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Abstract—Loot boxes, a common revenue model in contempo-
rary mobile games, offer players the opportunity to acquire
random rewards. However, their fairness has been the subject
of numerous disputes worldwide, in part because game players
cannot directly observe the logic of the loot-box mechanism.
Apple App Store has required app providers to disclose the
odds associated with their loot boxes to customers since 2017,
and Google Play followed suit beginning in 2019. However, a
practical method for allowing the public to verify whether a
game complies with its probability statements has not pre-
viously been devised. Existing methods, such as source-code
audits and statistical examination of player-reported samples,
are misaligned with the game companies’ interests, and/or
may encounter biased samples. Therefore, this paper proposes
a verifiable loot-box process without disclosing their source
codes. We utilize two cryptographic components, functional
commitment and public randomness beacon, to devise a verifi-
able loot-box process comprising a verifiable loot-box function
and a verifiable random source. In particular, we propose two
protocols: one for probability verification and the other for
loot-box opening. The former allows players to verify the win-
ning probability of loot boxes using publicly verifiable random
sources. The latter establishes a mechanism whereby game
servers and players can agree on a random input, ensuring that
neither party can manipulate the outcome. Our implementa-
tions of both these protocols, along with experiments to evaluate
their performance, demonstrate that they are practical.

Index Terms—security, cryptography, loot box, verification.

1. Introduction

Loot boxes are virtual game items commonly utilized
to allow players to spend in-game currency and receive
a random in-game item in return. Currently, most games
incorporating loot-box mechanisms are mobile free-to-play
(F2P) games, which allow players to use at no cost but
charge fees if the players require supplementary services
such as obtaining rare items. The loot-box business model
has gained considerable popularity recently and is currently
dominant in the gaming industry. In 2023, F2P games were
responsible for generating 80% of the total revenue in the
gaming industry [1].

Psychological and social science research has demon-
strated a strong correlation between individual engagement

with loot boxes and the severity of problem gambling [2],
[3], [4], [5]. This correlation is even more pronounced
among adolescent players [6]. Some studies have suggested
that, to disentangle loot boxes from problem gambling, new
regulations should mandate that game companies disclose
the probability of obtaining rare items in loot boxes. Several
countries and platforms have already published regulations
regarding loot boxes through legal power or self-regulation
(for details, see Appendix A).

Nevertheless, there is currently no practical means of as-
suring that published probabilities are accurately reflected in
the actual game implementations. Numerous disputes have
arisen from players’ suspicions that the winning probabilities
did not match those declared by the game companies [7],
[8], [9]. This situation has prompted some players to invest
extensively in loot-box purchases and conduct statistical
testing to present a proof of misconduct. Unfortunately,
employing this method to validate the probability of rare
items would be prohibitively expensive for most.

To mitigate the financial burden on individual players,
a recent development introduces a third-party verification
platform to collect crowd-reported samples for statistical
testing [10]. Players can submit loot-box opening records,
supported by screen-recorded videos for authentication. The
platform then evaluates the accuracy of companies’ proba-
bility statements within various confidence intervals. How-
ever, such third-party verification platforms exhibit three
notable drawbacks. Firstly, they depend on a trusted third
party for verification, lacking a mechanism for the public
to authenticate the data. Secondly, these platforms may be
incapable of detecting hidden inputs—factors influencing
loot-box outputs that players are unaware of. Given the
doubts surrounding the treatment of different players with
varying winning probabilities (e.g., [11]), it is crucial to
confirm that there are no hidden inputs in the loot-box
algorithm. Lastly, these platforms are susceptible to selective
data uploading; game companies could choose and submit
a disproportionate number of winning records from a larger
sample of opening records, resulting in biased probability
outcomes.

Another frequently proposed approach is mandating
game companies to release their source code for verification.
However, this approach presents three significant challenges.
Firstly, it introduces the need to verify that the code running
on the servers is identical to the open-sourced version.
Secondly, even with access to the loot-box implementation,



biased randomness algorithms could skew the outcomes,
undermining fairness. Finally, this approach misaligns with
the current gaming industry’s interests, insofar as loot-box
algorithms are considered trade secrets by game companies,
which go to great lengths to protect and conceal them from
the public. Some studies [12] have partially addressed the
first challenge by leveraging blockchain and smart contracts
to ensure the loot-box implementation is identical to the
open-source version, yet leaving the other two challenges
unaddressed. Moreover, such smart-contract-based solutions
are impractical for most mobile games today, which are oper-
ated from centralized servers controlled by game companies.
Consequently, merely disclosing source code is inadequate
to guarantee the fair operation of loot boxes.

Therefore, our primary goal in this work is to propose
a loot-box method suitable for the current gaming industry,
allowing players to verify the probability of loot boxes while
minimizing disclosure of information about how the loot-box
algorithm works. This ensures public trust in the loot-box
results while protecting the interests of gaming companies.

Our core insight to achieve the goal is that the loot-
box mechanism in virtual games is analogous to the lottery
system in the real world. Just as lotteries involve a lottery
drum and a shuffling process, loot boxes require a loot-box
function and a random source. Consequently, to achieve a
verifiable loot-box process, we need a verifiable function
and a verifiable random source. To this end, we leverage ad-
vanced cryptographic components, Functional Commitment
(FC) and Public Randomness Beacon (PRB) to construct
two novel protocols: probability verification and loot-box
opening. The probability verification protocol allows play-
ers to verify the advertised winning probabilities of loot
boxes using publicly verifiable random sources. The loot-box
opening protocol allows game servers and players to agree
on random input, ensuring neither party can manipulate the
outcome.

This paper’s contributions can be summed up as follows.
1) It examines the problem of loot-box probability

disclosure and provides an up-to-date picture of
loot-box regulation.

2) It proposes novel probability-verification and loot-
box opening protocols as means of verifying loot-
box probability statements without disclosing the
source code.

3) Its implementation and evaluation of the two novel
protocols mentioned above show that they are effi-
cient and practical.

2. Problem Formulation

This section presents our formulation of loot-box func-
tions, followed by the assumptions, threat model, and pro-
tocol objectives.

2.1. Loot-box Function

To accurately characterize the functionality of loot boxes,
we consulted with gaming companies in the industry. Based

on their insights, we identified some essential requirements
of loot-box functions. Our findings indicate that current loot-
box implementations typically involve a base claim proba-
bility, the lower bound probability of receiving a rewarding
item with each draw. Gaming companies may dynamically
adjust the probabilities slightly higher than the base rate
to incentivize continued gameplay. These adjustments are
based on factors such as a player’s status or the number
of prior loot-box attempts. By increasing the chances of
obtaining valuable items, companies aim to motivate players
to participate in loot-box drawing. In practice, the imple-
mentation of loot-box functions involves even more complex
designs. For instance, in recent regulations announced in
South Korea [13], besides the aforementioned adjustment of
winning probabilities based on the number of draw attempts,
various other game mechanisms are also addressed.

To clearly express our protocol, we denote a general loot-
box function as 𝑓 (𝑟,others), where 𝑟 represents the ran-
dom source and others denotes the other input parameters,
such as the number of attempts made by the player in opening
loot boxes.

Formally speaking, let 𝑅 be the random space, O the
domain space for others, and {0,1} the event of a player
winning the loot-box. The loot-box function is defined as
𝑓 : 𝑅 × O→ {0, 1}.

When a game company states that its winning probability
is 𝑝0, we deem the probability statement valid if the actual
probability is greater than or equal to 𝑝0 for both the
domain 𝑅 and O.

Pr
[
𝑓 (𝑟,others) = 1

���� 𝑟 ∈ 𝑅others ∈ O

]
≥ 𝑝0

Specific loot-box mechanisms’ probabilities may vary
across different others input parameters. In such cases,
separate testing for each input parameter should be conducted.
For example, some games with a “guarantee mechanism”
use count as an input parameter representing the number
of attempts made by the player. As count gets higher,
the probability increases linearly to 100% when it reaches
the “guaranteed count”. For such a loot-box design, we can
perform probability testing for each count to verify whether
the actual probability is equal to or higher than the claimed
probability.

Below, we will refer to each game player as a client and
to each game company as a server.

2.2. Assumptions

In devising our protocols, we made the following assump-
tions:

1) The server does not abort, even though it knows the
outcome before responding to the client.

2) There is a publicly accessible append-only bulletin
board that allows everyone to read and write data.
In practice, we can use a blockchain as our bulletin
board.



3) The communication channel is secured using TLS
connection, and we additionally introduce digital
signatures to ensure non-repudiation of messages.

4) Following the common setting of public randomness
beacon (PRB) [14], there is at least one honest con-
tributor to the PRB. (PRB is defined in Section 3.1).

2.3. Objectives

To overcome the limitations inherent in prior proposals,
we aim to design protocols that achieve the following five
objectives:

1) Correctness and Soundness: The probability-
verification protocol succeeds if and only if the actual
winning probability of the loot-box function 𝑓 is
greater than or equal to the stated probability 𝑝0.

2) Public Verifiability: The probability-verification
protocol allows anyone to verify the correctness of a
given probability statement.

3) Individual Verifiability: The loot-box opening pro-
tocol allows the client to verify that the winning
probability is not biased by the server.

4) Input Transparency: The loot-box function 𝑓

should use only transparent input parameters; i.e.,
no hidden inputs should be involved.

5) Algorithmic Hiding: Neither protocol should reveal
the evaluation points of 𝑓 and should not disclose any
other information about 𝑓 .

2.4. Threat Model

In the probability-verification protocol, there are two types
of adversaries:

1) The adversarial game server aims to deceive the
client by announcing a false probability higher than
the actual probability.

2) The adversarial competitor acts as a rival to the game
server and seeks to deceive the client by proving a
false probability lower than the actual probability.

Both types of adversaries can contribute to the PRB, but they
cannot manipulate or predict the randomness contributions of
every client. Additionally, the adversarial competitor does not
have access to the game server’s loot-box function.

After the verification process in the probability-
verification protocol, we can ensure that the loot-box function
operates with the correct probability. However, the adversarial
game server may subsequently attempt to use another fake
function to create a misalignment with the verified function.

In the loot-box opening protocol, we consider both server
or client may try to predict the outcome for their own benefit,
so it is important that no party should be able to bias the result
for the sake of fairness. So there are two types of adversaries
in the loot-box opening protocol:

1) The adversarial server may want to bias the probabil-
ity by either not using committed loot-box function
or control the randomness input to the function.

2) The dishonest client may want to predict or control
the randomness input to the function to affect the
outcome.

3. Preliminaries

In this section, we introduce the cryptographic primitives
utilized in our protocols. We offer formal definitions and
security requirements for public randomness beacon and
functional commitment.

3.1. Public Randomness Beacon

A public randomness beacon (PRB) is a service that gener-
ates and publishes unpredictable, bias-resistant, and publicly
verifiable random values at regular intervals. The main goal
of PRB is to provide a reliable source of randomness that
cannot be predicted or manipulated by any party, including
the service provider.

The PRB we refer to in this work is modeled as follows:

• PRB.Setup(1𝜆, 𝐼): Given the security parameter
𝜆 and beacon interval 𝐼, outputs an implicit public
parameters. This should be a randomized algorithm.

• PRB.Contribute(𝑥): Inserts a contributed ran-
domness 𝑥 to the PRB.

• PRB.Eval({𝑥1, ..., 𝑥𝑛}) → 𝑟: Given a set of ran-
domness contributions {𝑥1, ..., 𝑥𝑛}, outputs 𝑟 as the
outcome of this beacon interval.

• PRB.Verify(𝑥, 𝑟) → {0, 1}: Given a randomness
contribution 𝑥 and randomness outcome 𝑟, outputs a
decision bit {0, 1} representing if 𝑥 is involved when
generating 𝑟.

In addition, a PRB should possess the following proper-
ties:

1) Unpredictability: Before PRB.Eval returns, it is
computationally infeasible to predict the output of
PRB.Eval.

2) Bias-Resistance: There is no adversary that can
manipulate the output of PRB.Eval to its own
advantage.

3) Verifiability: Honest contributors can verify that
the PRB’s output is both unpredictable and bias-
resistant.

We surveyed several publicly-verifiable randomness bea-
cons constructions, including those based on public verifiable
secret sharing (PVSS) [15], [16], [17], verifiable random func-
tion (VRF) [18], Byzantine fault-tolerant (BFT) state machine
replication [19], homomorphic encryption [20], and verifiable
delay function (VDF) [14], [21]. Each of the various existing
PRB constructions has distinctive trade-offs among factors
such as evaluation complexity, and verification complexity,
and their trust models also differ (see Section 8.2 for more
details).

Specifically, we opted to use the HeadStart beacon
[14], as it enables contributors to verify unpredictability



and bias-resistance without relying on assumptions like an
honest majority. Additionally, we selected HeadStart due
to its low verification complexity, which is expressed as
𝑂 (𝐿×polylog(𝑇) + log𝐶), where 𝐿 represents the number of
beacon outcomes after a user’s contribution, 𝑇 is the period
of each such outcome, and 𝐶 is the number of contributions.

3.2. Functional Commitment

As defined by Boneh et al. in BNO21 [22], a functional
commitment (FC) scheme allows a committer to make a
commitment to a secret function 𝑓 , and subsequently prove
that 𝑦 = 𝑓 (𝑥) for public 𝑥 and 𝑦 while keeping all other details
about 𝑓 concealed.

Here, we slightly modified BNO21’s notation, and trans-
formed the evaluation protocol into a non-interactive one
using the Fiat-Shamir heuristic for ease of explanation. A
non-interactive FC has the following four algorithms.

• FC.Setup(1𝜆, 𝑁): Given the security parameter 𝜆
and upper limit of the number of gates 𝑁 , outputs an
implicit public parameters. This should be a random-
ized algorithm.

• FC.Commit( 𝑓 , 𝑟) → 𝑐: Given a secret function 𝑓

and a randomness 𝑟, outputs a commitment 𝑐 to 𝑓 .
This should be a deterministic algorithm.

• FC.Eval( 𝑓 , 𝑟, 𝑥, 𝑦) → 𝜋: Given a function 𝑓 , an-
other randomness 𝑟, an evaluation point 𝑥, and a
claimed evaluation value 𝑦, outputs a proof 𝜋 that
convinces the verifier that 𝑓 (𝑥) = 𝑦.

• FC.Verify(𝑐, 𝑥, 𝑦, 𝜋) → {0, 1}: Given a commit-
ment 𝑐 of function 𝑓 , an evaluation point 𝑥, a claimed
evaluation value 𝑦, and a proof 𝜋, outputs a decision
bit {0, 1} denoting whether 𝑓 (𝑥) ?

= 𝑦.
A secure non-interactive FC have the following proper-

ties:
1) Binding: It is computationally infeasible

to find distinct functions 𝑓1, 𝑓2 such that
FC.Commit( 𝑓1, 𝑟1) = FC.Commit( 𝑓2, 𝑟2)
for some 𝑟1 and 𝑟2.

2) Hiding: For commitments 𝑐1, 𝑐2 derived from two
distinct functions, 𝑐1 and 𝑐2 are computationally
indistinguishable.

3) Completeness: For all commitments 𝑐 generated
by FC.Eval, the verification FC.Verify always
return 1.

4) Evaluation Zero-knowledge: The proof 𝜋 reveals
nothing other than the evaluation 𝑓 (𝑥) = 𝑦.

5) Knowledge Soundness: A valid evaluation proof
can only be produced by provers possessing knowl-
edge of the secret function 𝑓 .

6) Evaluation Binding: It is computationally infeasible
to construct valid evaluation proofs for different
evaluation values 𝑦1 ≠ 𝑦2 on the same input 𝑥.

In our scenario, the hiding property is the most important,
because it ensures that the functional-commitment scheme
does not disclose any information about the secret function.

We use both BNO21 [22] and KZG10 [23] as a FC scheme
in our implementation for evaluating performance. Please
refer to Section 7 for implementation details.

4. Proposed Solution

In this section, we begin by providing an overview of
our proposed solution and emphasizing its core ideas. We
then delve into the detailed explanation of two protocols:
probability-verification protocol and loot-box opening pro-
tocol. Their alignment with our objectives will be discussed
further in Section 6.

4.1. Overview

As illustrated in Figure 1, the main problem with the
current loot-box mechanism is that the game server may
provide a function with worse probabilities, while the user
has almost no way to verify.

First, to address this, our core idea is to use a PRB to
generate publicly verifiable test data for verification (step ➊).
Based on the secure randomness generated by the PRB, we can
perform statistical analyses to determine whether the server’s
provided probabilities are correct. However, an adverserial
server might still substitute the verified function with another
one to cheat.

Next, we apply functional commitment to ensure that
the server cannot modify the function after it has been
verified (Step ➋). This also prevents attacks from adversarial
competitors, as described in Section 2.4, who might generate
fake results to make the function appear less good. Since only
the game company can provide results with valid functional
commitment proof, such attempts by competitors would not
succeed. Nevertheless, the server could still introduce bias
into the final result by controlling the randomness during the
function’s execution.

Finally, we introduce a trusted randomness source during
the loot-box execution (step ➌). Unlike loot-box verification,
loot-box openings require real-time service and cannot use
mechanisms like PRB that have a waiting period. Therefore,
for the random source input required in loot-box openings, we
design a collaborative approach between the server and client.
It prevents both parties from predicting each other’s provided
random source.

Given that users often request loot-box openings multiple
times, we further enhance our design by using a hash chain as
the server’s random source. The server provides the user with
the last node of the chain, and subsequently, all the nodes of
the chain can serve as the server’s random source in reverse
order without requiring additional proof.

4.2. Probability-verification Protocol

The most challenging aspects of designing our
probability-verification protocol were 1) ensuring that the
implementation details of the opening function 𝑓 remain con-
fidential (Algorithmic Hiding), and 2) verifying that sample



Figure 1: A high-level overview of our proposed verifiable loot box process. It illustrates the evolution of our solution system
as each core component is introduced.

input parameters are genuinely generated from randomness.
To address the first of these challenges, we employed FC, and
to address the second, we leveraged a PRB.

The probability-verification protocol can be broken down
into four distinct phases: setup, randomness contribution,
evaluation, and verification. Each is discussed in turn in its
own subsection below. Additionally, a flow chart of it can be
found in Figure 2a.

Phase 1: Setup. In this phase, the server first runs
the setup algorithm for each cryptographic primitive, in-
cluding PRB.Setup and FC.Setup. Secondly, the server
designates the number of beacon intervals, denoted by 𝑛,
and indicates via the bulletin board that it will utilize the
random output generated after 𝑛 intervals from the moment
it publishes the commitment. Third, the server designates a
mapping function 𝑓𝑀 , i.e., how randomness is mapped onto
test data. More specifically, this mapping function takes public
randomness 𝑟 as its input and generates the corresponding test
data as output. Formally, it can be expressed as

𝑓𝑀 (𝑟) → {(𝑟1, 𝑜1), ..., (𝑟𝑚, 𝑜𝑚)}
where 𝑟𝑖 ∈ 𝑅 and 𝑜𝑖 ∈ O for 1 ≤ 𝑖 ≤ 𝑚.

The mapping function must generate test data that reflects
the real-world distribution of the underlying loot box. For
instance, if the parameters of O include game levels 1-100,
the function should uniformly sample from these levels. Since
𝑓𝑀 (𝑟) is public, players can verify whether the distribution
aligns with their actual gameplay experience. By ensuring
that the mapping function is consistent with the real-world
distribution, the scheme can produce sufficient test data

without needing to simulate gameplay. However, for players
who prefer not to rely solely on the mapping function, our
method also supports using data from actual gameplay as
an independent, secondary source. For further details, please
refer to Section 5.3.

Finally, the server commits the loot-box opening function
𝑓 to a commitment 𝑐 by FC.Commit( 𝑓 , 𝑟) → 𝑐, where 𝑟 is
sampled from randomness. Subsequently, the server publishes
the public parameters, the interval number 𝑛, the mapping
function 𝑓𝑀 , and the commitment 𝑐 on the bulletin board.

Phase 2: Randomness Contribution. In this phase, the
clients examine the validity of the setup data published by
the server, including public parameters, 𝑛, 𝑓𝑀 , and 𝑐. Then,
interested clients can sample their local randomness and
contribute through PRB.Contribute. Here, it is important
to note that clients who have already contributed their local
randomness can skip this step, as the PRB protocol ensures
unpredictability and bias-resistance for such clients.

Phase 3: Evaluation. In this phase, the server first
obtains the randomness outcome 𝑟 of the 𝑛𝑡ℎ PRB result
counted from the setup phase, then uses the mapping function
𝑓𝑀 to obtain test data, i.e.,

𝑓𝑀 (𝑟) → {(𝑟1, 𝑜1), ..., (𝑟𝑚, 𝑜𝑚)}
where 𝑟𝑖 ∈ 𝑅 and 𝑜𝑖 ∈ O for 1 ≤ 𝑖 ≤ 𝑚.

Then, the server computes the outputs of the function 𝑓

and evaluation proofs

𝑓 (𝑟𝑖 , 𝑜𝑖) → 𝑦𝑖

FC.Eval( 𝑓 , (𝑟𝑖 , 𝑜𝑖), 𝑦𝑖) → 𝜋𝑖



(a) Probability verification protocol

(b) Loot-box opening protocol

Figure 2: The flowchart of protocols

for 1 ≤ 𝑖 ≤ 𝑚.
Lastly, the server publishes the evaluations along with

their proofs (𝑦1, 𝜋1), ..., (𝑦𝑚, 𝜋𝑚) on the bulletin board.
Phase 4: Verification. In this phase, the client first

retrieves the randomness 𝑟 from the PRB and invokes
PRB.Verify to verify the validity of 𝑟. If the verification
fails, the client aborts. Next, the client maps 𝑟 onto test data us-
ing the mapping function 𝑓𝑀 and obtain (𝑟1, 𝑜1), ..., (𝑟𝑚, 𝑜𝑚).
Then, the client retrieves the evaluations from the bulletin
board and verifies them via

FC.Verify(𝑐, (𝑟𝑖 , 𝑜𝑖), 𝑦𝑖 , 𝜋𝑖)
?
= 1

for 1 ≤ 𝑖 ≤ 𝑚.

Finally, the client can use those verified evaluations to
ascertain whether the probability statement is accurate.

The outcome of the probability verification protocol
consists of randomly sampled data. Clients can utilize this
data to verify the accuracy of the probability statement. We
delve into the statistical tools facilitating this verification in
Section 5.

4.3. Loot-box Opening Protocol

The key purpose of our loot-box opening protocol is to
provide individual verifiability: i.e., to allow each client, after
the result-verification phase, to confirm that the server has not
biased the odds of winning in any way.



This protocol comprises three phases: setup, evaluation,
and result verification. Each is described in detail in the
following paragraphs. Additionally, a flow chart of it can be
found in Figure 2b.

Phase 1: Setup. In the setup phase, the server samples
a randomness 𝛼0 and generates a hash chain of length 𝑁 , i.e.,

{𝛼𝑖 |𝛼𝑖 ← 𝐻𝑖 (𝛼0), 1 ≤ 𝑖 ≤ 𝑁}
where 𝐻 is a cryptographic hash function. The server then
sends the client the last element 𝛼𝑁 of the chain.

Phase 2: Evaluation. In the evaluation phase, the client
first samples a local randomness 𝛽 and prepares the input
parameters others, which may include metadata about the
player such as their game level, number of loot-box openings,
and so on. The client then sends (𝛽,others) to the server.

When the last-opened hash chain position is 𝛼𝑖 , the server
uses 𝛼𝑖−1 ∥ 𝛽 as the random source. Formally, this can be
expressed as

𝑓 (𝛼𝑖−1 ∥ 𝛽,others) → 𝑦.

The server then generates the evaluation proof:
FC.Eval((𝛼𝑖−1 ∥ 𝛽,others), 𝑦) → 𝜋.

Finally, the server sends back (𝛼𝑖−1, 𝑦, 𝜋) to the client.
Phase 3: Result Verification (Optional). The result

verification phase is optional for clients, as verification is only
necessary when they have doubts or concerns regarding the
fairness of the loot box results. After receiving (𝛼𝑖−1, 𝑦, 𝜋)
from the server, the client first verifies the validity of 𝛼𝑖−1
using

𝐻 (𝛼𝑖−1)
?
= 𝛼𝑖

then verifies the validity of the evaluation proof:

FC.Verify(𝑐, (𝛼𝑖−1 ∥ 𝛽,others), 𝑦, 𝜋)
?
= 1.

If both verification succeed, the client can be confident that
the server has not biased the odds of loot-box opening.

This protocol uses a hash chain to ensure that the server
cannot manipulate the randomness after the setup phase, and
it is computationally infeasible to find 𝛼𝑖−1 given 𝛼𝑖 , which
prevents dishonest clients from biasing the outcome.

A practical consideration is the server may need to
repeat the setup phase if the hash chain is exhausted. While
increasing 𝑁 can reduce the likelihood of this happening, it
also leads to higher space usage. To address this, the server
can choose to store only the initial element 𝛼1, and compute
𝛼𝑖 ← 𝐻𝑖 (𝛼0) on demand when a client requests opening
a loot-box. Another approach would be saving a subset of
breakpoints {𝛼1, 𝛼101, 𝛼201, . . . } to strike a balance between
computational and storage requirements.

5. Applying the protocols
This section delves into the practical applications of our

protocol, covering how to validate the accuracy of disclosed
probabilities (§5.1), determine the appropriate sample size
(§5.2), and devise alternative approaches to probability ver-
ification that address other demands in real-world scenarios
(§5.3).

5.1. Hypothesis Testing

To rigorously assess whether a probability statement holds
true, we first specify a null hypothesis, 𝐻0, and an alternative
hypothesis, 𝐻1. In our scenario, the null hypothesis is defined
as the condition in which the claimed probability holds true,
i.e., 𝐻0 : 𝑝 ≥ 𝑝0. The alternative hypothesis is defined as the
condition in which the claimed probability does not hold true,
i.e., 𝐻1 : 𝑝 < 𝑝0.

With a predetermined significance level 𝛼, we aim to
perform a hypothesis test on the sample data to calculate
the probability of observing the test results, assuming the
null hypothesis is true. We reject the null hypothesis if this
probability is less than the chosen 𝛼. This rejection implies
that the sample data provides strong evidence supporting the
alternative hypothesis, which suggests that the actual proba-
bility of winning is likely lower than the claimed probability
advertised by the game company.

From the central-limit theorem, the sample mean of
independent and identically distributed (i.i.d.) random vari-
ables converge to a normal distribution. Let us assume that
the loot-box results are i.i.d. Binomial distribution. We can
approximate the sample mean as

𝑋 =
𝑋1 + ... + 𝑋𝑛

𝑛
∼ 𝑁 (𝑝0,

√︂
𝑝0(1 − 𝑝0)

𝑛
)

where 𝑋𝑖 is the random variable of each sample result for each
1 ≤ 𝑖 ≤ 𝑛. To calculate the critical value when we reject the
null hypothesis, we can use the z-score table to find 𝑧𝛼, such
that

𝑃𝑟 (𝑝 ≤ 𝑝0 − 𝑧𝛼

√︂
𝑝0(1 − 𝑝0)

𝑛
) < 𝛼

where 𝑝 is the winning probability in the sample data. The
critical value for this hypothesis test is computed as 𝑝𝐿 =

𝑝0 − 𝑧𝛼

√︃
𝑝0 (1−𝑝0 )

𝑛
.

For example, when the claimed probability 𝑝0 is 0.3, the
sample size 𝑛 is 200, significance level 𝛼 = 5%, then 𝑧𝛼 =

1.645 by looking up to the z-score table. We calculate the
critical value

𝑝𝐿 = 𝑝0−𝑧𝛼
√︂

𝑝0(1 − 𝑝0)
𝑛

= 0.3−1.645
√︂

0.3 ∗ 0.7
200

= 0.247

In this case, we reject the null hypothesis if the sample’s
winning probability 𝑝 ≤ 𝑝𝐿 is 0.247, i.e., the claimed
probability is deemed wrong.

5.2. Determining the Number of Test Inputs

To determine the proper size of test dataset, we utilized
statistical power analysis. This involved, first, estimating the
false-negative probability for an instance of the alternative
hypothesis. Assuming the real winning probability is 𝑝1 < 𝑝0,
we calculated the probability of rejecting the null hypothesis,
called statistical power (1 − 𝛽). Usually, we expect the
statistical power to be greater than 80%, i.e., 𝛽 < 20%.
To achieve this, we used the z-score table again to find 𝑧𝛽



corresponding to 1 − 𝛽. Specifically, we found an 𝑛 that
satisfying the inequality:

𝑝1 + 𝑧𝛽
√︂

𝑝1 (1 − 𝑝1)
𝑛

≤ 𝑝𝐿 = 𝑝0 − 𝑧𝛼

√︂
𝑝0(1 − 𝑝0)

𝑛
,

where L.H.S is the accumulative probability 1− 𝛽 of the sam-
ple mean random variable having the Bernoulli distribution
of probability 𝑝1.

For example, let us assume that the claimed probability 𝑝0
is 0.03, that the actual probability 𝑝1 is 0.015, that 𝛼 is 0.05,
and that 𝛽 is 0.2. We first use the z-score table to establish that
𝑧𝛼 = 1.645, 𝑧𝛽 = 0.845. The above inequality then becomes:

0.015 + 0.845
√︂

0.015 ∗ 0.985
𝑛

≤ 0.03 − 1.645
√︂

0.03 ∗ 0.97
𝑛

→ 𝑛 ≥ 653.068

In other words, if our sample size is larger than about 653,
there will be more than an 80% probability of rejecting the
null hypothesis, given the actual probability 𝑝1 = 0.015 and
the claimed probability 0.03. In real-world circumstances,
self-regulation associations, government, and/or the player
community could reach a consensus on the selection of a
specific value for 𝑝1, such as 𝑝1 = 0.9𝑝0.

5.3. Alternative Approaches to Probability Verifi-
cation

Dry-run API Verification. In real-world scenarios, the
server may take advantage of setting special-case conditions,
causing a much lower probability for specific clients. For ex-
ample, game companies may design a function that exhibits a
different probability distribution for a specific subset of users,
which is unlikely to be detected when the supplementary data
O are randomly generated. To address such situations, we
can utilize a dry-run API provided by the server, allowing
verifiers to test the system without incurring actual payments.
Substituting this dry-run API for the mapping function in the
Probability-verification Protocol, we can sample the distribu-
tion for specific clients and use the statistical testing discussed
above to verify an individual client probability. In practice, it
is essential to set an upper limit on the invocation times of
the dry-run, as unlimited use could potentially allow verifiers
to reverse-engineer the private function. Relying on FC, this
method ensures precise winning probability verification of
each client but imposes an additional burden on the server.
Therefore, we consider it as an optional extension, requiring
no additional preprocess from our proposed protocols but
providing a robust arbitration basis in case of disputes.

Third Party Verification. Although our method can op-
erate without the need for additional third-party involvement,
in practice, it may be beneficial to consider the introduction
of third-party certification bodies to assist in verifying the
Probability Verification Protocol or employing the Dry Run
Verification mentioned earlier.

Under this framework, gaming service providers would
provide Functional Commitment to third-party organizations

and execute the Probability Verification Protocol, rather than
directly sharing their most confidential source code with third-
party entities. After verification, the third-party organization
can digitally sign the Functional Commitment, indicating to
users that the function complies with its probability claims.

This approach alleviates concerns for gaming companies
regarding the potential disclosure of too many input-output
pairs in the Probability Verification Protocol, which might en-
able users to bypass functional commitment with approximate
loot-box functions through mathematical methods. Moreover,
it simplifies the process for users, relieving them from
handling complex cryptographic and probability calculations.
This not only facilitates easier understanding for users but also
mitigates the risk of users misinterpreting the implications of
probabilities.

Public Bulletin Board Verification. The method we
propose requires running the probability verification protocol
before the loot-box opening protocol. If the server prefers
to avoid running two protocols, it can combine the two by
slightly modifying the loot-box opening protocol. To do so,
when designing the loot-box function, the server replaces the
random sources submitted by both the server and client with
the use of PRB as the random source input, and additionally
introduces a global counter to keep track of the current
loot-box attempt. This way, the server can upload the loot-
box records to the Public Bulletin Board for all clients to
verify. Verifiers with access to the public bulletin board can
then confirm that these counters reflect a continuous series,
ensuring that all relevant data have been uploaded, leaving no
room for the server to cherry-pick. While this method relies
on continuous access to PRB resources, we acknowledge
that its practical execution efficiency may not match the
implementation of two separate protocols. Nevertheless, it
provides the server with an additional option.

6. Security Analysis

In this section, we provide a brief explanation of how
our proposed method satisfies the five objectives defined in
Section 2.3.

Correctness and Soundness. Assuming the server pro-
vides an adequate amount of test data, as explained in Section
5.2, the correctness of the protocol is highly probable, as
indicated by the parameter 𝛽. On the other hand, the properties
of the PRB guarantees such test inputs are sampled from
unpredictable and bias-resistant random; and the evaluation-
binding property of FC ensures that it is infeasible for the
server to find multiple evaluation outcomes for a single input.
As a result, soundness is satisfied after the client successfully
rejects the null hypothesis discussed in Section 5.1.

Public Verifiability. Every player can contribute their
randomness to the PRB and verify the unpredictability and
bias-resistance of the randomness outcome after 𝑛 beacon
intervals. Additionally, every player can verify the correctness
of FC evaluations. Thus, the probability-verification protocol
satisfies our requirement.

Individual Verifiability. Using a hash chain as a
random source can prevent the server from manipulating the



randomness to its own advantage. This is because the hash
function is collision-resistant. On the other hand, because we
assume 1) that the server cannot predict or bias the random-
ness sampled by the client and 2) that the client generates its
randomness 𝛽 every time it performs an evaluation, we can
ensure that the randomness input 𝛼𝑖−1 ∥ 𝛽 is unpredictable
and unbiased by the server. As a result, once the loot-box
opening protocol has been verified, it is guaranteed that the
server has not biased the probability of winning.

Input Transparency. Input transparency means that
there is no hidden input to the loot-box opening function.
This property occurs after FC’s evaluation binding property,
whereby it is guaranteed that, given input 𝑥, it is infeasible
to find distinct evaluation values 𝑦1 ≠ 𝑦2 that satisfy both
𝑓 (𝑥) = 𝑦1 and 𝑓 (𝑥) = 𝑦2. To verify those evaluation proofs,
the client should knows all the input parameters of the loot-
box opening function. This ensures transparency regarding all
the input parameters involved in the process.

Algorithmic Hiding. Algorithmic hiding is achieved
by FC’s hiding and evaluation zero-knowledge properties. In
Section 3.2, we provided the full definition of these two prop-
erties, but to recap, hiding guarantees the indistinguishability
of commitment 𝑐, and evaluation zero-knowledge guarantees
that the evaluation reveals nothing other than an evaluation
point. In our probability-verification protocol, we only reveal
𝑚 evaluations, where 𝑚 is the number of test inputs, as
specified by the server. Therefore, it is not feasible to restore
the opening function using commitments or evaluations.

7. Implementation and Evaluation

In this section, we first sketch our implementation of PRB
and FC. Then, we analyze the computational complexity of
our implementation and a comparison of execution times
across various setups.

7.1. Implementation of PRB

A crucial adjustment we made in the HeadStart protocol
involved the introduction of a new parameter, denoted as
𝑊 , which governs the window size of the aggregated VDF
proof. In this modification, the proof at stage 𝐿 represents an
aggregation of VDF evaluations from stage max(0, 𝐿 − 𝑊)
to stage 𝐿, instead of incorporating every stage from 1 to
𝐿. The primary goal of this modification was to alleviate
the workload of the PRB at each stage while minimizing the
verification overhead for clients.

Our PRB implementation [24] in Python follows the
specifications outlined in HeadStart [14] with the adjustment
described above. For the verifiable delay function (VDF) proof
aggregation, we forked [25] Chia VDF [26] and combine it
with the implementation from HeadStart [14], [27].

7.2. Implementation of FC

Functional Commitment (FC) is a new area with sparse
representation in operational open-source projects. In our

proof-of-concept implementation, we adopted two existing
FC frameworks [22], [23], each exhibiting certain limitations.

In the first framework BNO21 [22], we supported non-
polynomial loot-box functions. However, the implementa-
tion [28] of this FC remained incomplete due to constraints
on the usable functions and some incomplete aspects of its
function-hiding capability.

The second framework, utilizing KZG10 [23] as a poly-
nomial commitment scheme, restricts us to supporting poly-
nomial loot-box functions. KZG10, a submodule for the
FC framework mentioned above BNO21, has undergone
more comprehensive development. While it adheres to the
definitions outlined in Section 3.2, it should be noted that it
exclusively supports 𝑓 as a polynomial.

To overcome the limitation of current functional com-
mitment schemes, we introduce Pre-processing function and
Post-processing function to simplify the process of imple-
menting loot-box functions using functional commitment.
Pre-processing function can be used to perform tasks like con-
verting randomness inputs into bit-vectors, which is hard to
achieve in BNO21. Post-processing functions is for mapping
function outputs to concrete loot-box reward items, which
is useful for KZG10 because its output is an element of
underlying field F𝑞 . Both functions should be published to
public along with the commitment of the hidden function so
that verifying functional commitment is still possible.

Our implementation [29] consists of the code needed to
evaluate the performance of our protocol under different types
of FC, and an interactive GUI for demonstrating our how our
Probability Verification Protocol works step by step.

7.3. Complexity Analysis

Because our protocols rely on the complex cryptographic
operations of PRB and FC, we discuss the computational
overhead they incur in this analysis.

PRB is used in the probability-verification protocol for
generating test data, with the computation delegated to a
third-party PRB server. As described above, we optimized the
PRB implementation for scenarios where many players seek
to verify their randomness contributions. This optimization
ensures that the PRB server efficiently generates aggregated
VDF evaluation proofs. For clients verifying PRB’s random-
ness, the number of VDF verification operations required
depends on 𝑑, the number of stages between a client’s last
contribution stage and the stage they wish to verify. Although
our modification results in a complexity of 𝑂 (𝑑) instead of
𝑂 (1) as in HeadStart [14], the verification process remains
efficient, provided that the selection of 𝑊 , the window size
for VDF aggregation, is appropriate.

In loot-box opening, the game server generates one
functional commitment per loot-box function. It generates
an evaluation proof whenever a test input is evaluated, or
an in-game loot-box is opened. Taking KZG10 FC scheme
as an example, the complexity of generating a commitment
is 𝑂 (𝑡), where 𝑡 is the degree of the hidden polynomial.
The complexity of generating an evaluation proof is also
𝑂 (𝑡). The client verifies each input-output pair with the



Figure 3: Variation in the probability-verification protocol’s
execution times across various polynomial degrees

functional commitment. The verification complexity of the
KZG10 commitment is 𝑂 (1), comprising two elliptic curve
pairing operations.

Since result verification is optional, the game server can
evaluate using existing non-FC Loot-box implementation with
the input obtained from hash chain and client randomness.
Players should record the resulting input-output pair in this
case. The only cost would be the generation of hash chain and
client-server communication overhead, which is negligible
compared to FC.Eval and FC.Verify. Upon receiving
verification request, the server should use FC.Eval to
evaluate on the same input again, so players can verify the
if the result matches the record and passes FC.Verify.

7.4. Execution-time Analysis

In addition to conducting theoretical complexity analysis,
we observed the results our implementation obtained under
various parameter settings. Our experiments were conducted
on a server with an Intel Xeon Platinum 8352V processor.

We first analyzed the execution times of our probabil-
ity verification protocol’s setup, evaluation, and verification
phases over various polynomial degrees. We set the sample
size at 30, meaning there were 30 test instances in this
experiment, the results of which are shown in Figure 3. As
expected, setup and evaluation phase execution times grew
linearly with the polynomial degree, but verification time
remained constant.

Typically, the polynomial degrees were approximately
three times the number of gates used in general circuit con-
struction [30]. Our experiments demonstrated that evaluation
times were practical for polynomials with degrees between
100 and 200, corresponding to 30-60 gates.

We then measured the execution times at different sample
sizes, and the results we obtained with a fixed polynomial
degree of 150 are shown in Figure 4. As expected, execution
times for both evaluation and verification grew linearly with
sample size.

Additionally, we conducted an experiment using an FC
implementation of BNO21 with a 3-bit XOR function, to

Figure 4: Variation in the probability-verification protocol’s
execution times across various sample sizes

Figure 5: Variation in the probability-verification protocol’s
execution times across various sample sizes with FC from
BNO21

measure execution times across various sample sizes. These
results are shown in Figure 5. Similar to our polynomial com-
mitment, execution times for both evaluation and verification
grew linearly with sample size. Notably, these times were
approximately 4 to 5 times higher than those measured in
polynomial commitment.

Conclusively, our algorithm shows practical execution
times for polynomial degrees between 100 and 200, suitable
for 30-60 gate general circuits. For larger degrees, it may
still be considered acceptable depending on the specific
requirements and constraints of the application.

7.5. Detecting Adversarial Loot Boxes

To verify the effectiveness of our protocol in detecting
adversarial loot boxes that falsely claim higher probabilities,
we conducted experiments using our implementation and
recorded the results.

Following our discussion in §5.2, assuming that the server
claims a winning probability of 0.03, we aim to distinguish an
adversary with a real win probability of 0.015 with an 80%
confidence level. To achieve this, we would need 653 samples.



Therefore, we repeated the experiment 100 times, with each
experiment consisting of 653 loot-box draws, and used the
hypothesis testing discussed in §5.1 to check if the results
matched the claimed probability.

We conducted experiments on three adversarial loot boxes
with real probabilities of 0.01, 0.015, and 0.02. The number
of successful detections out of 100 trials was 96, 85, and
51, respectively. These results once again confirm that the
required number of tests is related to the expected accuracy
of the probability testing. They also illustrate how to use
statistical power analysis to determine the proper size of the
test dataset.

7.6. Potential Implementation Obstacles for Game
Developers

In currently available FC implementations [28], creating
FC for every new loot-box function requires a manual transla-
tion and recompilation in Rust. Such a process is inconvenient
for game developers. Fortunately, new tools like Circom [31],
[32] are capable of converting arithmetic circuits into the
R1CS form required for zkSnarks. Following BNO21, all we
need is to convert the function into t-FT form, i.e., there
is no need for manual translation and recompilation of all
source code. This means that game developers only need to
implement their loot-box functions in a high-level language
like Circom and that such functions’ FCs can be automati-
cally completed. This strongly supports the feasibility of our
method.

While we modeled a loot box as a binary function for
simplicity (§2.1), our solution can be extended to support
multi-choice outcomes easily. As demonstrated in our proto-
type implementation, a three-output loot-box (e.g., 1, 2, and
3-star cards) can be modeled using three binary functions,
each verifying the probability of obtaining an 𝑋-star card
(𝑋 = 1, 2, 3).

8. Related Work

To the best of our knowledge, the majority of academic
research on loot boxes has predominantly focused on exam-
ining their connections to problem gambling [2], [3], [4],
[5], primarily within the realms of psychological and social
science research. However, only a few studies delve into
the technical aspects to ensure the fairness and verifiability
of loot boxes. This section explores two distinct types of
proposals designed to facilitate the verification of loot-box
probabilities. One approach involves utilizing a trusted third
party, while the other leverages decentralized blockchain
technology. Furthermore, we have surveyed relevant work
on our core cryptographic components, i.e., PRB and FC.
Finally, we highlight the significant differences between the
loot-box protocol and the e-lottery protocol to clarify the
positioning of our approaches in relation to prior work on
e-lottery verification.

8.1. Loot-box Probability Verification Methods

Trusted Third-party Probability Verification. One pos-
sibility is to delegate the verification to a third-party verifica-
tion website [10]. Players can upload their loot-box opening
records to this platform along with screen-recording videos
that provide proof of authenticity. Once a sufficient number
of such records has been collected, the platform can publish
its assessments of the validity of companies’ probability
statements, with various confidence intervals.

However, using such third-party verification platforms has
several drawbacks. First, as well as being costly, its reliance
on screen-recording videos to authenticate records does not
guarantee 100% accuracy of the data. Also, the platform does
not offer a means for the public to authenticate data. While the
platform claims to have a dedicated team responsible for data
verification, its lack of transparency leaves us with no choice
but to simply trust it, which is not ideal. Moreover, given
the doubts surrounding the treatment of different players with
varying winning probabilities (e.g., [11]), it is crucial to con-
firm that there are no hidden inputs in the loot-box algorithm.
But the detection of hidden inputs by the platform is not
currently possible. Finally, the platform does not sufficiently
guard against selective data uploading. For instance, game
companies could select and upload a disproportionate number
of winning records from among a larger sample of opening
records, leading to biased probability.

Transparent Loot-box on Blockchain. As an alterna-
tive, Carvalho [12] proposed a transparent loot-box scheme
that utilizes blockchain. However, that approach necessitates
game companies to implement their loot-box functions using
smart contracts, resulting in the disclosure of the function’s
source code once it is uploaded to the blockchain. In addi-
tion, its random source is the timestamp, despite this being
predictable to the players.

We have thoroughly compared these two methods with
our proposed method in a table in Section C.

8.2. Constructions of PRB

To date, numerous constructions of PRB have emerged,
relying on diverse sources of randomness and cryptographic
techniques. Some constructions extract randomness from the
blockchain [33] and [34], while others utilize financial data for
the same purpose [35]. These protocols prove unsuitable for
public engagement, as they fail to guard against malicious par-
ticipants who may withhold the random output strategically
to gain an advantage [21], [17].

Another type of construction is based on publicly-
verifiable secret sharing (PVSS), including Ouroboros [36],
RandHound and RandHerd [37], Scrape [15], and HydRand
[17]. Although those constructions provide uniform random-
ness, they require most contributors to act honestly and remain
online throughout the process.

Verifiable delay function (VDF) is the building block of
HeadStart [14], which guarantees a lower bound of execution
time, ensuring no one can obtain the result, thereby achieving
bias resistance. One notable advantage of VDF-based PRB



is its independence from the assumption of honest majority,
coupled with efficient verification.

8.3. Constructions of FC

The term “functional commitment” was initially intro-
duced in [38]. However, this definition primarily emphasizes
the input-hiding” property, rather than function-hiding. as
highlighted in [22]. The definition of input-hiding entails that
for a given public function 𝑓 and a value 𝑦, the committer
provides proof that a private 𝑥 exists such that 𝑓 (𝑥) = 𝑦.

In contrast, function-hiding functional commitment (FC)
involves revealing public values 𝑥 and 𝑦 along with the
private function 𝑓 . Several cryptographic primitives can be
viewed as specific instances of function-hiding FC, such as
polynomial commitment [23]. However, it is noteworthy that,
as of now, the only construction available for general circuit
FC is presented exclusively in [22].

8.4. E-lottery Protocols

E-lottery is a type of multi-party lottery where users pur-
chase tickets to participate, and a winner is selected through a
verifiable randomness. The mainstream approach to e-lottery
currently involves using a Verifiable Delay Function (VDF)
instead of relying on a trusted third party, as first proposed by
Chow et al. [39]. Subsequent developments [40], [41] have
mainly focused on improving the efficiency of this protocol,
particularly in the design of the VDF. E-lottery protocols
share some similarities with loot-box protocols, as both rely
on verifiable randomness. However, loot-box protocols differ
significantly from e-lottery protocols in two key aspects.
First, loot-box protocols often involve proprietary algorithms
that companies wish to protect, unlike the typically open-
source nature of e-lottery protocols. Second, while e-lottery
protocols primarily focus on verifying the VRF contributed
by all participants, our work centers on verifying loot-box
results and safeguarding the integrity of the overall protocol.

9. Conclusion

In conclusion, this paper reconciles the dilemma between
verifiability and intellectual property surrounding the loot-
box mechanisms, proposing a novel approach to verify loot-
box probability without source-code disclosure. By leverag-
ing two advanced cryptographic primitives, our probability-
verification protocol safeguards loot-box probability state-
ments, and the loot-box opening protocol prevents manip-
ulation by game servers or players. We address real-world
deployment issues and introduce rigorous hypothesis testing
and statistical power analysis. These statistical tools allow
for determining the truthfulness of probability statements and
guide the selection of an optimal sample size.

This work aligns well with the incentives of both players
and game providers. We anticipate its positive impact on the
game ecosystem.
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Appendix

1. Loot-box regulation around the world

At the time of writing, several countries and platforms
have promulgated regulations concerning loot boxes. How-
ever, these existing regulatory approaches differ considerably
from one another. In part, this is because certain countries
classify loot boxes as a form of gambling, while others do not
[42]. Some of the most important regulatory frameworks are
discussed in turn below.

Belgium. In 2018, the Belgian Gaming Commission
ruled that loot-box mechanisms were gambling under existing
legislation, and in effect prohibited loot boxes on that basis:
i.e., game companies that implement paid loot boxes without
a gambling license could face criminal prosecution. Neverthe-
less, a recent study showed that 82 of the 100 highest-grossing
Belgian iPhone games had loot-box features [43].



China. In 2017, China became the first country to
legally mandates that game companies disclose the probabil-
ities of receiving randomized loot-box rewards [44].

Japan. In 2012, Japan’s Consumer Affairs Agency
(CAA) banned “complete gacha”, which involve the player
needing to collect a series of items before having the chance
to obtain a specific rare item. However, disclosure of prob-
abilities was achieved through self-regulation. In 2016, the
Computer Entertainment Supplier’s Association published
guidelines for gacha probabilities and pricing and obligated
its members to comply with them. A study on Japanese game
players’ attitudes towards loot-box probability statements [45]
revealed that despite regulations and self-regulating guide-
lines, the majority of players did not trust such statements.

Netherlands. In 2018, a report by the Netherlands
Gambling Authority [46] found that loot boxes offering
tradable items were illegal and, hence, the underlying games
could not be sold without an appropriate license.

South Korea. South Korea previously adopted a self-
regulatory approach to loot-box games, led by the Korean
Association of the Game Industry (K-GAMES). However,
in February 2023, the National Assembly of South Korea
collaborated with K-GAMES to pass a legislative amendment
that mandates loot-box probability disclosure [47].

Taiwan. In June 2021, an online player started a
petition on a public-policy participation platform, asking the
Taiwanese government to formulate regulations on “gacha”
mechanics. The petition received support from 6,560 people
[48]. Following several incidents and extensive discussions
among players, game companies, and the government, the
Consumer Protection Committee announced revisions to its
regulations in 2022 [49]. These included rules that:

• Game companies disclose the probability of obtaining
randomized virtual item

• Such winning probabilities be clearly defined
• The scope of winning probability disclosure be clearly

defined
• The manner of winning-probability disclosure should

be clearly defined
Alongside national regulation of loot-box games, the

Apple app store and Google play store have enacted some
relevant policies.

Apple App Store. In 2017, Apple changed their devel-
oper guidelines to include the following: “Apps offering loot
boxes or other mechanisms that provide randomized virtual
items for purchase must disclose the odds of receiving each
type of item to customers prior to purchase” [50].

Google Play Store. In 2019, Google announced a new
policy for loot boxes, i.e., that “Apps and games offering
mechanisms to receive randomized virtual items from a
purchase including, but not limited to, loot boxes must clearly
disclose the odds of receiving those items in advance of, and
in close and timely proximity to, that purchase” [51].

2. Disputes of Loot-box Practices

Several incidents of unfair loot-box practices have been
reported. Below, we briefly describe two such incidents.

In September 2021, a popular Taiwanese streamer accused
the game company behind “Lineage M” of manipulating the
probabilities of winning loot boxes in that online game [7].
Previously, the game company had stated that the probability
of obtaining a particular item in the Taiwanese version
was equivalent to that of the Korean version, i.e., 10%.
However, despite spending more than NT$4 million (about
US$144,000), the player only succeeded 11 times out of 475
attempts, a success rate of approximately 2.3%.

Upon reviewing the player’s appeal, Taiwan’s Fair Trade
Commission launched an investigation. This revealed that,
based on the game company’s internal communication
records, the actual probability of obtaining the item in question
was 5%, which was clearly inconsistent with their previous
claim. Consequently, the commission imposed a fine of NT$2
million on the game company for violation of the Fair Trade
Act. This incident also sparked public discussion about the
reform of loot-box regulation.

Later in 2021, an anonymous player of “Arena of Valor”
claimed to be an employee of the company that produced it,
and that the probability of obtaining items from loot boxes
differed for each player, depending on how much they had
spent in the game [11]. The same player also presented
modified source code as evidence in support of this claim.
This disclosure also prompted widespread discussion and
further highlighted growing distrust between players and
game companies.

3. Comparison of Verifying Loot-box with different
methods

To further establish the positioning of our method,
we compared the existing loot-box verification approaches
mentioned in Introduction with our method, and organized
the results into Table 1. We considered the five objectives
proposed in 2.3, as well as ”Reasonable Basic Assumption”
(practical feasibility) and ”Deployability” (the effort required
to apply it to the current gaming industry).

Using a third-party verification platform to verify a loot-
box has major issues. It assumes that a significant number
of players are willing to provide their draw data, that these
players are unbiased, and that game developers will not
manipulate win rates using fake accounts. We believe these
assumptions are unrealistic in practice, so it does not meet
the ”Reasonable Basic Assumption” criterion. Due to the
likelihood of various deceptive practices, this solution does
not fully meet the ”Correctness and Soundness” and ”Input
Transparency” criteria.

The method of using smart contracts for loot-box draws
can indeed satisfy most of our objectives. However, the main
issue is that smart contracts are vastly different from the
frameworks currently used in the gaming industry, making im-
plementation difficult. Additionally, they are subject to delays
caused by the execution of smart contracts or the PRB, making
it challenging to meet the real-time requirements of loot-box
services. They also need additional costs, such as the gas
fees associated with blockchain transactions, making practical
implementation even more problematic. Furthermore, smart



Correctness Public Individual Input Algorithmic Reasonable Deployability
& Soundness Verifiability Verifiability Transparency Hiding Assumptions

3rd-party platform ? v x ? v x v
Smart Contract [12] v v v v x v x
Our Method v v v v v v v

TABLE 1: Comparison of Verifying Loot-box with different methods

contracts do not address the criterion of ”Algorithmic Hiding”.
According to our interviews with actual game companies,
revealing source code is seen as a significant leakage of
commercial secrets and would have a considerable impact
on the industry. Thus, current game companies are unlikely
to adopt a design like smart contracts.

Our method, through cryptographic means, ensures that
all five of our proposed objectives are met while considering
the needs of current game companies. It relies solely on
cryptographic assumptions, which we believe makes it more
suitable for the current gaming industry compared to the other
two methods.


