
GUI Migration across Heterogeneous Java Profiles

Candy Wong, Hao-hua Chu, Masaji Katagiri
DoCoMo Communications Laboratories USA, Inc.

Seamless Experience Environment Laboratory
181 Metro Drive, Suit 300
San Jose, CA 95110 USA

+1 408 573 1050
{wong, haochu, katagiri}@docomolabs-usa.com

ABSTRACT
Existing cross-platform graphical user interface (GUI)
development tools do not support migrate-able GUIs as
they do not consider any runtime concern, such as running
state transformations. To address this problem, we
introduce Scalable Graphical User Interface (SGUI). It
allows GUI developers to construct a platform-
independent GUI that can be migrated across
heterogeneous Java profiles. In this paper, we will focus
on two major problems in supporting migrate-able GUIs.
First is layout and widget transformation, which describes
how to layout a presentation after a GUI is migrated from
one platform to another. Second is running state and
event handling transformations, which describes how to
transform running states and event handlings when a
presentation is changed after a migration.

KEYWORDS
User interface development tool, multi-platform user
interface, GUI migration, heterogeneous devices, Java

INTRODUCTION
Nowadays, mobile devices are so popular that many end-
users own multiple mobile devices. To better assist an
end-user’s mobility, he/she would use a device which best
suits his/her situation. For example, when an end-user is
at home, he/she plays a PC game with his/her Notebook
PC. However, in the middle of the game, if he/she has to
go out to meet someone, he/she could continue the game
with his/her Pocket PC while he/she is on a bus.

Based on this scenario, we found that there is a need to
provide an application continuity for end-users. One of
the solutions is to allow a runtime application migration.
The migration involves the application logic migration
and the user interface migration. This paper mainly
discusses the user interface migration. Details of the
application logic migration can be found in []. 1

The goal of our work, called SGUI, is to provide a
framework for developers to build a platform-independent
GUI that can be migrated across heterogeneous Java
profiles. The considered profiles include Java 2 Standard
Edition (J2SE) [] which is targeted for thick clients (e.g.,

Notebook PCs), Java 2 Micro Edition (J2ME) Personal
Profile [] which is targeted for thin clients (e.g., Pocket
PCs), and J2ME DoJa Profile [] which is targeted for
very thin clients (e.g., DoCoMo 503i cell phones).

3
4

Existing cross-platform UI development tools, including
XIML [5], UIML [], XWeb [7], and Unified User
Interface [8], mainly consider design-time problems (e.g.,
the screen size problem). These approaches can be
categorized into two types: the autonomous approach and
the automatic approach. The autonomous approach
generates presentations autonomously by requiring every
single layout details from developers. For example,
UIML and Unified User Interface require developers to
specify layout on each platform. However, the
specifications require developers to have thorough
knowledge of each platform’s constraints. The automatic
approach generates presentations automatically by leaving
almost no layout controls to developers. For example,
XIML and XWeb generate presentations automatically
without many involvements from developers. Yet,
developers are not allowed to specify their expectations.

6

In this paper, we propose a new layout algorithm which
constitutes a middle ground between the two approaches.
The algorithm makes use of a layout specification (e.g., a
widget’s x-y coordinates) of a single platform and a set of
transformation rules. A platform is referred to a device
that supports at least one Java profile. A transformation
rule is referred to a rule that is composed of a widget
transformation, a running state transformation, and an
event handling transformation. SGUI provides generic
transformation rules and developers can modify the rules
into application-specific rules.

We also propose running state and event handling
transformations which are not considered by existing
cross-platform development tools. Running state and
event handling transformations are critical elements for
GUI migrations in providing consistent experience for
end-users. For example, after a migration, end-users
should be able to review the state changes that were made
before a migration, and they should be able to trigger the
application features that were available before a
migration. 2

T
s
T
t
t
d

T
w
a
u

O
F
m
s
p

B
T
S

model, a task manager, and a layout manager. They are
stored in the server before any GUI migration.

Server(1)

 Scalable GUI Library

Since different Java Profiles support different GUI
libraries and events, the scalable GUI library employs a
mapping technique to abstract out their differences. The
scalable GUI library contains two sub-modules: the
virtual widget library and the scalable GUI event library.
The virtual widget library contains a set of GUI widgets
similar to Java SWING library’s widgets, which is the
richest set of Java library widgets among all Java profiles.
A virtual widget library is implemented for each Java
profile. For example, on a J2ME DoJa profile, a virtual
widget library is implemented to describe mappings
between virtual widgets and DoJa library widgets.

Virtual Widget Library

Platform A
 Scalable GUI Event Library

(5b)
Platform-Independent (PI)

presentation model
 (2)

(3c)
(3a) (3b)

Platform B Copy of the PI
presentation model

(4a) Render
Manager (6)

Task Manager

Layout Manager
(4b)

(5a)
Similarly, the scalable GUI event library provides
mappings between scalable GUI events and Java profile-
specific GUI events. Even though an event can only be
generated by a particular input method (e.g., a soft key

Figure 1: Overall Architecture
he rest of this paper is organized as follows. The next
ection shows the overall architecture of a GUI migration.
he following sections describe the layout and the widget

ransformation, the running state and the event handling
ransformations, and the conclusion. Related work is
escribed in the appropriate sections.

his paper focuses on the graphical UI, as it is the most
idely accepted modality. Perceptual/cognitive UIs, such

s changing presentations/modalities at different end-
sers’ contexts, are out of scope of this paper.

VERALL ARCHITECTURE
igure 1 shows the overall architecture of a GUI
igration. A GUI migration involves two major parties: a

erver and a client platform. The server generates a final
resentation and the client platform renders it.

efore GUI migration
he server is composed of the following components: a
GUI library, a platform-independent (PI) presentation

event can only be generated by a soft key) and different
platforms support different input methods (e.g., a PC
supports a mouse, but a cell phone supports a keypad),
Scalable GUI events allow an application to handle events
in any considered Java profile. For example, a scalable
GUI action event associated with a button press can be
generated from a mouse click on a PC, a tap from stylus
on a Pocket PC, or a select-key press on a cell phone.

Using the scalable GUI library, developers can prepare a
PI presentation model at the design-time. Figure 2 depicts
a PI presentation model for a search item application.
The model has a tree-like structure. The root node,
which represents an entire application, occupies the top of
the tree. Child nodes of the root node are task nodes
representing different end-users’ tasks. Each task node
can be further divided into sub-task nodes, sub-sub-task
nodes, and so forth, until the leaf nodes are represented by
virtual widgets. For example, the Search task node
shown in Figure 2 is divided into 3 sub-task nodes, and
they are represented by a “Search for the item:” virtual
label, a “Search” virtual button, and a virtual textfield.
Similar ways of groupings are also mentioned in []. 5

5Unlike the approach in [], our model allows developers
to provide hints on each task node. These hints are
important and compulsory for automatically generating
high quality presentations. The hints specify: (1) a detail
layout for each node based on the Java Grid Bag Layout
Constraint, which is the most flexible layout constraint
among all Java profiles, (2) a task preference, which is
implemented as an array of Booleans in which each array
index represents a platform, describes whether a task is
suitable for a particular platform or not, (3) a priority,
which is implemented as an integer, denotes the desired
layout sequence of each widget, (4) a split-ability, which
is implemented as a Boolean, indicates whether the
widgets can be spread over multiple pages or not, and (5)
an importance, which is implemented as a Boolean,

Figure 2: PI Presentation Model and the expected J2SE
SWING GUI (that is generated from the PI Presentation
Model) of a Searching Shopping Item application.

Display
Result
task

Search Item task

Search
task

Sort Result
task

Root Node

LAYOUT AND WIDGET TRANSFORMATION LAYOUT AND WIDGET TRANSFORMATION
root node At runtime, the layout algorithm and the widget

transformation are used to generate PS presentations for
various screen sizes. There are three major requirements:
(1) the generated presentations should have reasonably
high qualities with the minimum help from developers,
(2) the layout algorithm has to be simple in order to
minimize any presentation generation delay, and (3) as
some platforms do not support scrolling and scrolling
normally degrades the GUI usability, scrolling should not
be used to display an entire presentation.

At runtime, the layout algorithm and the widget
transformation are used to generate PS presentations for
various screen sizes. There are three major requirements:
(1) the generated presentations should have reasonably
high qualities with the minimum help from developers,
(2) the layout algorithm has to be simple in order to
minimize any presentation generation delay, and (3) as
some platforms do not support scrolling and scrolling
normally degrades the GUI usability, scrolling should not
be used to display an entire presentation.

4 7

1 2 3 5 6

Figure 3: Layout algorithm, where node v has children virtual
widgets that are not shown in this figure. The number of each
node indicates the node’s layout priority.

shows whether a widget is core or optional. Core widgets
are defined as the most frequently used widgets [], or
widgets in performing a major task. The rest are defined
as optional widgets. For example, the Search Item task
in Figure 2 has 3 sub-tasks. In order to perform a Search
Item task, an end-user must enter the item’s name and
press a button to initiate the searching process. However,
an end-user does not require specifying the sorting
preferences and the display options, as they are just
enhancements for displaying the search result. Thus,
widgets associated with the Search task are core and the
remaining widgets are optional.

ned
as optional widgets. For example, the Search Item task
in Figure 2 has 3 sub-tasks. In order to perform a Search
Item task, an end-user must enter the item’s name and
press a button to initiate the searching process. However,
an end-user does not require specifying the sorting
preferences and the display options, as they are just
enhancements for displaying the search result. Thus,
widgets associated with the Search task are core and the
remaining widgets are optional.

12 In the past, there are many proposed methods in
describing how to layout widgets for various screen sizes.
However, some techniques, such as the one proposed in
[9], involve high computation complexities. Some
approaches require too much information from
developers. For example, Humanoid [] asks developers
many layout-related questions before generating a final
presentation. Among all proposed methods, TEX [] is
the most promising method in formatting 2-dimensional
box-like GUI widgets [,]. TEX allows each widget to
report its desired size for the positioning.

In the past, there are many proposed methods in
describing how to layout widgets for various screen sizes.
However, some techniques, such as the one proposed in
[9], involve high computation complexities. Some
approaches require too much information from
developers. For example, Humanoid [] asks developers
many layout-related questions before generating a final
presentation. Among all proposed methods, TEX [] is
the most promising method in formatting 2-dimensional
box-like GUI widgets [,]. TEX allows each widget to
report its desired size for the positioning.

1010

1111

77 99

The hints are used by the task manager and the layout
manager; the task manager uses the task preference and
the layout manger uses the rest. The task preference is
described in the GUI migration section. The layout
specification, the priority, and the split-ability are
described in the layout algorithm section. The importance
is described in the widget transformation section.

The hints are used by the task manager and the layout
manager; the task manager uses the task preference and
the layout manger uses the rest. The task preference is
described in the GUI migration section. The layout
specification, the priority, and the split-ability are
described in the layout algorithm section. The importance
is described in the widget transformation section.

Fortunately, Java has default layout managers that are
similar to TEX. Java also allows developers to specify the
desired location of each widget through a set of
predefined layout constraints. However, each set of
layout constraints can only generate a single presentation.
In order to meet our first requirement, we propose to only
require one set of layout specification for a single
platform, which can generate multiplatform presentations.
The specification is the same as the Grid Bag Layout
Constraint. Developers can specify the layout according
to the presentation that consumes the largest dimension
such as a presentation for a PC. Our layout algorithm will
try to follow the specification as closely as possible.

Fortunately, Java has default layout managers that are
similar to TEX. Java also allows developers to specify the
desired location of each widget through a set of
predefined layout constraints. However, each set of
layout constraints can only generate a single presentation.
In order to meet our first requirement, we propose to only
require one set of layout specification for a single
platform, which can generate multiplatform presentations.
The specification is the same as the Grid Bag Layout
Constraint. Developers can specify the layout according
to the presentation that consumes the largest dimension
such as a presentation for a PC. Our layout algorithm will
try to follow the specification as closely as possible.

GUI Migration GUI Migration
Figure 1 also shows the process of a GUI migration from
platform A to platform B. In step 1, platform A serializes
states of all widgets on its platform-specific (PS)
presentation model (the model that is customized for
platform A from the PI presentation model, by the task
manager and the layout manager), and sends a migration
request along with its PS presentation model to a server.
In step 2, the server updates the state of the server’s PI
presentation model with the state of platform A’s PS
presentation model. The update is done through the
running state transformation that is described later. In
step 3, the server creates a new copy of its PI presentation
model and probes platform B for its capabilities. In step
4, after getting platform B’s capabilities, the task manager
trims off unnecessary task nodes from the copy to form a
PS presentation model. From it, the layout manager
generates a presentation. If transformations rules are
involved in the presentation generation, the layout
manager will further customize the PS presentation model
so that it will include the transformed widgets. In step 5,
the server then sends the presentation, the PS presentation
model, and the required portion of the SGUI library to
platform B. In step 6, platform B’s render manager
displays the presentation.

Figure 1 also shows the process of a GUI migration from
platform A to platform B. In step 1, platform A serializes
states of all widgets on its platform-specific (PS)
presentation model (the model that is customized for
platform A from the PI presentation model, by the task
manager and the layout manager), and sends a migration
request along with its PS presentation model to a server.
In step 2, the server updates the state of the server’s PI
presentation model with the state of platform A’s PS
presentation model. The update is done through the
running state transformation that is described later. In
step 3, the server creates a new copy of its PI presentation
model and probes platform B for its capabilities. In step
4, after getting platform B’s capabilities, the task manager
trims off unnecessary task nodes from the copy to form a
PS presentation model. From it, the layout manager
generates a presentation. If transformations rules are
involved in the presentation generation, the layout
manager will further customize the PS presentation model
so that it will include the transformed widgets. In step 5,
the server then sends the presentation, the PS presentation
model, and the required portion of the SGUI library to
platform B. In step 6, platform B’s render manager
displays the presentation.

When the specification of some widgets violates the
screen size, we use Flow Layout to position those
widgets. We choose Flow Layout because it is simple
and it involves minimum computation while maintaining
a reasonable presentation [12]. Since Flow Layout itself
may not provide a high quality layout, we only apply it on
violating widgets, and we keep on applying Grid Bag
Layout on non-violating widgets. If the presentation is
still larger than the screen size, we will apply
transformation rules for meeting the third requirement.

When the specification of some widgets violates the
screen size, we use Flow Layout to position those
widgets. We choose Flow Layout because it is simple
and it involves minimum computation while maintaining
a reasonable presentation [12]. Since Flow Layout itself
may not provide a high quality layout, we only apply it on
violating widgets, and we keep on applying Grid Bag
Layout on non-violating widgets. If the presentation is
still larger than the screen size, we will apply
transformation rules for meeting the third requirement.

Layout Algorithm Layout Algorithm
Figure 3Figure 3 shows a more detail layout algorithm. It starts
from the root node (the first current node).

 shows a more detail layout algorithm. It starts
from the root node (the first current node).

1. If the current node has unprocessed direct child nodes 1. If the current node has unprocessed direct child nodes
• Find the unprocessed direct child node that has

the highest priority, and set that node as the
current node. Repeat step 1.

• Find the unprocessed direct child node that has
the highest priority, and set that node as the
current node. Repeat step 1.

Else Else
• Proceed to step 2. • Proceed to step 2.

Type of Widget Transformation Original Widget(s) Transformed Widget(s)
One2One List Drop-down box

One2Multiple Table Lists, Drop-down boxes
MultipleSameClass2One Radio Button List, Drop-down box
MultipleSameClass2One Text Fields Text Field
MultipleSameClass2One Labels Drop-down box

Multiple2Multip s A Drop-down box and a Text Field

s

Figure 4: Sample Muliple2M

2. Process the current node
Proceed to step 3.

3. If the current node is a roo

• Terminate the algorith
Else
• Set the current node’

current node.
• Repeat step 1.

The procedures of processing
Denote the optimum size of a p

1. Virtual widgets associated
on a page according to Gr
The precise size of the pag

2. If the page is bigger than th

• We apply Flow Lay
widgets of the node.

• If the page is still too b
• If the node is split

• We open a n
widgets if the

 Else
• Transformati

some/all widg
all direct wid
Flow Layout.

• If transforma
• The algo

as it is (
be show
out the c
the final

Else
• Exit the p

Else
• Proceed to step 3.

Else
• Proceed to step 3.

3. The page is stored as a vir
the node. Exit the procedu

le A set of Label and Text Field pair

 Table 1: Sample transformation rule
Widget Transformation
Widget Transformation is the transformation from one
(composite) widget to another (composite) widget that
consumes less space. A composite widget is a widget that
is composed of several widgets. The goal of the widget
transformation is to avoid applying any scrolling feature,
by reducing the size of the presentation. To achieve this
goal, we have to address two major issues: (1) which
widget(s) we should transform, and (2) how we should
transform the widget(s).

uliple transformation

and mark it as processed.

In order to solve the first problem, we retrieve the widget
that triggers transformation rules. If the widget is a
singular widget, we will apply a transformation rule on
that widget only. If it is a composite widget, we will
divide all widgets inside the composite widget into 2
groups (based on the importance hint): (1) the core
widgets and (2) the optional widgets. We apply
transformation rules on optional widgets first, as
transforming a widget into a more compact widget
degrades the GUI usability []. If there is no optional
widget or the size reduction is insufficient, transformation
rules will be applied on core widgets.

t node
m.

s parent node as the new

 a node are as follows.
age as the size of a screen.

 with the node are placed
id Bag Layout Constraints.
e is then calculated.

12

e screen To solve the second problem, our model tries to find the
best suitable transformation rule from a set of rules in a
particular manner. Here, the suitable rule means the rule
that provides the required size reduction. The
transformation rules are categorized into 4 types: (1) One-
to-One defines transformations of a single widget to
another single widget, (2) One-to-Multiple defines
transformations of a single widget to multiple widgets, (3)
MultipleSameClass-to-One defines transformations of
multiple widgets that belong to the same class (e.g., a set
of radio buttons) to a single widget, and (4) Multiple-to-
Multiple defines transformations of multiple widgets that
belong to different classes to another set of multiple
widgets. Each Multiple-to-Multiple rule is composed of a
set of MultipleSameClass-to-One rules and a set of classic
relationships introduced by [12] (e.g., in Figure 4, through
the MultipleSameClass-to-One rules, the set of labels is
transformed into a drop-down box and the textfields are
transformed into one textfield. These two transformations
are linked together with a Form-Filling relationship.
Form-Filling describes the relationship of widgets that are
tied together for filling in end-users’ personal info).
Other sample rules are shown in Table 1.

out to all direct virtual

ig
-able
ew page to place the extra
 node is split-able.

on rules will be applied on
ets under the node. Place
gets under the node with

tion rules fail
rithm will leave the page

i.e., some widgets will not
n). Developers can find
ause of the problem from
presentation.

rocedures.

tual widget associated with
res.

To select a rule, our model firstly prioritizes the rules
according to their types. Since Multiple-to-Multiple rules
can change the overall presentation drastically and can

highly degrade the GUI usability, the Multiple-To-
Multiple rules have the lowest priorities. For other rules,
our model filters them first before doing any
prioritization. That is, our model ignores rules whose
original widgets require input methods that are not
supported by the transformed widgets. For example, a
developer specifies a J2ME DoJa button to be interacted
with a mouse-in event (i.e., when a mouse-arrow points,
not clicks, to a button, an action will be invoked). The
button cannot be transformed to a softkey, as a softkey
does not support a mouse-in event. For the remaining
rules, our model prioritizes them according to a set of
space reduction parameters. Our model sets the rule that
provides the less space reduction to have the highest
priority, as a less compact widget usually has a higher
GUI usability than a more compact widget []. 12

The space reduction parameters include: width reduction
ratio, height reduction ratio, and dimension reduction
ratio. The importance of these parameters is dynamically
changing according to the condition that triggers
transformation rules. That is, when a transformation rule

is triggered by a widget that is too wide (or tall), the width
(or height) reduction ratio is the most important
parameter; the height (or width) reduction ratio is the
second, and the dimension reduction ratio is ignored as its
result is covered by the width and height reduction ratios
already. When the rule is triggered by a widget that is
both too width and too tall, the dimension reduction ratio
is the most important one, and the rest are ignored
because of the similar reason.

private class FormFillingTransformation {

 /* widget transformation */

1. construct a new virtual drop-down box (DD1)
2. copy the virtual “Item Name::”, “Brand Name:”, …etc labels’ properties

(e.g., font size) to DD1
3. construct a virtual textfield (TF1)
4. copy the virtual “Item Name:”, “Brand Name”, …etc. textfields’

properties to TF1

/* running state transformation */
1. Record the original virtual label-textfield pairs into a Java hash table

(shown in Figure 6)
2. Add a scalable Selection event listener (from our event library) to DD1,

and specify the action. So that when an end-user selects an item from
DD1, e.g., “Item Name:” the corresponding value, e.g., “Bottle Water”,
can be retrieved from the hash table.

3. Display the value onto TF1

/* event handling transformation */
//originally, developers specify that the value of a “Item Name”, or “Brand
//Name”, or …etc. textfields will be automatically updated when an end-user
//hit a ENTER or equivalent key

//After a migration, when a ENTER key event is received,
1. Get the value on TF1, say “Coke”
2. Get the currently selected item on DD1, say “Item Name”
3. Find the title of the selected item in the hash table and update the

corresponding value.
4. Create an event with “Item Name” as the source of the event and

“Coke” as the new value.
5. Send the event to the original virtual “Item Name” textfield to

synchronize the states of the original and transformed textfields.
}

Since we are dealing with Java-platforms, we choose to
specify the rules in Java classes. Each rule is represented
by one Java class. Inside a class, running state and event
handling transformations are also specified. Sample
pseudo-code is shown in F . igure 5

Figure 5

Figure 6

RUNNING STATE AND EVENT HANDLING
TRANSFORMATIONS
Other critical ingredients for GUI migration are running
state and event handling transformations.

Running State Transformation
It is very likely that the migrated presentation employs a
different set of widgets from the original presentation.
There is a need to map running states between the original
presentation’s widgets and the migrated presentation’s
widgets. This requirement leads to a question of “how to
interchange running states among various widgets?”

Figure 5: Pseudo-codes of Figure 4’s transformation. To answer this question, we can make use of the virtual
widget library, which is mentioned in the overall
architecture section, to map the running state of a PS
widget to the running state of its generic virtual widget.
To realize this mapping, prior to a migration, the running
state of a PS widget and that of its corresponding virtual
widget are synchronized. After the migration, the running
state of the virtual widget can be retrieved and presented
on the migrated PS widget. We can employ similar
processes when transformation rules are applied, by
mapping running states of the original virtual widgets and
that of the migrated virtual widgets. As the state mapping
is unique to each transformation rule, each rule has to
provide a method of the running state transformation.

 shows pseudo-codes of Figure 4’s running state
transformations. In the code, the states of all original
textfields are stored in a Java hash table as shown in

. The transformed textfield displays these states
one at a time, based on the state of the drop-down box.

Item Name Bottle Water
Brand Name Alhambra

Quality 4
Expected Price/Unit $0.75

Figure 6: Hash table that is used in Figure 5.

Event Handling Transformation
Event handling transformation is the most important part
for providing the same level of GUI interaction after GUI
migrations. For example, assuming Figure 4 shows a
GUI migration from a J2SE SWING platform to a J2ME
PersonalJava AWT platform. Before the migration,
entering an item name on a SWING textfield generates a
SWING event, which triggers an action of storing the
item name into a database. After the migration, when the

e 4
Figure 5

SWING textfield transforms to an AWT textfield, the
same action should be able to be triggered even the AWT
textfield only supports AWT event.

To meet this requirement, we use the scalable GUI event
library that is described in the overall architecture section.
Using the previous example, our model abstract both the
SWING event and the AWT event to a generic virtual
event; the associated action is triggered when the virtual
event is received. We can employ similar abstractions
when transformation rules are applied. As the event
mapping is unique to each transformation rule, each rule
has to provide a method of the event handling
transformation. Pseudo-codes of Figur ’s event handling
transformations are shown in . In the code, when
an event is generated from the transformed textfield, our
system pretends to be the corresponding original textfield
and sends out an event for triggering the action.

DISCUSSION
There are 3 important strengths in this project. Firstly, we
introduced the GUI migration concept, which is not
explored by existing cross-platform GUI approaches.
Secondly, we introduced the use of transformations in
fitting a page, which is bigger than the screen size, onto
the screen. Existing approaches mainly employ scrolling
to solve this screen size problem. Thirdly, we provided
flexibility for developers to build application-specific
transformation rules. We found that this customization is
required, as there are many ways for transforming one
widget to another but only developers know which way is
the best for their applications.

However, the current customization process is tedious and
complicated. Developers are required to build each
transformation rule by constructing a Java class. Inside
the class, developers have to write code in specifying how
to transform a widget, its running state, and its event
handling. Another weakness is about the presentation
customization. Currently, developers can customize the
presentation by customizing the PI presentation model,
but this customization is indirect and hard to manipulate.

CONCLUSION & FUTURE WORK
In this paper, we described the techniques for GUI
migrations. To enable GUI migrations, we introduced our
layout and widget transformation for generating various
presentations. We also proposed our running state and
event handling transformations, which can preserve the
running states and end-users’ interaction after migrations.

We would like to improve the two discussed weaknesses
in the future. For the transformation rule customization,
we can provide a graphical tool that can automatically
generate transformation rules once developers provide the
type of transformation rules, the original version of a
scalable widget, and the transformed version of a scalable
widget. For the presentation customization, we can

provide a drag-and-drop interface for developers to
manipulate widgets on the final presentation. To realize
the interface, we need to record the position and the size
of each widget on the final presentation.

REFERENCES

1. Chu, H., Song, H., Wong, C., and Kurakake, S.,
“Seamless Applications over Roam System”,
UbiTools’01 (Part of ACM UbiComp’01), September
2001, http://choices.cs.uiuc.edu/UbiTools01/.

2. Sun Microsystems, “JavaTM 2 Platform, Standard
Edition White Paper”, June 2000.

3. Sun Microsystems, “PersonalJavaTM Technology –
White Paper”, August 1998.

4. NTT DoCoMo, Inc., “i-mode Java Content
Developer’s Guide”, May 2001.

5. Eisentein, J., Vanderdonckt, J., and Puerta, A.,
“Applying Model-Based Techniques to the
Development of UIs for Mobile Computers”, Pro. of
ACM IUI’01, January 2001, pp. 69-76.

6. Harmonia, Inc., “User Interface Markup Language
(UIML) Draft Specification”, January 2000.

7. Olsen, D., Jefferies, S., Nielsen, T., Moyes, W.,
Fredrickson, P., “Cross-modal Interaction using
XWeb”, Proc. of ACM UIST’00, November 2000.

8. Stephanidis, C., Savidis, A., and Akoumianakis, D.,
Tutorial on "Universally accessible UIs: The unified
user interface development". Tutorial in ACM
CHI’2001, 31 March - 5 April 2001.

9. Masui, T., “Evolutionary learning of graph layout
constraints from examples”, Proc. of ACM UIST’94,
November 1994, pp.103 – 108.

10. Szekely, P., Luo, P., and Neches, R., “Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design”,
Proceedings ACM CHI'92, May, 1992, pp. 507-514.

11. Linton, A., Vlissides, M., and Calder, R.,
“Composing User Interfaces with InterViews”, IEEE
Computer, 22(2), February 1989.

12. J. Vanderdonckt, “Knowledge-Based Systems for
Automated User Interface Generation: The
TRIDENT Experience”, Technical Report RP-95-
010, Fac. Univ. de N-D de la Paix, Inst.
D’Informatique, Namur, 1995.

13. D. Thevenin, and Joelle Coutaz, “Plasticity of User
Interfaces: Framework and Research Agenda”, Proc.
of IFIP Interact’99, 30 August – 3 September 1999.

14. F. Bodart, J. Vanderdonckt, “On the Problem of
Selecting Interaction Objects”, Proc. of HCI’94,
August 1994, pp. 163-178.

	ABSTRACT
	KEYWORDS
	INTRODUCTION
	OVERALL ARCHITECTURE
	Before GUI migration
	GUI Migration

	LAYOUT AND WIDGET TRANSFORMATION
	Layout Algorithm
	Widget Transformation

	RUNNING STATE AND EVENT HANDLING TRANSFORMATIONS
	Running State Transformation
	Event Handling Transformation

	DISCUSSION
	CONCLUSION & FUTURE WORK
	REFERENCES

