
Uncovering Recurring Vulnerabilities through
Taint-Extracted Operator Sequences

Chang-Ming Yang∗, Che-Jui Hsu∗, Tao Ban†, Takeshi Takahashi†, Hsu-Chun Hsiao∗‡
∗National Taiwan University, Taiwan

†National Institute of Information and Communications Technology, Japan
‡Academia Sinica, Taiwan

Abstract—Recurring vulnerabilities, caused by code reuse,
spread into new software when developers copy flawed open-
source code. Detecting these vulnerabilities is challenging due to
limitations in accuracy, scalability, and vulnerability-type cover-
age. Recent advancements by Kang et al. [1] improved accuracy
and scalability using taint analysis but had limited coverage. We
propose OPSMATCHER (Operation Sequence Matcher), a com-
prehensive method leveraging taint analysis to extract sequences
of operators and function calls as signatures, and employing
string-matching algorithms and rule-based filters for accurate
signature matching. Experiments show that OPSMATCHER sup-
ports 24 common vulnerability types with 0.768 precision and
0.721 recall, whereas a state-of-the-art tool supports only seven
types with about 0.3 lower accuracy. Additionally, OPSMATCHER
identified eight previously unknown recurring vulnerabilities in
Debian packages, showing superior coverage and effectiveness
over existing methods.

Index Terms—recurring vulnerability detection, taint analysis,
string matching

I. INTRODUCTION

Open-source software (OSS) and libraries have become
ubiquitous across various industries. The 2023 Open Source
Security and Risk Analysis report [2] indicates that 96%
of codebases contained open-source components across 17
industries, including software, automotive, AI, FinTech, and
IoT. Developers often leverage these ready-made functions
to save time and effort. Additionally, generative AI tools
frequently utilize open-source code to generate the required
functionalities based on developer commands. While open-
source code provides significant convenience, it also intro-
duces unique cybersecurity challenges. Vulnerabilities present
in open-source functions can proliferate across diverse and
unrelated projects due to code reuse, leading to what is
known as recurring vulnerabilities [3]. Despite being similar to
the original vulnerabilities, these recurring vulnerabilities are
difficult to detect because their relationships to the original
vulnerabilities are often unclear to developers.

To effectively detect recurring vulnerabilities, a detection
tool must meet three key criteria: accuracy, scalability, and
generality. First, the tool must accurately identify vulnera-
bilities with low false positive and false negative rates to
avoid unnecessary verification of safe code or missing actual
vulnerabilities. Second, it should support a wide range of
vulnerability types or be easily adaptable to various types.
Third, it must be scalable to handle large codebases efficiently.

However, existing approaches typically fall short of meeting
all these objectives simultaneously.

Clone-based approaches [4], [5], [6], [7], [8] focus on
detecting code similarity, offering good scalability and inde-
pendence from specific vulnerability types. However, these
approaches tend to have high false positive and false negative
rates because they focus on function or file similarity rather
than the distinctive characteristics of vulnerabilities. On the
other hand, signature-based approaches [9], [10], [11], [12]
extract vulnerability characteristics, such as execution paths,
and use these signatures to detect vulnerabilities in target code,
thus improving accuracy compared to clone-based ones.

A state-of-the-art signature-based tool, TRACER, proposed
by Kang et al. [1], uses taint analysis to extract vulnerability
signatures accurately. Using a taint analyzer with built-in
detection capabilities for seven types of vulnerabilities [13],
TRACER accurately identifies vulnerability traces and de-
tects potentially vulnerable traces in programs. To uncover
semantically recurring vulnerabilities, it extracts the frequency
of operators and function calls from a trace as signatures,
thereby mitigating the influence of syntax changes. Despite
TRACER’s advances in accuracy and scalability, several lim-
itations remain. Primarily, it relies solely on the frequency
of operators and function calls, which may not adequately
capture the semantic and structural information of the trace for
certain vulnerability types. In addition, extending the method
to support other types of vulnerabilities requires extensive
efforts to develop specialized taint analyzers for each type.

To overcome these challenges, we propose OPSMATCHER
(Operation Sequence Matcher), a comprehensive approach
that leverages a taint-analysis-based framework to enhance
vulnerability detection. OPSMATCHER operates by utilizing
a generic taint-analysis engine to extract traces based on the
data dependency between data initialization points (DIPs) and
data egress points (DEPs). These traces are then used to derive
sequences of operators and function calls, which serve as
signatures encapsulating significant semantic and structural
information. By representing these signatures as sequences,
OPSMATCHER applies string-matching algorithms to compute
their similarity. Moreover, to minimize false positives, heuris-
tic rules are employed to filter out signatures indicative of
patched vulnerabilities. Ultimately, signatures that meet the
similarity threshold and pass patch filtering are reported as
recurring vulnerabilities.

Our implementation of OPSMATCHER on the open source
static taint analysis platform Joern [14] demonstrates its robust
taint analysis capabilities for extracting detailed semantic and
structural information. For sequence similarity computation,
we used Gestalt pattern matching [15] with the longest com-
mon subsequence (LCS) algorithm to balance the embodiment
of structural information and computational speed.

The major contributions of the paper are:
• Enhanced Vulnerability Detection: OPSMATCHER ex-

tends support to 24 common vulnerability types, surpass-
ing the capabilities of many existing tools.

• Precision and Recall: In our evaluations using the Juliet
test suite and Debian packages, OPSMATCHER achieved
a precision of 0.768 and a recall of 0.721, demonstrating
its effectiveness on large-scale ground truth samples.

• Detection of Unknown Vulnerabilities: OPSMATCHER
identified eight previously unknown recurring vulnerabil-
ities in Debian packages, highlighting its practicality.

• Superior Performance: OPSMATCHER showed signifi-
cantly better performance, with a precision of 0.829 and a
recall of 0.745, compared to the existing tool TRACER’s
0.744 precision and 0.321 recall.

The source code, datasets, and recurring vulnerability re-
ports of OPSMATCHER are publicly available online [16].

II. BACKGROUND AND RELATED WORK

Recurring vulnerability detection involves comparing target
code to a database of known vulnerabilities. High similarity
indicates the presence of a recurring vulnerability. This field
has recently gained attention, especially on clone-based and
signature-based methods. Clone-based methods identify sim-
ilar code segments to detect vulnerabilities, while signature-
based use predefined patterns. This section provides a brief
overview of these approaches, highlighting their limitations.

A. Related Work

1) Clone-Based Approaches: Clone-based approaches ex-
tend from code similarity and code clone detection. They
compare each function or file in the target code with those
containing known vulnerabilities. If the two are similar, the
function or file is judged to have a recurring vulnerability.
For example, Kim et al. [6] proposed a scalable approach at
the function granularity level. They applied multilevel abstrac-
tion and normalization on functions to generate fingerprints,
overcoming the influence of renaming. These fingerprints are
stored in a dictionary for efficient lookup, where the key is the
fingerprint length and the value is the list of fingerprint hashes.
When a target code is checked for vulnerability, it is pre-
processed, and its fingerprints are looked up in the dictionary
to identify recurring vulnerabilities.

Clone-based approaches are scalable to large programs
and agnostic to vulnerability types. However, they face the
challenge of high false positives. Vulnerability-related code
typically accounts for a small proportion of the function or
file, and using functions or files as comparison units often

includes irrelevant code. As a result, even if a vulnerability is
patched, the overall similarity may still lead to a false positive.

2) Signature-Based Approaches: To improve accuracy,
signature-based approaches focus on the characteristics of
vulnerabilities, locating vulnerabilities and extracting features
as signatures. For example, Xiao et al. [11] proposed an
approach that leverages program-slicing techniques to extract
vulnerability and patch signatures based on differences be-
tween vulnerable and patched functions. A target function is
considered to have recurring vulnerabilities if it matches the
vulnerability signature but not the patch signature.

Signature-based approaches offer better accuracy than
clone-based ones but suffer from scalability issues and can
still produce false positives and false negatives. This is because
techniques to locate known vulnerabilities are imprecise, and
patches may include changes irrelevant to the vulnerabilities.

3) Taint Analysis-Based Approaches: To address the limita-
tions of signature-based approaches, Kang et al. [1] introduced
TRACER, which leverages a specialized taint analysis engine,
Facebook’s Infer [13]. In taint analysis, a source is where
data is received from external users, and a sink is a security-
sensitive function. TRACER identifies vulnerable source-sink
pairs in programs and extracts data dependency traces from
source to sink. They represent features as frequencies of
operators and function calls along the trace and use cosine
similarity to compare feature vectors.

In their experiments, TRACER successfully discovered
112 recurring vulnerabilities across 273 Debian packages in
C/C++, using a database containing known CVEs and samples
from the Juliet test suite [17] for seven vulnerability types.
This demonstrates the effectiveness of incorporating taint
analysis in detecting recurring vulnerabilities.

B. Motivation

While TRACER effectively detects recurring vulnerabilities,
it has several limitations that motivate the development of our
proposed method. First, TRACER represents features using
frequencies of operators and function calls, capturing only
limited semantic information from traces and losing valuable
structural details. This limited feature representation hinders its
ability to fully characterize semantically recurring vulnerabil-
ities. Second, TRACER’s lack of generality limits its support
for diverse vulnerability types. It relies on a specialized
taint analyzer, originally designed to detect potential bugs, to
identify potentially vulnerable data flows. However, extending
TRACER to support new vulnerability types requires defin-
ing specific abstract domains and designing tailored engines
using abstract interpretation techniques. This process requires
significant time and effort for each new vulnerability type.

For instance, Figure 1a depicts an improper resource shut-
down vulnerability, a type that TRACER cannot handle. This
type of vulnerability, characterized by the failure to release or
incorrectly releasing resources, requires intricate handling. To
support detection of this vulnerability type, a detector must be
capable of tracking file descriptor operations to ensure proper
resource shutdown. Despite the apparent simplicity of this

vulnerability type, its detection requires scrutinizing various
conditions, including all possible combinations of open and
close function calls. Thus, extending TRACER to support
the detection of improper resource shutdown would consume
substantial effort and time, as it focuses on the occurrences
rather than the ordering of the function calls.

1 void Improper_Resource_Shutdown(){
2 int data = -1;
3 data = open(...);
4 if (data != -1)
5 fclose((FILE *)data);
6 }

(a) source code

[3 - open, 4 - data,
5 - (File *),5 - fclose]

[open, notEquals, fclose]

(b) vulnerable trace and signature
Fig. 1: CWE-404 (Improper resource shutdown) example

III. DESIGN AND IMPLEMENTATION

Fig. 2: Architecture of OPSMATCHER

In order to enhance the generality of our recurring vulnera-
bility detection framework, we devised solutions to address
the above challenges. These solutions are presented as a
tool named OPSMATCHER. To ensure broad applicability, we
utilize a generic taint-analysis engine capable of statically
examining how relevant data propagates within the code,
regardless of the vulnerability type, thereby facilitating the
extraction of relevant traces.

Upon considering the most suitable features to encapsulate
vulnerabilities, we recognize the diverse nature of vulnerability
types. Relying on a single type of feature to encompass all
vulnerabilities is impractical. Certain vulnerabilities arise from
specific patterns of operation sequencing, while others hinge
on the manipulation of data values, and still others have
various root causes. To effectively address the most commonly
seen vulnerability types, we narrow our focus to vulnerabilities
associated with operation sequencing. This category includes
common vulnerabilities such as command injection, format

string, and memory leaks. As a result, we choose to extract
sequences of operators and function calls from the traces.
This method preserves rich semantic and structural details by
capturing the logical order of operations within the code.

Figure 2 provides an overview of OPSMATCHER. It com-
prises three main components: Known Vulnerability Process-
ing, Target Code Processing, and Signature Matching. Known
Vulnerability Processing examines code known to contain
vulnerabilities and generates signatures to represent them.
Target Code Processing analyzes the target code and gener-
ates signatures for any suspicious traces it identifies. Finally,
Signature Matching compares the target signature with the
vulnerability signature to identify recurring vulnerabilities.

Algorithm 1: Extracting Vulnerable Traces

/* DIPi&DEPi are from CVE reports. */
Input: {DIPi, DEPi|i = 1, . . . , n}, SourceCode
Output: Traces
Traces← ϕ
CPG← Joern.BuildCPG(SourceCode)
for i = 1 : n do

t← TraceQuery(CPG,DIPi, DEPi)
Traces← Traces ∪ t

Algorithm 2: Extracting Target Traces

/* DIPi&DEPj are predefined. */
Input: {DIPi|i = 1, . . . ,m}, {DEPj |j = 1, . . . , n},

SourceCode
Output: Traces
Traces← ϕ
CPG← Joern.BuildCPG(SourceCode)
for i = 1 : m do

for j = 1 : n do
t← TraceQuery(CPG,DIPi, DEPj)
Traces← Traces ∪ t

Algorithm 3: Generating Signatures

/* traces are from Alg. 1 or 2. */
trace: [cpgNode0, cpgNode1, . . . , cpgNoden]
signature← []
for item in trace do

if typeof(item) == ID then
/* Collect ops using only the ID

but no propagation */
op← queryJoernforOp(item)

else
op← item.op

if isSemantic(op) then
signature.append(op)

A. Known Vulnerability Processing
OPSMATCHER extensively leverages a generic and well-

developed taint analysis engine, Joern [14], for trace extrac-

tion. Joern is known for constructing a code property graph
(CPG) directly from source code, upon which it conducts trace
analysis. To capture the logic behind data propagation, Joern
extracts traces from a data initialization point (DIP) to a data
egress point (DEP) using taint analysis. A DIP is defined as
a line of code responsible for receiving data from external
sources or initializing a variable, while a DEP refers to a line
of code associated with a security-sensitive function or the
final operation involving a variable. The inclusion of variable
operations in the signatures is critical for OPSMATCHER, as
many patches involve checking variable values.

In the Known Vulnerability Processing phase, OPS-
MATCHER’s workflow comprises two key steps: (1) extracting
vulnerable traces and (2) generating vulnerability signatures.

1) Extracting Vulnerable Traces: DIPs and DEPs are iden-
tified manually from the Common Vulnerabilities and Ex-
posures (CVE) database [18]. Algorithm 1 depicted OPS-
MATCHER’s procedure to utilize these DIPs and DEPs. OPS-
MATCHER uses Joern to trace from DIP to DEP, such that
these traces represent the root cause of vulnerabilities. How-
ever, the extracted traces include details such as assignments
and callsites of tainted data, which are not yet suitable for our
purposes. Subsequent processing is thus imperative, guiding
OPSMATCHER to the next step.

2) Generating Vulnerability Signatures: As mentioned be-
fore, our objective is to characterize the root causes of
vulnerabilities through a sequence of actions and functions
involved. As Algorithm 3 shows, in the signature generation
process, OPSMATCHER utilizes traces obtained from Joern,
iterates through each node in the trace to extract representing
information. If a node solely records the callsite of tainted
data, additional extraction is performed to obtain associated
operations from the node using Joern. These operations are
not explicitly included in the traces by Joern as they solely
manipulate the vulnerable data without propagating it further.
Nonetheless, these actions play a pivotal role in representing
the functionality of the code. They may prove instrumental in
rectifying vulnerabilities by facilitating value checks or serving
as integral components of critical functions.

For steps where operations can be directly returned by Joern,
OPSMATCHER extracts them directly. Before incorporating
them into the signature, we will check if they are semantic. Op-
erations like assignment, access, and casting operators would
be ignored because they are less relevant to the semantics of
traces. TRACER also does not consider them features. This
approach allows OPSMATCHER to adapt Joern’s traces to the
required format for representing a signature.

As an illustration, Figure 1b shows the vulnerable trace and
signature of improper resource shutdown by OPSMATCHER.
To derive the vulnerability signature, operators and func-
tion calls are sequentially extracted from the trace. In non-
propagating operations such as notEquals, the associated
nodes only record the tainted data. Consequently, it is nec-
essary to enrich the trace by adding the detailed operations
on the corresponding nodes to generate the signature, that is,
data to notEquals. In contrast, non-semantic operations

such as (File *) would be ignored.

B. Target Code Processing

Given a repository of known vulnerability signatures, OPS-
MATCHER in the Target Code Processing phase similarly
examines the target code and produces signatures for any
potentially suspicious traces within it.

1) Extracting Target Traces: OPSMATCHER meticulously
identifies potential vulnerable traces within source code by em-
ploying a set of predefined DIPs and DEPs. Using Algorithm
2, it explores all possible combinations of DIPs and DEPs to
extract candidate vulnerable traces as target traces. However,
not all DIP-DEP pairings yield valid candidates, particularly if
the DEP precedes the DIP. In such instances, OPSMATCHER
relies on Joern’s implementation to handle these complexities.

1 void Double_Free(){
2 char* ptr = malloc(0x100);
3 if (ptr == NULL){ exit(-1); }
4 free(ptr);
5 free(ptr);
6 }

(a) source code

[2 - malloc, 3 - ptr, 4 - free]

[malloc, equals, free]

(b) target trace and signature 1

[2 - malloc, 3 - ptr, 4 - free, 5 - free]

[malloc, equals, free, free]

(c) target trace and signature 2
Fig. 3: Juliet test suite (CWE-415: Double free)

In the scenario depicted in Figure 3, the functions malloc()
and free() are included in the predefined list of DIPs and
DEPs, respectively. OPSMATCHER identifies occurrences of
these function calls and employs Joern to retrieve traces span-
ning from the DIP to the DEP. Consequently, OPSMATCHER
produces two distinct traces as illustrated in Figures 3b and
3c. These traces depict the sequence of operations related to
memory allocation and deallocation in the source code, serving
as candidate vulnerable traces.

2) Generating Target Signatures: To facilitate the com-
parison between the target signatures and the vulnerability
signatures, it is necessary to enrich the target traces obtained
from Joern with additional operation details. To accomplish
this, OPSMATCHER employs Algorithm 3 to process these
candidate traces and generate target signatures. Subsequently,
these target signatures are compared with the vulnerability
signatures stored in the database. For example, Figures 3b and

3c depict the corresponding target signatures extracted from
the traces after the enrichment process.

C. Signature Matching

After obtaining all the target signatures, OPSMATCHER
attempts to match them against the vulnerability signatures
of known CVEs. OPSMATCHER employs the Gestalt Pattern
Matching algorithm [15], with the longest common subse-
quence (LCS) as a similarity measure. However, challenges
arise when the analyzed code includes patches intended to
fix previously reported vulnerabilities. These patches may
change only a few lines of code, resulting in nearly iden-
tical code before and after the changes. Consequently, the
corresponding signatures exhibit high similarity. The minimal
changes introduced by patches do not significantly affect the
similarity scores, potentially leading to misleading matches.
To address this issue and prevent reporting patched sections
as vulnerabilities, we have integrated a patch filtering phase
into the process.

1) Similarity Computation: Similarity Computation in-
volves assessing the similarity between a target signature
and a vulnerability signature. Given that our signatures are
represented as sequences, we utilize GPM based on the LCS
as an effective similarity measure. Using LCS, rather than
substrings as in the original GPM, mitigates the impact of in-
tervening elements and captures all ordered common elements
between two sequences. This method allows us to identify the
ordered common operations between two traces while ignoring
operations irrelevant to the tainted data.

To implement this, we first determine the LCS between
the target signature and the vulnerability signature. We then
compute the similarity using GPM. Let t and v denote the
target signature and vulnerability signature, respectively, and
let LCS() be the function that obtains the LCS of two
sequences. The similarity via GPM is calculated as follows:

Sim(t, v) =
2× |LCS(t, v)|
|t|+ |v|

, (1)

where | · | indicates the length of the sub-sequence or string.
This ensures a balanced comparison by considering the LCS

length relative to the lengths of the original sequences.
After computing similarity, it is necessary to evaluate

whether two signatures are similar enough to identify a re-
curring vulnerability that shares the same logic as the original
one. This requires setting a threshold to effectively distinguish
the degree of likeness between the two signatures, even when
they are short. This is important because, with short signatures,
small changes in the length of their LCS can significantly
impact the similarity measure.

Consequently, we conducted a small-scale experiment
(§IV-A3), whose result suggests a threshold between 0.85
and 0.95 for effectively distinguishing similar signatures, par-
ticularly for short ones. If the similarity score falls below
the threshold, we conclude that the target signature does not
represent a recurrence of the vulnerability, while scores above
prompt further verification in the Patch Filtering phase.

Take the target trace from Figure 3c as an example, its
signature ([malloc, equals, free, free]) is compared with the
signatures of double-free ([malloc, equals, free, free]) and
use-after-free ([malloc, equals, free, printf]) in the vulnera-
bility database. Using GPM, we compute their corresponding
similarity as follows:

Sim(t, df) =
2× |[malloc, equals, free, free]|

4 + 4
= 1.000

(2)

Sim(t, uaf) =
2× |[malloc, equals, free]|

4 + 4
= 0.750 (3)

By above, we determine that this target signature is closer
to the vulnerability signature of double-free, despite the high
similarity between the two vulnerability signatures. Based on
the established threshold, we can conclude that it is more likely
to be a recurring vulnerability of double-free.

2) Patch Filtering: Patch Filtering involves identifying and
removing target signatures that appear to have been patched.
Some patches might only make small changes to the original
code, so the vulnerable code and patched code, along with
their traces, remain very similar. For example, some patches
might add a check to assert the variables, include a necessary
operation for safety, or remove a problematic operation. There
are different ways to patch different vulnerabilities, so we
create filtering rules for each type of vulnerability. To create
these rules, we look at both the patch methods provided by
the Juliet test suite and previous research.

We employ simple, vulnerability-specific filtering rules to
identify recurring vulnerabilities efficiently. If a target sig-
nature resembles a known vulnerability but fails to meet
the corresponding filtering criteria, we assume it has been
patched and disregard it. Conversely, signatures that pass these
filters are flagged as potential recurring vulnerabilities for
further analysis. For instance, the filtering rule for use-after-
free vulnerabilities requires operations on deallocated memory.
Thus, a signature resembling a use-after-free vulnerability
without such operations is considered patched and excluded
from further analysis.

For example, despite the high similarity score of 0.857
observed between the target signature in Figure 3b and the vul-
nerability signature ([malloc, equals, free, free]) of double-
free, the former should be excluded by a filtering rule specific
to double-free vulnerabilities, which requires more than one
deallocating operation for the tainted data. This exclusion is
warranted because the target signature contains only a single
deallocating operation, free. In contrast, the target signature
in Figure 3c should be considered indicative of a recurring
double-free vulnerability, as it satisfies the filtering rule by
including two deallocating operations, free. Consider another
scenario exemplifying the efficacy of patch filtering, involving
a use-after-free vulnerability, as depicted in Figure 4. Despite a
high similarity score exceeding the threshold (0.857) between
the trace from malloc to free, patch filtering incorporates a

rule mandating the presence of a printf call subsequent to the
vulnerable code sequence.

1 int main() {
2 int * x = NULL;
3 x = (int *)malloc(5*sizeof(int));
4 if (x == NULL){ exit(-1); }
5 for(size_t i=0; i < 5; i++)
6 x[i] = 5;
7 free(x);
8 }

Fig. 4: A demo c program without Use After Free

IV. EXPERIMENTAL RESULTS

This section presents the results of our comprehensive
evaluation designed to address four key research questions.
First, we investigate the effectiveness of OPSMATCHER in
detecting recurring vulnerabilities across various types (RQ1).
Second, we compare OPSMATCHER with the state-of-the-art
tool, TRACER, to assess its relative efficacy (RQ2). Third,
we examine the scalability of OPSMATCHER when applied
to large-scale projects, evaluating its execution time in more
extensive environments (RQ3). Finally, we evaluate the effec-
tiveness of OPSMATCHER’s Patch Filtering method, determin-
ing its impact on the overall performance and accuracy of the
vulnerability detection process (RQ4).

A. Experimental Settings

We implemented OPSMATCHER in Python and utilized
Joern version 1.1.1641 for our analysis. TRACER was down-
loaded from its GitHub repository and configured without any
structural modifications, aside from a minor adjustment to
its signature database. All experiments were conducted on a
machine running Ubuntu 20.04.6 LTS, equipped with an AMD
Ryzen™ 9 5950X processor.

1) Dataset: Our experiment uses two collections of source
code files written in C/C++. The first collection is the Juliet
test suite, a comprehensive set of samples that includes both
vulnerable functions and their corresponding patched versions,
providing a reliable ground truth for evaluation. We focused
on 24 types of vulnerabilities, including 7 types natively
supported by TRACER and 17 additional types that we
extended support for. Each vulnerability type in the Juliet test
suite is represented by multiple variants exhibiting the same
underlying issue. From each vulnerability type, we selected a
pivot example to extract vulnerability signatures, which served
as the known vulnerability signatures. The remaining 5,598
samples, covering all 24 types, are referred to as the Juliet test
suite for performance evaluation. Among 24 types, TRACER
natively supports the following vulnerabilities: integer over-
flow, integer underflow, buffer overflow, command injection,
format string, use-after-free, and double-free.

We also evaluate 233 open-source Debian packages (Debian
suite). For RQ2, packages were selected if they contained
TRACER-detected vulnerabilities and excluded if they caused
build errors in TRACER, resulting in a final selection of
24 Debian packages. Unlike the Juliet test suite, the Debian
suite lacks ground truth (e.g., vulnerable functions, patches),
limiting comprehensive evaluation. However, it offers insights
into TRACER’s real-world capabilities.

2) Evaluation Criteria: In the Juliet test suite, the ground
truth is established using traces extracted from given pack-
ages. Let’s denote the DIP-DEP pairs associated with these
traces as G = {(DIP g

i , DEP g
i)|i = 1, . . . , n}, where n

is the total number of ground truth traces. For the evalu-
ation package, a successful match is identified by finding
a signature that matches a known vulnerable signature, sur-
passing a predetermined threshold. Let’s denote the DIP-
DEP pairs associated with these detected vulnerabilities as
D = {(DIP d

j , DEP d
j)|j = 1, . . . ,m}, where m is the total

number of detected vulnerabilities.
A DIP-DEP pair (DIP d

j , DEP d
j) is considered a true

positive (TP) if and only if there exists a DIP-DEP
pair (DIP g

i , DEP g
i) in G such that: DIP g

i == DIP d
j

and DEP g
i == DEP d

j . Conversely, a DIP-DEP pair
(DIP d

j , DEP d
j) is considered a false positive (FP) if it does

not match any pairs in G. Additionally, a DIP-DEP pair
(DIP g

j , DEP g
j) is considered a false negative (FN) if there is

no corresponding DIP-DEP pair (DIP d
i , DEP d

i) in D such
that: DIP g

i == DIP d
j and DEP g

i == DEP d
j .

These definitions can be extended to the source-sink pairs
as defined in TRACER. In this context, sources are a subset
of DIPs that exclude variable declarations, and sinks are a
subset of DEPs that exclude variable destructions. For the sake
of brevity, the detailed source-sink-based definitions of true
positives, false positives, and false negatives are omitted.

In this study, we utilize precision and recall as the primary
metrics for evaluating the performance of our detection sys-
tem. These metrics are essential for determining the system’s
effectiveness in correctly identifying true vulnerabilities while
minimizing false detections.

Precision assesses the accuracy of the detection system. It
is defined as the ratio of TP to the total number of positive
detections (the sum of TP and FP). Mathematically, precision
is represented as: Precision = TP

TP+FP .
Recall evaluates the detection system’s ability to identify

all actual vulnerabilities. It is defined as the ratio of TP to the
total number of actual vulnerabilities (the sum of TP and FN).
Mathematically, recall is represented as: Recall = TP

TP+FN .
3) Parameter Tuning: As OPSMATCHER’s vulnerability

detection is determined by a predefined similarity threshold,
the choice of this threshold would impact OPSMATCHER’s
performance. So we carefully selected a threshold value that
maximizes the F1 score, the harmonic mean of precision and
recall, on a sampled dataset. Mathematically, the F1 score is
represented as: F1-score = precision×recall

precision+recall .
Our experiment on the Juliet test suite revealed OPS-

MATCHER’s performance across different thresholds (Fig-

Fig. 5: Performance under different thresholds

ure 5). OPSMATCHER achieves near-optimal F1 scores with
thresholds between 0.85 and 0.95, confirming its effectiveness
in detecting recurring vulnerabilities by focusing on highly
similar signatures. We recommend this range for balancing
precision and recall. For a fair comparison with TRACER, we
evaluate OPSMATCHER at a threshold of 0.85.

B. RQ1: Effectiveness

To address RQ1, we evaluated OPSMATCHER in detecting
recurring vulnerabilities across various types. We considered
all 24 vulnerability types (referred to as ”All”) and specif-
ically examined OPSMATCHER’s performance on types not
supported by prior work. We labeled the vulnerability types
supported by TRACER as ”original” and those exclusively
supported by OPSMATCHER as ”extended.” We applied OPS-
MATCHER to detect the recurring vulnerabilities in both the
Juliet test suite and the Debian suite.

For the Juliet test suite, the performance evaluation is based
on the precision and recall (§IV-A2). For the Debian suite, as
there is no ground truth available, we manually inspected the
reported traces to determine if they were indeed vulnerable.
Consequently, the number of false negatives is not available
for the Debian suite; therefore, we only report the precision
of the detection.

Target Type TP FP FN Prec Recall Time

Juliet
All 4035 1222 1563 0.768 0.721 52 s

Orig. 1661 342 570 0.829 0.745 -
Ext. 2374 880 993 0.730 0.705 -

Debian
All 14 5 - 0.667 - 5819 s

Orig. 6 4 - 0.429 - -
Ext. 8 1 - 0.875 - -

TABLE I: Effectiveness of OpSMatcher

Table I summarizes the results, including the number of true
positives, false positives, false negatives, precision, recall, and
average execution time. On the Juliet test suite, which provides
ground truth information for assessing false negatives, OPS-
MATCHER achieved a precision of 0.768 and a recall of 0.721.
For the original vulnerability types, OPSMATCHER attained a
precision of 0.829 and a recall of 0.745. For the extended vul-
nerability types, OPSMATCHER achieved a precision of 0.730
and a recall of 0.705. These results show that OPSMATCHER

can effectively detect recurring vulnerabilities across various
types with high precision and recall.

Package Num Type
abyss 2.2.4 2 Memory Leak
anthy 0.4 1 Double Free

antimony 0.9.3 1 Mismatched Memory Management Routines
ascd 0.13.2 2 Integer Overflow to Buffer Overflow

gap-guava 3.15 2 Integer Overflow to Buffer Overflow
1 Memory Leak

htmldoc 1.9.7 2 Duplicate Operations on Resource
rlwrap 0.43 2 Memory Leak
sweed 3.2.1 1 Integer Overflow to Buffer Overflow

TABLE II: List of vulnerabilities detected by OPSMATCHER

In the Debian suite, which resembles a real-world sce-
nario, OPSMATCHER detected 14 recurring vulnerabilities, as
shown in Table II, with an overall precision of 0.667 across
all 24 vulnerability types. Notably, eight of these recurring
vulnerabilities belong to the extended type, which TRACER
cannot detect. Furthermore, to our knowledge, all of these
newly detected vulnerabilities had never been reported before.
These findings highlight OPSMATCHER’s capability to detect
a wide range of vulnerabilities with notable precision and
recall, particularly extending the detection coverage beyond
what previous tools like TRACER could achieve.

Vulnerability Type Prec Recall
Relative Path Traversal 1.000 0.517
Absolute Path Traversal 1.000 0.504
OS Command Injection 1.000 0.621

LDAP Injection 1.000 0.658
Process Control 1.000 0.836

Uncontrolled Format String 0.615 0.868
Integer Overflow 0.847 0.883

Integer Underflow 1.000 0.880
Unexpected Sign Extension 1.000 0.867

Signed to Unsigned Conversion Error 1.000 0.845
Heap Inspection 0.162 1.000

Plaintext Storage of Password 0.405 0.882
Divide by Zero 0.619 0.871

Resource Exhaustion 1.000 0.896
Memory Leak 0.375 0.723

Improper Resource Shutdown 0.528 0.571
Double Free 1.000 0.533

Use After Free 0.371 0.214
Uncontrolled Search Path Element 1.000 0.808

Free Memory Not on Heap 0.631 0.820
Reachable Assertion 1.000 0.865

Duplicate Operations on Resource 0.529 0.789
Integer Overflow to Buffer Overflow 1.000 0.793

Mismatched Memory Management Routines 0.944 0.666
Total 0.768 0.721

TABLE III: Performance statistics for each vulnerability type

Additionally, Table III illustrates the precision and recall
for each vulnerability type. These results demonstrate that
OPSMATCHER can effectively detect vulnerable functions
across a majority of the vulnerability types. This compre-
hensive coverage underscores OPSMATCHER’s robustness and
reliability in identifying vulnerabilities, thereby offering a
significant advantage over existing tools.

While OPSMATCHER effectively detects recurring vulner-
abilities, it is not immune to FPs. Upon analyzing detection
results for real-world projects, we identified that many FPs
stem from illogical traces extracted by Joern. For instance,
Figure 6 shows a code segment from gap-guava-3.15+ds,

where Joern detects illogical traces. Specifically, Joern’s taint
analysis engine extracts traces from fscanf in line 7 to
malloc in both line 2 and 4. However, these traces are
deemed unreasonable as they assign values to memory before
allocation, contradicting expected program behavior. More-
over, there is no feasible execution path to justify such traces.

1 int generator_matrix(..., MATRIX *M){
2 M->m = (int **)malloc(...);
3 for (i=0; i<M->rows; i++)
4 M->m[i] = (int *)malloc(...);
5 for (i=0; i<M->rows; i++)
6 for (j=0; j<M->cols; j++)
7 fscanf(..., &M->m[i][j]);
8 }

Fig. 6: Illogical traces in gap-guava-3.15+ds

C. RQ2: Comparison with TRACER

To ensure fair comparison between OPSMATCHER and
TRACER, we evaluate on the 7 vulnerability types sup-
ported by TRACER, a subset of OPSMATCHER’s vulnerability
database. Additionally, we employ the same base samples from
the Juliet test suite to extract signatures in both OPSMATCHER
and TRACER. Target codes are taken from the Juliet test suite,
serving as the ground truth for detecting and focusing on the
correctness of reported DIPs and DEPs.

Table IV reveals that OPSMATCHER exhibits superior pre-
cision and recall compared to TRACER, albeit with lower
efficiency. For ground truth, OPSMATCHER achieves a pre-
cision of 0.829 and a recall of 0.745. In contrast, TRACER
achieves a precision of 0.744 and a recall of 0.321, performing
approximately 50 times faster than OPSMATCHER.

Further analysis by vulnerability type indicates that OPS-
MATCHER achieves higher precision in almost all vulnerability
types except for format string, while exhibiting lower recall
only in command injection and format string. Notably, OPS-
MATCHER achieves a precision of 1.000 in integer underflow,
buffer overflow, command injection, and double free, whereas
TRACER achieves over 0.9 precision and recall only in
command injection and format string. For real-world projects,
OPSMATCHER reports 10 true positives and 5 false positives,
with an average execution time of 5.8 hours. In contrast,
TRACER reports 13 true positives and 4 false positives, with
an average execution time of 6.7 minutes.

Our observations reveal several factors contributing to these
differences. Firstly, the Debian packages used in this experi-
ment have been previously analyzed by TRACER, potentially
biasing the selection towards packages where TRACER per-
forms well. Secondly, Infer, the tool utilized by TRACER,
boasts powerful engines for detecting potential vulnerabilities,
enhancing its efficacy in identifying traces flagged by Infer as
potential vulnerabilities. On the other hand, OPSMATCHER

Fig. 7: Distribution of Execution Time of OPSMATCHER

extracts all traces given common DIPs and DEPs in vul-
nerabilities, without employing specialized detection engines
for each vulnerability type. This approach results in longer
extraction times and higher false positives and false negatives
for OPSMATCHER, despite incorporating more semantic and
structural features. Furthermore, false negatives observed in
OPSMATCHER can be attributed to limitations in Joern, the
taint analysis engine used. Notably, Joern struggles with ana-
lyzing pointers successfully, leading to the omission of certain
traces found by TRACER.

We also conduct experiments comparing feature selection
in OPSMATCHER and TRACER. The results reveal that
OPSMATCHER’s operation sequence outperforms TRACER’s
operation frequency. With a threshold of 0.85, OPSMATCHER
achieves a precision of 0.768, while TRACER’s feature yields
only 0.295 (Table V). This highlights the operation sequence’s
superiority in representing trace semantics and structure.

D. RQ3: Scalability

We evaluate OPSMATCHER’s scalability, expanding on the
effectiveness assessment of Debian packages in Section IV-B.
OPSMATCHER’s average execution time of 5819 seconds per
Debian package (Table I) indicates significant time investment
for large-scale projects.

To ascertain the reasons behind the prolonged execution
time, we delve into the time distribution of each step. Notably,
we discover that Feature Extraction consumes 98% of the
average time, equivalent to 5696 seconds. During Feature
Extraction, the process of collecting operations solely uti-
lizing taint data without propagating it necessitates continu-
ous engagement with Joern to retrieve pertinent information.
However, leveraging Joern entails the overhead of building
the Joern server, sending requests, and awaiting responses,
leading to considerable time consumption, particularly when
processing features for numerous traces in larger projects.

Figure 7 provides insight into the relationship between
execution time and the number of traces for Debian packages.
Evidently, as OPSMATCHER extracts more traces, the total
execution time proportionally increases. Consequently, our

TABLE IV: Comparison of OPSMATCHER and TRACER
Target Vulnerability Type OpSMatcher TRACER

TP FP FN Prec Recall Time TP FP FN Prec Recall Time

Juliet

OS Command Injection 187 0 114 1.000 0.621 - 301 11 0 0.965 1.000 -
Uncontrolled Format String 310 194 47 0.615 0.868 - 357 24 0 0.937 1.000 -

Integer Overflow 511 92 68 0.847 0.883 - 0 0 579 0.000 0.000 -
Integer Underflow 383 0 52 1.000 0.880 - 0 0 435 0.000 0.000 -

Double Free 172 0 151 1.000 0.533 - 59 97 264 0.378 0.183 -
Use After Free 33 56 121 0.371 0.214 - 0 30 154 0.000 0.000 -

Integer Overflow to Buffer Overflow 65 0 17 1.000 0.793 - 0 85 82 0.000 0.000 -
Total 1661 342 570 0.829 0.745 54 s 717 247 1514 0.744 0.321 0.94 s

Debian
Original 3 4 - 0.429 - - 13 4 - 0.765 - -
Extended 7 1 - 0.875 - - - - - - - -

Total 10 5 - 0.667 - 21043 s 13 4 - 0.765 - 404 s

Feature PF Type TP FP FN Prec Recall

Sequence

w/
All 4035 1222 1563 0.768 0.721

Orig. 1661 342 570 0.829 0.745
Ext. 2374 880 993 0.730 0.705

w/o
All 4059 4776 1539 0.459 0.725

Orig. 1679 2372 552 0.414 0.753
Ext. 2380 2404 987 0.497 0.707

Frequency -
All 4060 9700 1538 0.295 0.725

Orig. 1664 4327 567 0.278 0.746
Ext. 2396 5373 971 0.308 0.712

TABLE V: Effect of Feature Selection & Patch Filtering (PF)

future focus lies in enhancing the scalability of OPSMATCHER
by mitigating the execution time of feature extraction.

E. RQ4: Effectiveness of Patch Filtering

Experiments comparing OPSMATCHER’s performance with
and without patch filtering show its efficacy in reducing false
positives. With patch filtering, it reported 1,222 false positives
(precision: 0.768); without it, 4,776 false positives (precision:
0.459). This represents a substantial precision improvement
of about 0.3, confirming patch filtering’s effectiveness in
discerning and eliminating patched target signatures that would
otherwise be misidentified as vulnerabilities (Table V).

V. CONCLUSION

This paper introduces OPSMATCHER, a versatile taint-
analysis-based framework designed for recurring vulnerabil-
ity detection. By leveraging a robust taint analysis engine,
OPSMATCHER extracts a comprehensive set of traces, en-
abling the detection of a wide range of vulnerability types.
Moreover, OPSMATCHER excels in capturing semantic and
structural features from the code, enhancing its effectiveness
in vulnerability detection. Our empirical study underscores
OPSMATCHER’s efficacy, demonstrating its ability to achieve
high precision and recall rates. OPSMATCHER successfully
identifies previously unknown recurring vulnerabilities across
various real-world projects, showcasing its practical appli-
cability and effectiveness. We envision OPSMATCHER as a
valuable tool for developers, aiding in proactive vulnerability
detection during development and reducing the risk of security
breaches and financial losses.

ACKNOWLEDGEMENT

This research was supported in part by the National Science
and Technology Council (NSTC) of Taiwan under grants 112-
2223-E-002-010-MY4, 113-2634-F-002-001-MBK, National
Taiwan University under grant NTU-113L7871, and the Min-
istry of Education, Science, Sports, and Culture, Grant-in-Aid
for Scientific Research (C) 22K12038, JAPAN.

REFERENCES

[1] W. Kang, B. Son, and K. Heo, “Tracer: Signature-based static analysis
for detecting recurring vulnerabilities,” in ACM CCS, 2022.

[2] “Open source security and risk analysis report,” 2023. [Online]. Avail-
able: https://www.synopsys.com/software-integrity/resources/analyst-
reports/open-source-security-risk-analysis.html

[3] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in IEEE/ACM ASE, 2010.

[4] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in IEEE S&P, 2015.

[5] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: An automated
vulnerability detection system based on code similarity analysis,” in
ACSAC, 2016.

[6] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in IEEE S&P, 2017.

[7] Y. David, N. Partush, and E. Yahav, “Firmup: Precise static detection of
common vulnerabilities in firmware,” in ASPLOS, 2018.

[8] H. Jang, K. Yang, G. Lee, Y. Na, J. D. Seideman, S. Luo, H. Lee, and
S. Dietrich, “Quickbcc: Quick and scalable binary vulnerable code clone
detection,” in ICT Systems Security and Privacy Protection, 2021.

[9] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Leveraging
semantic signatures for bug search in binary programs,” in ACSAC, 2014.

[10] S. Eschweiler, K. Yakdan, E. Gerhards-Padilla et al., “discovre: Efficient
cross-architecture identification of bugs in binary code.” in NDSS, 2016.

[11] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu,
W. Huo, W. Zou, and W. Shi, “MVP: Detecting vulnerabilities using
Patch-Enhanced vulnerability signatures,” in USENIX, 2020.

[12] Y. Xiao, Z. Xu, W. Zhang, C. Yu, L. Liu, W. Zou, Z. Yuan, Y. Liu,
A. Piao, and W. Huo, “Viva: Binary level vulnerability identification
via partial signature,” in IEEE International Conference on Software
Analysis, Evolution and Reengineering, 2021.

[13] C. Calcagno and D. Distefano, “Infer: An automatic program verifier for
memory safety of c programs,” in NASA Formal Methods, M. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 459–465.

[14] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discov-
ering vulnerabilities with code property graphs,” in IEEE S&P, 2014.

[15] J. W. Ratcliff and D. E. Metzener, “Pattern-matching-the gestalt ap-
proach,” Dr Dobbs Journal, vol. 13, no. 7, p. 46, 1988.

[16] “Opsmatcher,” 2024. [Online]. Available:
https://github.com/csienslab/OpSMatcher

[17] P. E. Black and P. E. Black, Juliet 1.3 test suite: Changes from 1.2.
US Department of Commerce, National Institute of Standards and
Technology, 2018.

[18] “Common vulnerabilities and exposures,” 2023. [Online]. Available:
https://cve.mitre.org/index.html

