ log(N).
The storage overhead is small in both protocols.

Another overhead in our protocol is the encryption time
overhead which is the time spent in preparing the verifica-
tion message. In a group of N members, the group leader
uses N message key encryptions and 1 digital signature for
each frame.

We can make a tradeoff between the network bandwidth
overhead, the encryption time overhead and the security
level by reusing the same message key for data messages
within some fixed time period of t second(s). This means
that (message rate∗t = m) number of data messages shares
the same message key for data encryption and decryption.
Therefore, we prepare and multicast only one verification
message every m data messages. This translates into m
folds reduction in network bandwidth overhead and encryp-
tion time overhead with a tradeoff of t second(s) in security
vulnerability. We define security vulnerability as follows:

A recently expelled member may still be able to decrypt at
most t seconds of video after the time he/she is expelled by
using his/her last message key.

This also holds true for a recently joined member who can
decrypt at most t seconds of past video before the time
he/she joins by using his/her first message key. These few
seconds of security vulnerability are acceptable to many ap-
plications that do not have stringent security requirements.

We calculate the approximate network bandwidth overhead
and encryption time overhead, reusing the same message
key on data messages within 40 seconds, for the group size
ranging from 100 to 10000 for a MPEG-2 video multicast
session in Table 2. Given that the length of a standard
secure key is 128 bits and additional 2 bytes (16 bits) are
used to encode the member id, the size of the verification
message is 144 ∗ N bits. The pay-per-view MPEG-2 video
multicast has a bandwidth requirement of 4 Mbps, and it
plays at 30 frames per second. If we use DES3 for encryption
and RSA for signature, we estimate that it takes 1.6ms to
encrypt a message key and the signature rate is 367KB/sec
using a 512 bits long signature key[43, 17, 42]. Note that
the bandwidth overhead ratio is computed as the network
bandwidth overhead over the MPEG-2 bitrate, and the time
overhead ratio is computed as the encryption time overhead
over the message key reusing time. From Table 2, we can
see that it is possible to realize the optimized version of our
secure multicast protocol in real time for a reasonably large
group.

4. MULTICAST WATERMARK PROTO-
COL

The copyright protection problem in the multicast environ-
ment raises an interesting issue not found in the unicast
environment. In the multicast environment, all group mem-
bers receive the same multicasted watermark data. When
some security-sensitive data is illegally leaked out to the
public, which receiver(s) are to be blamed? This is called the
leaker(s) identification problem. In the unicast environment,
this problem can be solved by the content provider sending a
different watermarked copy to each different receiver. When
the content provider discovers the leaked copy in the pub-
lic, he/she can analyze its watermark to identify the source
of the leaked copy: the receiver who is sent that particular

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200249

Table 1: Overhead Comparison Between Our Key Distribution Protocol and the Hierarchical Tree Protocol
Our Protocol Hierarchical Tree Protocol

Network bandwidth overhead O(N ∗M ∗K) O(p ∗K′ ∗N ∗ log(N))
Storage overhead O(1) O(log(N))

Table 2: Optimized Overhead for MPEG-2 Video Multicast
Group size 100 1,000 10,000
Network bandwidth overhead 0.36Kbps 3.6Kbps 36Kbps
Bandwidth overhead ratio 0.009% 0.09% 0.9%
Encryption time overhead 0.199s 1.99s 19.9s
Time overhead ratio 0.50% 4.98% 49.8%

watermarked copy by the the content provider. However, in
the multicast environment, there is no way to differentiate
among receivers because they are given the same multicast
copy. As a result, there is no way to identify the leaker(s).

Leaker(s) identification can be a very powerful tool to pro-
tect copyright in a secure multicast environment. Take the
example of the pay-per-view video multicast. A leaker can
join the multicast session as a legal customer. Once the
leaker receives the data, he/she re-distributes or resells the
data to the public. Our multicast watermark protocol en-
ables the content provider to identify the leaker(s) in the
multicast group when the leaked copy is discovered. This is
a preventive method. Knowing that they may be caught, po-
tential leakers may think twice before leaking out the data.
Another example is a top-secret video/audio conferencing
among military intelligence agents. Some agents may be
spies who are selling the video/audio content to hostile for-
eign agencies. The leaker(s) identification can help to catch
the spies.

Our multicast watermark protocol is a direct extension of our
key distribution protocol described in section 3. We present
the multicast watermark protocol in a similar fashion as
the key distribution protocol. We first describe extension
to data transmission, followed by the leakers identification
algorithm, and then the overhead analysis of the multicast
watermark protocol.

4.1 Data Transmission
The data transmission can be divided into five steps which
are described below. Given that it is a direct extension of
our key distribution protocol, we simply embed the func-
tions of our multicast watermark protocol inside the data
transmission of our key distribution protocol.

1. The sender multicasts the stream of video frames de-
noted as d1, d2, ..., dn. It applies two different water-
mark functions to generate two different watermarked
frames, dw0

i and dw1
i , for every picture frame di in the

stream. The watermark generation function can be
applied to the video stream prior to any video trans-
missions as in the case of a pay-per-view video multi-
cast when the video stream is available. Or it can be
applied just prior to each picture transmission as in
the case of a live video conferencing.

2. The group leader generates a random bit string, de-

noted Buid, for each member (uid) in the group.

Buid = b1
uid, b2

uid, b3
uid, ...bn

uid

The length of the bit string (denoted n) is equal to the
number of video frames in the stream. In case of a live
video, we use a function to generate the bit string on
the fly. Each bit bi has a value of either 0 or 1 which
means that the member will be able to decrypt either
the first or second (dw0

i or dw1
i) watermarked frame.

3. During the sending phase, the sender prepares the
data message that contains two different watermarked
frames, dw0

i and dw1
i . The format of the augmented

data message3 also contains the two corresponding
message keys, Kw0

msg and Kw1
msg, which are used to de-

crypt two watermarked frames.

{(suid, msgid), {suid, msgid, dw0
i }Kw0

msg

{suid, msgid, dw1
i }Kw1

msg

{Kw0
msg, Kw1

msg}Ksuid}

4. During the verification phase, the group leader pre-
pares the following augmented verification message 4

based on the random bit strings of group members. If
the bit bi(uid) in the random bit string is 0 for the
group member uid, then the message key slot corre-
sponding to member uid in the verification message
contains the bit value 0 and the message key to the
first watermarked frame. Member uid will only be
able to decrypt the first watermarked frame dw0

i but
not the second watermarked frame dw1

i .

{(suid, msgid), V ALID,

(uid1, {bi
uid1 , K

bi
uid1

msg }Kuid1
),

(uid2, {bi
uid2 , K

bi
uid2

msg }Kuid2
), ..,

(uidn, {bi
uidn

, K
bi
uidn

msg }Kuidn
)}

K
pri
gl

We will illustrate with an example of a group size
of 4 with their member ids uid1, ..uid4. The group
leader generates the following random bit strings for
the group members:

3The original data message for our key distribution algo-
rithm is described in section 3.1.1.
4The original verification message for our key distribution
algorithm is described in section 3.1.2.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200250

frame number 1 2 3 4 5

Buid1 1 1 1 0 0
Buid2 1 0 0 1 1
Buid3 0 1 0 1 0
Buid4 0 0 1 0 1

The verification message corresponding to the 2nd
data frame is as follows.

{(suid, msgid), V ALID,
(uid1, {1, Kw1

msg}Kuid1
),

(uid2, {0, Kw0
msg}Kuid2

),

(uid3, {1, Kw1
msg}Kuid3

),

(uid4, {0, Kw0
msg}Kuid4

)}
K

pri
gl

5. During the receiving phase, the receiver decrypts its
slot in the verification message to reveal the bit value
and the corresponding watermark message key. Then
the receiver can decrypt the data message to reveal
either one of the watermarked data frame.

4.2 Leakers Identification
The leakers identification algorithm requires an input of a
partial or complete leaked watermark data stream. It also
requires the cooperation between senders, who can read the
watermark to produce the embedded bit string of the leaked
data stream, and the group leader, who has the randomly
generated bit strings of all the group members. We first as-
sume that there exists only one leaking member. However,
there is a possibility of a collusion if more than one mem-
ber cooperate together to generate a leaked stream using a
combination of their watermark streams. We first describe
the algorithm for the simple case without collusion, then we
describe an improved algorithm for detecting collusions.

1. The leaked watermark data stream is given to
sender(s) who analyze the watermark in the leaked
stream to produce its bit string (Bleaked). For exam-
ple, if the first frame in the illegal stream is encoded
with the first watermark, then the first bit is marked
with 0 (b1

leaked = 0). If some frames are missing in the
leaked stream, that bit is noted as missing ’−’.

2. Bleaked is communicated to the group leader. The
group leader performs matching between Bleaked and
the random bit streams of the group members Buid.
Assuming no collusions, if one member’s Buid exactly
matches the Bleaked, he/she must be the leaker.

The bit string matching algorithm requires on average 2∗N
number of bit comparisons, where N is the size of the group.
Because we use random number generator to generate the
bit strings, on average half of the Buids will not match
Bleaked on a bit comparison. Assuming no collusions, mem-
bers with Buids that do not match the Bleaked cannot pos-
sibly generate the leaked stream; therefore we can remove
these Buids from the list of possible candidates for the leaker.
The number of bit comparisons is calculated as follows:

N + N/2 + N/4... + 1 = 2 ∗N

We illustrate the matching algorithm with the following ex-
ample. It has the bit strings of a leaked stream and 4 group

members (N = 4). After the first bit comparison, we can
remove uid3 and uid4 from the list of candidates because
their first bit values do not match that of Bleaked. After the
second bit comparison, we can further remove uid2 from the
list of candidates because its second bit value does not match
that of Bleaked. This leaves only uid1 who is identified as
the leaker.

frame number 1 2 3 4 5

Bleaked 1 1 - - -

Buid1 1 1 1 0 0
Buid2 1 0 0 1 1
Buid3 0 1 0 1 0
Buid4 0 0 1 0 1

4.2.1 Collusion Detection
A collusion is defined as a behavior where more than
one group member cooperate together to generate a new
leaking stream. If we consider the possibility of a col-
lusion in the previous example, members (uid2, uid3), or
(uid2, uid3, uid4) can cooperate together to generate the first
two bits in Bleaker.

To detect a collusion, we need to analyze more bits in
Bleaked. Let c be maximum number of members involved
in a collusion. We use the bit strings from the following
example and we also assume that c = 2.

frame number 1 2 3 4 5

Bleaked 1 1 1 1 1

Buid1 1 1 1 0 0
Buid2 1 0 0 1 1
Buid3 0 1 0 1 0
Buid4 0 0 1 0 1

The leakers identification algorithm first generates a list (de-
noted L) consisting of all possible 2-combinations from the
set of members:

L = {(uid1, uid2), (uid1, uid3), (uid1, uid4),
(uid2, uid3), (uid2, uid4), (uid3, uid4)}.

After the first bit comparison, we can remove the combi-
nation (uid3, uid4) from L because uid3 and uid4 cannot
possibly come up with the watermarked frame dw1

1 . Ap-
plying the same logic repeatedly, we can remove the com-
bination (uid2, uid4) from L after the 2nd bit comparison,
(uid2, uid3) after the 3rd bit comparison, (uid1, uid4) af-
ter the 4th bit comparison, and (uid1, uid3) after the 5th
bit comparison. Now L has only one combination left
(uid1, uid2). We have identified (uid1, uid2) as the coop-
erating leakers assuming c = 2.

We generalize the leaker(s) identification algorithm to c-
collusion detection given N members. The algorithm first
initializes L to contain a list of all possible c-combinations
among the N members. After every bit comparison, we re-
move from L all c-combinations that cannot produce the

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200251

Bleaked bit value. The main question in the leaker identi-
fication problem is what is the minimum number of bits in
the bit string per user to generate a c-collusion free solu-
tion. There exists a theoretical solution to this question as
discussed in next subsection.

4.2.2 Collusion-free Selection
Let us consider the above example of four users, where two
users collude and generate a new stream with new Bleaked bit
string as shown in the following table. From this example,
we can see that not all random bit strings Buid can be used
to uniquely identify collusion members.

frame number 1 2 3 4 5

Bleaked 1 1 1 1 1

Buid1 1 1 1 0 0
Buid2 1 0 0 1 1
Buid3 0 1 0 1 0
Buid4 1 0 1 0 1

We can easily see that both (uid1, uid2) and (uid3, uid4)
can be in the collusion group. In order to correctly identify
the leakers, we need to use collusion-secure bit strings in-
stead of randomly generating them as was first described in
step 2 of our multicast protocol in section 4.1. Dan Boneh
and James Show’s collusion-secure fingerprinting scheme[11]
can be used to generate collusion-secure bit strings. This
solution presents a constructive algorithm to generate N
c−secure bit strings with probability of detection error ε,
where the length of each bit string is O(c4log(N/ε)log(1/ε)),
c is the collusion group size, and N is the overall group size.
One problem with Boneh’s algorithm is that the c−secure
bit string is too long for large group size and large collusion
group. In the following table we give the lengths of collusion-
secure bit string for different user group size N and collusion
group size c with ε = 0.01.

From Table 3, we can see that for two hour MPEG video
stream that has 216,000 frames, the collusion-secure finger-
printing scheme[11] is only practical for a collusion group of
size two.

In some applications with less strict security requirement,
we can use a shorter collusion-secure bit string by allowing
a larger detection error ε, as can be seen from Table 4. So if
we are willing to tolerate a detection error of 10%, for a user
group size of 100 and no more than three group members
collude, we can generate a collusion-secure bit string which
can be used in two hour MPEG video.

We can further decrease the length of collusion-secure bit
string by using more than two differently watermarked video
streams. As shown in Table 5, by using eight differently
watermarked video streams, we can shorten the length of
collusion-secure bit string to 1/3 of the length of that by
using two eight differently watermarked video streams. Thus
we are able to generate a collusion-secure bit string which
can be used in one hour MPEG video for a user group size
of 10,000 and collusion group size of three. The problem
of this approach is that, in order to decrease the length of
collusion-secure bit string to 1/n of that required in using

two differently watermarked video streams, we need to use
2n differently watermarked video streams.

From the above discussion, we can see that by adjusting the
detection error ε and the number of differently watermarked
video streams, we can generate practical collusion-secure bit
string for small collusion group. Next, we discuss how to in-
corporate Boneh and Show’s collusion-secure fingerprinting
scheme into our secure multicast protocol.

The multicast process is divided into four parts: the Join
Part, the Begin Part, the Critical Part and the End Part.
Duration of each part is pre-decided by the group leader.
The four parts division of a multicast process is very natural
in the case of video-pay-per-view and video conference. For
example, in video-pay-per-view, there is always a Join Part
during which people can pay to watch the movie, a Begin
Part during which some movie preview is aired, a Critical
Part during which the movie is played, and an End Part.

Join Part Begin part Critical Part End Part

In each part, the five steps of data transmission described
in section 4.1 previously are used. The only difference in
these parts is the generation of bit string Buid. The group
leader uses a random bit string Br1

uid for the Join Part and
the Begin Part, during which information of less importance
and requiring less security is sent out and the group leader
keeps track of the number of people in the multicast group.
In the Join Part, people can join and leave the multicast
group freely. In the Begin Part, people are not allowed to
join the multicast group, but they are free to leave. Thus
the group leader knows at most how many people are in the
multicast group. Assuming collusion group of size two, the
group leader generates a collusion secure bit string Bs

uid for
each member (uid) using the collusion-secure fingerprinting
scheme[11]. He also generates a random bit string Br2

uid for
each member (uid), the length of Bs

uid plus that of Br2
uid

equals the number of frames being multicasted in the Criti-
cal Part. The group leader concatenates these two bit strings
and does a permutation P to the resulting string, generates
a new bit string Bsr

uid. The permutation is kept as a secret of
the group leader. The generation of Bsr

uid is done during the
Begin Part and Bsr

uid is used in the Critical Part. Finally,
in the End Part, the group leader uses a third random bit
string Br3

uid.

When an illegally leaked data stream is found, the group
leader gets the Bleaked from the sender. From Bleaked, the
group leader first extracts the substring Bsr

uid, corresponding
to the Critical Part, then he does permutation P−1 to Bsr

uid

and gets Bs
uid and Br2

uid. By using Dan Boneh and James
Shaw’s Algorithm[11], at least one member in the collusion
group can be identified from Bs

uid.

4.3 Overhead Analysis
Our multicast watermark protocol puts two copies of data
in the data message. Therefore, the network bandwidth
overhead is approximately doubled. The storage overhead
and the encryption overhead remain unchanged.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200252

Table 3: Length of c-secure bit string for different user group size and collusion group size with ε = 0.01 and
2 different watermarked streams

User group size Collusion group size Length of c-secure bit string(bits) Time corresponding to MPEG video(min)
100 2 42,600 23.67

10,000 2 64,959 36.01
100 3 256,800 142.7

10,000 3 388,520 215.8
100 5 2,322,000 1290

10,000 5 3,489,984 1939

Table 4: Length of c-secure bit string for different user group size and collusion group size with ε = 0.1 and 2
different watermarked streams

User group size Collusion group size Length of c-secure bit string(bits) Time corresponding to MPEG video(min)
100 2 25,389 14.11

10,000 2 42,189 23.44
100 3 154,330 85.74

10,000 3 260,850 144.9
100 5 1,433,124 796.2

10,000 5 2,392,227 1329

5. IMPLEMENTATION AND EXPERI-
MENT

We have designed and implemented a system which vali-
dates our secure multicast protocol for video transmission.
Furthermore, we have checked the system’s feasibility, and
evaluated it against various performance metrics such as real
time execution. In this section, we describe our implemen-
tation and experiments.

There are two major pieces of our implementation - the mul-
ticast protocol and the secure multicast protocol that is lay-
ered on top of it. We have implemented a simple application-
layer multicast protocol, based on an endpoint overlay mul-
ticast architecture, which is similar to the End-System Mul-
ticast[21]. Note that the focus of this paper is not on mul-
ticast protocols, but rather on a secure protocol layered on
top of it. Hence, any simple and easy-to-implement multi-
cast protocol would suffice for our validation.

5.1 Architecture
We make the following simplifications in our application-
layer multicast protocol. We assume that there exists a
Gateway node that can listen to new requests from member
hosts who would like to join the multicast protocol. The
location of the Gateway node is well-known to all member
hosts. Since the multicast protocol can rely on the secu-
rity multicast protocol layered on top of it for security, the
Gateway simply accepts any host requesting to join the mul-
ticast session. Note that joining the multicast session is not
the same as joining the secure multicast session. To join
a secure multicast session, the member host would need to
communicate with the group leader through a secure uni-
cast channel to get a key and an id as described in section 3.
Our end-system multicast protocol links the group members
by unicast TCP connections with the Gateway as the relay
center. A sender would first transmit data to the Gateway,
and the Gateway forwards data to all members using unicast
TCP connections. The use of per-member unicast TCP con-
nections and a single Gateway is obviously inefficient, not
robust, and not scalable. But it is simple to implement, and

it is reliable so that we do not have to deal with data loss
in video decoding.

The testbed is shown in Figure 3. The testbed contains 5
nodes linked together by unicast TCP connections with the
Gateway as a relay center. The Group leader is responsible
for authentication and key management as described in sec-
tion 3. The member node is a normal member of the group
and can JOIN/LEAVE at any time and SEND/RECEIVE
data to/from the group. The member needs to know the
location of the gateway in order to join the group. After
it connects to the gateway, the gateway confirms from the
group leader if the member can be a part of the group or not
(by initiating the JOIN protocol). If verified, the member
ends the JOIN protocol by sending its information to the
group (via gateway). After joining successfully, the member
enters the sending/receiving phase. It can either initiate a
send session in which it can multicast either a pre-recorded
video file (video-on-demand) or it can transmit live video in
real-time, or it can become a receiver and receive video from
another sender and display it on its screen in real-time.

Gateway

Group Leader

Connection

connections

Member 1

 ...

Member3

listening for new

TCP

Member 2

���

��� �

�

�

�

���

��� �

�

�

�

	�	

	�	

�

�

�

��� �

���

��� �

�

�

�

������ ���

��� �

�

�

�

�

�

Figure 3: Architecture of the multicast protocol

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200253

Table 5: Length of c-secure bit string for different user group size and collusion group size with ε = 0.1 and 8
different watermarked streams

User group size Collusion group size Length of c-secure bit string(bits) Time corresponding to MPEG video(min)
100 2 8,463 4.703

10,000 2 14,060 7.813
100 3 51,443 28.58

10,000 3 86,950 48.30
100 5 477,708 265.4

10,000 5 797,409 443

5.2 Implementation Details
In this section, we discuss some implementation issues in
detail. Since the multicast protocol is described in section 3,
we will focus on implementation of our real time encryption
algorithm, watermarking algorithms and network issues.

5.2.1 Real Time Encryption and Key Distribution
To transmit data securely between group members, video
must be encrypted. On the other hand, to include the en-
cryption/decryption process as part of the sending and re-
ceiving process, this process must be executed in real-time.
We have first deployed the symmetric encryption algorithm
DES; however, DES is very expensive and is more feasible for
video streaming applications because it can not perform in
real time, i.e., encrypt/decrypt 30 frames per second. There-
fore, we have developed real-time MPEG video encryption
algorithm[37] , which uses complex set of permutations and
only encrypts half of the compressed video data. Thus we
can achieve about 50% speed up over using DES to encrypt
the whole compressed video data. In some applications, like
news broadcasting, the video data only needs to be kept se-
cret for a short time. In this case, we can use only simple
permutations to achieve real-time performance and in the
mean time to meet the moderate requirement of security.
In this paper, we discuss the simple real-time permutation
algorithm which is used in our implementation.

We use the concept of interleaving to disperse or permute
the data. The data is divided into blocks of different sizes.
The number of blocks and the size of each block depend on
the key. We explain this with a simple example as shown in
Figure 4:

Assume that the size of the data is 5000 bytes and the key
with which it is to be encrypted is 5603417982. We first
find the sum of the digits of the key. In this case it is 45.
The total number of digits (including 0) is 10. So, we shall
divide the data into 10 blocks(or 11, as we shall see). The
sizes of the blocks will depend on the face value of each digit
in the key sequence and it will be a percentage of the total
file size. Hence the block sizes will be the following:

Block 1: (5/45) * 5000 = 555 B (5 is the first digit in the
key 5603417982)

Block 2: (6/45) * 5000 = 666 B

Block 3: (0/45) * 5000 = 0 B (it exists only logically)

...

Block 9: (8/45) * 5000 = 888 B

Block 10: (2/45) * 5000 = 222 B

This will total to 4995 bytes since the sizes were truncated.
It leaves an eleventh block of size 5. Once we have the block
sizes, we start putting the data into blocks according to the
following rule(as shown in Figure 4):

The next byte of the original data goes into the first available
slot of the next block in the encrypted data. We maintain a
pointer for each block which keeps track of the number of
slots already used and the number of slots available in each
block. By sequentially traversing through the original data,
we pick up each successive byte and place it in the encrypted
data by following the above rule. The last block of a few
bytes (it can be proved that the size of this block will always
be less than the number of digits in the key, 10 in this case) is
copied at the end of the encrypted data without permuting.
After this is done, we get the encrypted data which has the
same size as the original data, but is permuted according to
the key and exactly the same key is required to put it back
in original form. The security analysis of the permutation
encryption scheme is as follows:

1. We are using a 32 bit key and our implementation
supports the scalability of any key length. Exactly the
same key is required to decrypt the data. One en-
cryption operation takes about 12 ms for a 7000 bytes
image file, and to apply jpeg decoding, it takes about
13 ms. If someone tries to generate all the permuta-
tions of keys (there are 232 possibilities) and decrypts
the data by exhaustively applying all the keys (or in
other words, by using brute force) , then on average, it
will take about 621 days to break the key, and about
6.21 days if, say, we use 100 computers simultaneously
by dividing the key space among them.

2. We change the keys after every 1000 frames, (approx-
imately 30 seconds of video). So, the attacker code
would need to be fast enough to break the code be-
fore that. If the code must need to be broken in say t

seconds, then, one would require 231∗25ms
ts

, or 53687091
t

computers.

3. When the data is in the form of text, it is very easy
to find patterns and to guess the key. But since we
are dealing with binary data here (compressed image
in the form of jpeg), no definite patterns can be found
and therefore it is very difficult (almost impossible) to
take a meaningful guess at the key.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200254

4. It works even for a bitmap image since if we permute
all the pixels in the image, we cannot make heads or
tails of the new image. Hence, we can easily afford
to use simple permutation of the data only, instead
of use complex DES, assuming that the data will be
video data.

The key distribution algorithm is described in sections 3.1
and 3.2. To achieve real-time key distribution, in our imple-
mentation, we use the same message key for data message
with some fixed period of t seconds instead of using a differ-
ent key for every frame. The tradeoff between the encryption
time overhead and security is given in section 3.3 where we
discuss security vulnerability.

5.2.2 Watermarking Issues and Leakers Identification
We attempted to design a real-time watermarking algorithm
We started with implementing the algorithm proposed by
Lintian Qiao et al.[39] but it can not run in real time. We
also tried to embed some information in the compressed for-
mat, but for about 40% of the times the frames got distorted
and the watermark became visible. Finally, we decided to
embed the watermark in pixel domain, but this approach
was way too slow. To our knowledge, there is no robust,
invisible and noninvertible real time video watermarking al-
gorithm. So in our implementation of the secure multicast
protocol for live distributed multimedia applications, we do
not include watermarking video frames. However, as a sep-
arate experiment, we have implemented the generation of
the collusion-secure bit streams. We also simulate the cre-
ation of new bit streams through collusion of different group
members and implemented Boneh and Show’s algorithm for
leaker identification. Our experiments show that we can
successfully identify one of the leakers under various cases
of collusion. This validates that our multicast watermark
protocol can fulfill the goal of copy-right protection. In on-
demand multimedia applications, if we do not require em-
bedding of real-time watermark like in the case of video-on-
demand, then we can watermark the video files off-line and
our protocol can successfully integrate security and copy-
right protection.

5.2.3 TCP vs UDP
We have used TCP for all the data transfers across the net-
work in the protocol. Although it might be thought that
UDP will be a better approach when dealing with large
chunks of video data in a multimedia applications, we chose
TCP for our implementation because:

1. TCP is a reliable protocol which means that there will
be no bit-errors, no reordering or loss of packets. If we
use UDP, our application has to take care of all these
reliability issues in a real-time and efficient fashion.

2. Our main aim in this implementation is to analyze the
feasibility of the secure multicast protocol in real-time
applications. So, the main emphasis is on security is-
sues in multicast group rather than the networking
implementations and reliability. TCP alleviates us of
taking care of the reliability and other networking is-
sues and we can therefore concentrate on the impor-
tant issues of multicast security.

5.3 Experiments and Results
5.3.1 Prototype Testbed
The testbed shown in Figure 3, consists of Sun Ultra-60 ma-
chines running SunOS, release 5.7. The machines are con-
nected via 10/100 Mbps Ethernet cards. The experiments
are designed to analyze the feasibility of the real-time secure
multicast and to measure its performance against security
by recording the net frame rate achieved in a real-time sce-
nario.

5.3.2 Performance Metrics
In a real-time video application, the user expects a frame
rate of about 25 to 30 frames per second. This gives us
a processing time of about 33 ms to 40 ms for one frame.
Our main aim in this implementation was to check if it is
possible to actually record, watermark, encrypt, and send a
video frame within this time period to achieve the desired
frame rate. So, our main performance metric is the frame
rate. This directly depends upon the time it takes to record
and encrypt a single frame, which in turn depends on the
size of the frame. Hence, we measure and discuss these
processing times and metrics in the coming sections.

5.3.3 Experimental Scenarios
We perform our experiments under two different scenarios -
video-on-demand, and, video-conferencing. For both types
of experiments, a gateway and group leader are started to
set up the group. Then three members join the group. The
number of frames after which the key is changed is a variable
for the different experiments. We use the motion JPEG
format(MJPEG). The dimensions of the JPEG frames are
256x256 pixels, with a size of approximately 6 to 7 kilobytes
per frame. The two scenarios are setup as follows:

• Video-Conferencing
After the group setup, i.e., successful joining of group
members, one machine represents the sender and the
two other machines are the receivers. The live video is
recorded from a camera attached to the sender. The
sender records the video in realtime and sends it to
the receivers after encrypting it. The experiment in-
volves multicasting 5000 frames of video with an aver-
age frame size of about 6000 bytes.

The number of frames after which the keys are changed
is set at 300, 600, 900 and 1200 frames or approxi-
mately after period of 10s, 20s, 30s, and 40s of video,
respectively. Table 6 shows the results of the four ex-
periments together with the achieved frame rates:

The readers should note that the average time to send
one frame decreases considerably when the number
of frames, after which the key is changed, increases.
This is because in the time to send one frame we take
into account (a) the time of the sender sends the data
message, and (b) the time the group leader sends the
verification message. As we increase the number of
frames after which the keys are changed, we get better
performance, but at the same time, we are weakening
security. However, in a real world video broadcasting
application, we shall normally be sending thousands of
frames during 3 - 4 hours video conference sessions. We
can easily afford to change keys after every 40 seconds

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200255

Table 6: Summary of performance results for the secure video-conferencing application
number of frames time to time to time to total time for net frame rate
after which the record one encrypt one send one processing one achieved
key is changed frame (ms) frame (ms) frame (ms) frame (ms) (fps)

300 21.351 9.931 4.846 39.421 25.367
600 21.361 10.804 2.493 36.096 27.704
900 21.043 11.282 1.993 35.480 28.185
1200 22.909 9.615 1.441 34.715 28.806

of video for such applications. A frame rate of approx-
imate 29 frames per second is still achieved which is in
the desired range. Even if someone gets the keys for
a particular range of video, by the time they decrypt
the video, the keys would have changed.

The average time to record a frame from the camera
is 21.666 ms which gives us approximately 11 to 12
ms for the rest of the processing. Average time to
encrypt the data with our real-time encryption algo-
rithm according to our algorithm described in section
3 is 10.408 ms. This data comprises of two copies
of the original video frame or approximately 12,000
bytes. So, per byte it takes about 0.867 µs to encrypt.
It takes on average 2.693 ms to send a frame across the
LAN network. This time depends on the configuration
of the network and also the load and congestion that
the network is handling at that time. It is independent
of the implementation of the protocol.

• Video-On-Demand
After the group setup, i.e., successful joining of group
members, one machine servers as the VOD server and
the two other machines serve as VOD clients(see Fig-
ure 3). The video is pre-recorded and stored at the
VOD server side. The server reads the data from the
video file, frame by frame, and sends it encrypted to
the group of VOD clients. The experiment involves
multicasting a pre-recorded video file of exactly 5000
frames with an average frame size of approximately
7000 bytes.

The number of frames after which the keys are changed
is set at 300, 600, 900 and 1200 frames or approxi-
mately after period of 10s, 20s, 30s, and 40s of video,
respectively. Table 7 shows the results of the four ex-
periments along with the achieved frame rates:

Again, similar results as in Table 6 can be observed.
An increase in the number of frames after which the
keys are changed, increases the performance. However,
in a real world video application, the huge amount of
video frames during a VOD session will allow for large
intervals when keys will be changed.

The reader should note the significant increase of frame rate
in VOD scenario when compared to video conferencing sce-
nario. This is because the video is pre-recorded and com-
pressed off-line. On average, it takes about 8.962 ms to read
a compressed frame from a file, as compared to 21.666 ms
(time to capture a frame in camera and compress it). The
other values are comparable. For example, the encryption
takes on average 11.300 ms per data frame which comprises
of two copies of video frames of size 7000 bytes each. So,

it takes about 0.807 µs to encrypt one byte. Average time
to send one frame is 1.963 ms which is again independent
of the protocol and instead depends on the network load at
that particular time.

5.4 Lessons Learned
5.4.1 Quality of Service
In both scenarios, video conferencing and VOD, we have
achieved the desired rate(25 fps and higher), our measured
quality of service parameter, therefore we can conclude: (1)
If video is pre-recorded and compressed off-line, we can
achieve up to 40 fps and higher; (2) If live video is streamed,
we can achieve up to 25 fps and higher; (3) Higher frame
rates can be achieved if the interval between key changes is
larger(e.g. 41fps in case of 300 frames interval versus 47 fps
in case of 1200 frames interval in VOD scenario); (4) Copy
right protection of the video data via watermarking can be
only achieved for VOD application without violating QoS, as
currently we can not achieve real-time watermarking during
the capture-compress-encrypt process in the video confer-
encing application at the same time.

5.4.2 Data Encryption Schemes
We have initially started using the standard DES encryption
scheme. Although this scheme is very secure, it is also very
slow. However, our implementation is designed for real-time
applications and expensive DES operations are not afford-
able. We needed a scheme which was as secure as DES when
the data are binary JPEG files, and at the same time very
fast. So, we came up with our own permutation encryp-
tion scheme described in section 5.2.1. It is much faster
than the DES algorithm, it only permutes the data instead
of permuting and substituting as done in DES, and it does
not compromise security. The permutation encryption algo-
rithm works well in real-time due to its speed, but it can be
improved further to have higher security.

5.4.3 Multiple Sessions and Scalability
This implementation can handle only one video session at
one time with limited number of users. This is because of the
limitation of the gateway. It can be improved with multiple
video sessions going on at the same time. The gateway can
maintain a different list of sessions each comprising of the
members involved in the session and the configuration of the
sender. Furthermore, a tree structure for the gateway can be
implemented comprising of parent and child gateways. This
will take the load off the single gateway and greatly improve
the performance of the system. However, note that our goal
was to investigate and implement a prototype to validate
the secure multicast protocol for a multimedia session with
its integrated video streaming, real-time encryption, leak

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200256

Table 7: Summary of performance results for the secure video-on-demand application
number of frames time to read time to time to total time for net frame rate
after which the one frame encrypt one send one processing one achieved
key is changed from disk (ms) frame (ms) frame (ms) frame (ms) (fps)

300 9.174 11.635 3.226 24.136 41.432
600 8.947 11.443 1.914 22.395 44.650
900 8.887 10.975 1.625 21.580 46.340
1200 8.839 11.145 1.086 21.160 47.259

identification and copy right protection. We do not aim at
the scalability towards multiple sessions and multicast tree
at this time. Therefore, we believe that we have achieved
our objective and showed the possibilities and limitations of
secure multicasting at the end systems.

5.4.4 Reliability
Our secure multicast protocol is based on a centralized group
leader to periodically distribute keys and authenticate group
members. This brings up a fault tolerance issue where the
group leader becomes a single point of failure in the system.
This problem can be solved by using replicas for the group
leader node.

Reliability of the group leader is an important issue, however
it was not our focus of research. We believe that with using
standard distributed algorithms for fault tolerance such as
consistency protocols between replicas of the group leader
nodes, as well as election protocols to select a new group
leader in case of failure of the active group leader, we can
easily expand our secure multicast protocol and achieve re-
liability for our single point of failure.

6. CONCLUSION
In this paper, we present a secure multicast protocol with
copyright protection. Our secure multicast protocol con-
tains two components: the key distribution protocol and
a secure multicast watermark protocol. Both protocols do
not require any security mechanisms in network switches or
routers. They can be implemented on top of any existing
multicast architecture. They are robust in the presence of
long delay and lost messages when the underlying multi-
cast protocol is unreliable. They are also efficient in terms
of network bandwidth and storage requirements with dy-
namic membership support. We have validated our secure
multicast protocol in the multimedia testbed, and tested
it on a video conferencing and video-on-demand scenarios.
The results in the live-video application show encouraging
directions as we can consider real-time encryption as part
of the capturing and displaying video process. The results
in the VOD application are even better and show that if
we perform copy-right protection of video data off-line, our
protocol can successfully multicast video securely and with
copy-right protection.

7. ACKNOWLEDGMENTS
We would like to thank Niti Yadav for her work in water-
marking. We are also indebted to the anonymous referees
for their invaluable comments.

8. ADDITIONAL AUTHORS
Additional authors: Hua Wang and Ritesh Jain

9. REFERENCES
[1] Msec working group. Available via

http://www.securemulticast.org/msec-index.htm.

[2] The secure multicast research group. Available via
http://www.securemulticast.org/smug-drafts.htm.

[3] I. Agi and L. Gong. An empirical study of Mpeg video
trandmission. In Proceedings of the Internet Society
Symposium on Network and Distributed System
Security, San Diego, CA, February 1996.

[4] D. Balenson, D. McGrew, and A. Sherman. Key
management for large dynamic groups: One-way
function trees and amortized initialization. Ietf draft,
August 2000.

[5] A. Ballardie. Scalable multicast key distribution.
Rfc1949, May 1996.

[6] A. Ballardie. Core based trees (CBT) multicast
architecture. Rfc2201, September 1997.

[7] S. Banerjee and B. Bhattacharjee. Scalable secure
group communication over ip multicast. In Proceeding
of ninth International Conference on Network
Protocols, Riverside, CA, November 2001.

[8] M. Barni, F. Bartolini, V. Cappellini, and A. Piva.
Robust watermarking of still images for copyright
protection. In SPIE Proceedings ’99, volume 3657,
pages 46–47, January 1999.

[9] C. Becker and U. Wille. Communication complexity of
group key distribution. In 5th ACM Conference on
Computer and Communication Security, San
Francisco, CA, November 1998.

[10] G. R. Blakley, C. Meadows, and G. B. Purdy.
Fingerprinting long forgiving messages. In Advances in
Cryptology, Proceedings of CRYPTO ’85, vol. 218 of
Lecture Notes in Computer Science, pages 180–189.
Springer-Verlag, 1986.

[11] D. Boneh and J. Show. Collusion-secure fingerprinting
for digital data. IEEE Transactions on Information
Theory, 44(5):1897–1905, September 1998.

[12] J. Brassil, S. Low, N. Maxemchuk, and L. O’Gorman.
Electronic marking and identification techniques to
discourage document copying. In Proceedings of IEEE
INFOCOM’94, volume 3, pages 1278–1287, Toronto,
June 1994.

[13] B. Brisco and I. Fairman. Marks: Multicast key
management using arbitrarily revealed key sequences.
In First International Workshop on Networked Group
Communication, November 1999.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200257

[14] I. Brown, C. Perkins, and J. Crowcroft. Watercasting:
Distributed Watermarking of Multicast Media. In
Proceedings of the First International Workshop on
Networked Group Communication, pages 286–300,
Pisa, Italy, November 1999.

[15] R. Canetti, J. Garay, G. Itkis, D. Micciancio,
M. Naorr, and B. Pinkas. Multicast security: A
taxonomy and some efficient constructions. In
Proceedings of INFOCOM99, March 1999.

[16] G. Caronni. Assuring Ownership Rights for Digital
Images. In Proceedings of Reliable IT Systems,
VIS’95. Vieweg Publishing Company, 1995.

[17] I. Chang, R. Engel, D. Kandlur, and D. Saha. A
toolkit for secure internet multicast. Manuscript, 1998.

[18] G. H. Chiou and W. T. Chen. Secure broadcast using
the secure lock. IEEE Transactions on Software
Engineering, 15(8):929–934, August 1989.

[19] B. A. Chor, A. Fiat, and M. Naor. Tracing traitors. In
Advances in Cryptology, Proceedings of CRYPTO ’94,
vol. 839 of Lecture Notes in Computer Science, pages
257–270. Springer-Verlag, 1994.

[20] H. Chu, L. Qiao, and K. Nahrstedt. A secure multicast
prorocol with copyright protection. In Proceedings of
IS&T/SPIE’s Symposium on Electronic Imaging:
Science and Technology, San Jose, CA, January 1999.

[21] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling
conferencing applications on the internet using an
overlay multicast architecture. In Proceedings of ACM
SIGCOMM’01, San Diego, CA, August 2001.

[22] S. Craver, N. Memon, B. Yeo, and M. Yeung. Can
invisible watermarks resolve rightful ownerships? In
Proceedings of the IS&T/SPIE Conference on Storage
and Retrieval for Image and Video Databases V,
volume 3022, pages 310–321, San Jose, CA, February
1997.

[23] S. Deering, D. Estrin, D. Farinacci, V. Jacobson,
C. Liu, and L. Wei. The PIM Architecture for
Wide-Area Multicast Routing. In IEEE/ACM
Transactions on Networking, volume 4, April 1996.

[24] T. Hardjono, B. Cain, and N. Doraswamy. A
framework for grop key management for multicast
security. Ietf internet draft(work in progess), August
2000.

[25] T. Hardjono, B. Patel, and M. Shah. Intra-domain
group key management protocol. Ietf internet
draft(work in progess), September 2000.

[26] H. Harney and C. Muckenhirn. Group Key
Management Protocol (GKMP) Architecture.
Rfc2094, July 1997.

[27] H. Harney and C. Muckenhirn. Group Key
Management Protocol (GKMP) Specification.
Rfc2093, July 1997.

[28] F. Hartung and B. Girod. Digital watermarking of
uncompressed and compressed video. Signal
Processing(Special Issue on Watermarking),
66:283–302, May 1998.

[29] P. Judge and M. Ammar. Whim: Watermarking
multicast video with a hierarchy of intermediaries. In
Proceedings of NOSSDAV2000, Chapel Hill, NC, June
2000.

[30] H. Kang, K. Kim, and S. Han. Watermarking
techniques using the drawing exchange format(dxf)
file. In Proceeding of ACM Multimedia 2001
Workshops, Ottawa, Canada, October 2001.

[31] E. Koch and J. Zhao. Towards robust and hidden
image copyright labeling. In Proc. of 1995 IEEE
workshop on Nonlinear Signal and Image Processing,
pages 452–455, Neos Marmaras, Greece, June 1995.

[32] Y. Li, Z. Chen, S. Tan, and R. Campbell. Security
enhanced mpeg player. In Proceedings of IEEE First
International Workshop on Multimedia Software
Development(MMSD’96), Berlin, Germany, March
1996.

[33] T. B. Maples and G. A. Spanos. Performance study of
a selective encryption scheme for the security of
networked, real-time video. In Proceedings of 4th
International Conference on Computer
Communication and Network, Las Vegas, Navada,
September 1995.

[34] J. Meyer and F. Gadegast. Security mechanisms for
multimedia data with the example mpeg-1 video.
Available on www via
http://www.powerweb.de/phade/phade.html.

[35] S. Mittra. Iolus: A Framework for Scalable Secure
Multicasting. In Proceedings of ACM SIGCOMM ’97,
Cannes, France, September 1997.

[36] A. Perrig, D. Song, and J. D. Tygar. Elk, a new
protocol for efficient large-group key distribution. In
2001 IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 2001.

[37] L. Qiao and K. Nahrstedt. A New Algorithm for
MPEG Video Encryption. In Proceedings of The First
International Conference on Imaging Science,
Systems, and Technology (CISST’97), pages 21–29,
Las Vegas, Nevada, July 1997.

[38] L. Qiao and K. Nahrstedt. Comparison of mpeg
encryption algorithms. International Journal on
Computers and Graphics(special Issue: Data Security
in Image Communication and Network), 22(3),
January 1998.

[39] L. Qiao and K. Nahrstedt. Watermarking Method for
MPEG Encoded Video: Towards Resolving Rightful
Ownership. In IEEE Multimedia Computing and
Systems, Austin, Texas, June 1998.

[40] S. Rafaeli. A decentralised architecture for group key
management. PhD appraisal, Lancaster University,
Lancaster, UK, September 2000.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200258

[41] O. Rodeh, K. Birman, and D. Dolev. Optimized group
rekey for group communication systems. Technical
report, Hebrew University, 1999.

[42] B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley and
Sons, 2nd edition, December 1995.

[43] S. Setia, S. Koussih, and S. Jajodia. Kronos: A
scalable group re-keying approach for secure
multicast. In 2000 IEEE Symposium on Security and
Privacy, Oakland, CA, May 2000.

[44] C. Shi and B. Bhargava. An efficient mpeg video
encryption algorithm. In Proceedings of the 17th IEEE
Symposium on Reliable Distributed Systems, West
Lafayette, Indiana, October 1998.

[45] C. Shi and B. Bhargava. A fast mpeg video encryption
algorithm. In Proceedings of the 6th ACM
International Multimedia Conference, Bristol, UK,
September 1998.

[46] V. Sridhar, X. Li, and M. A. Nascimento. Towards
robust hidden watermarking using multiple
quasi-circles. In Proceeding of ACM Multimedia 2001
Workshops, Ottawa, Canada, October 2001.

[47] M. Steinbach, J. Dittmann, and C. Vielhauer.
Platajanus: An audio annotation watermarking
framework. In Proceeding of ACM Multimedia 2001
Workshops, Ottawa, Canada, October 2001.

[48] M. Steiner, G. Tsudik, and M. Waidner. Key
agreement in dynamic peer groups. IEEE Transaction
on Parallel and Distributed Systems, 11(8):769–780,
August 2000.

[49] M. A. Suhail and M. M. Dawoud. Watermarking
security enhancement using filter parameterization in
feature domain. In Proceeding of ACM Multimedia
2001 Workshops, Ottawa, Canada, October 2001.

[50] K. Tanaka, Y. Nakamura, and K. Matsui. Embedding
Secret Information into a Dithered Multi-level Image.
In Proceedings of 1990 IEEE Military
Communications Conference, pages 216–220, 1990.

[51] L. Tang. Methods for encrypting and decrypting mpeg
video data efficiently. In Proceedings of The Fourth
ACM Inernational Multimedia Conference(ACM
Multimedia’96), Boston, MA, November 1996.

[52] L. F. Turner. Digital Data Security System. Patent
IPN WO 89/08915, 1989.

[53] R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne.
A Digital Watermark. In Proceedings of the
International Conference on Image Processing,
volume 2, pages 86–90, IEEE, 1994.

[54] D. Waitzman, S. Deering, and C. Partridge. Distance
Vector Multicast Routing Protocol. Rfc1075,
November 1988.

[55] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and
B. Plattner. The versakey framework: Versatile group
key management. IEEE Journal on Selected Areas in
Communications(special Issue on Middleware),
17(9):1614–1631, September 1999.

[56] D. Wallner, E. Harder, and R. Agee. Key
Management for Multicast: Issues and Architectures.
Rfc2627, June 1999.

[57] W. Zeng and B. Liu. On resolving rightful ownships of
digital images by invisible watermarks. In IEEE
International Conference on Image Processing,
volume 1, pages 552–555, Santa Barbara, CA, October
1997.

APPENDIX
A. NOTATION
uidi: the member id assigned by the group leader.
suid: the sender’s member id.
msgid: the message id assigned by the sender.
N : the size of the group.
c: the number of members in a collusion.
L: a list containing the possible combinations of members
in a collusion.
dw0

i , dw1
i : the first/second watermarked frame correspond-

ing to the i-th data frame.
Kmsg: key to the data message.
Kw0

msg, Kw1
msg: key to the first/second watermark frame in the

data message.
Kpub

gl , Kpri
gl : public/private key of the group leader.

Kpub
uidi

, Kpri
uidi

: public/private key of the member uidi.

Kuidi , Ksuid : symmetric key between uidi(suid) and the
group leader.
Bleaked: the bit string corresponding to the leaked stream.
Buidi: the bit string corresponding to the member uid.
bi: the i-th bit value in a bit string.
bi
uid: the i-th bit value in a bit string of member uid.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200259

(R4) Obtain (suid, msgid)

{ (suid, msgid)

(V4) Multicast Verification Msg:

Sender
Sending Phase

Verification Phase

Group Leader

(R1) Recv Data Msg

(R3) Recv/Decrypt Verification Msg

{suid,msgid,data}Kmsg

Receiving Phase

Members

(R5) Lookup slot and decode Kmsg

(R6) use (suid, msgid) to retrieve {suid,msgid,data}Kmsg

(S1) Multicast Data Msg:

Valid

(V3) Verify (suid,msgid)

(V2) Obtain msg key Kmsg

{ (suid, msgid) (uid1, {Kmsg}Kuid1) .., (uidn, {Kmsg}Kuidn)}Kpriv−gl

(V1) Recv Data Msg and

Validate suid (R2) Insert Data Queue: {suid,msgid,data}Kmsg

 {Kmsg}Ksuid }

(R7) Decode data

from data queue

Figure 2: Three phases of our secure data transmission.

Size of Data File: 5000 Bytes, Key: 5603417982

Sum of Digits: 45

0 1 2 3 4999

Number of blocks: 10 + 1

Original Data

Permuted Data

...

block 3: size 0

...

last unpermuted
block, size: 5 bytes

block 1 block 2 block 4 block 5 ... block 10

Figure 4: Permutation Encryption

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200260

