Poster: YFuzz: Data-Driven Fuzzing

Yuan Chang
National Taiwan University
Taipei, Taiwan
r08922028@csie.ntu.edu.tw

Tatsuya Mori
Waseda University
Shinjuku, Tokyo, Japan
mori@nsl.cs.waseda.ac.jp

Abstract

Code coverage is an effective objective for guiding fuzzers to explore
code and identify bugs, and it has been a key factor in the success of
greybox fuzzing. However, code coverage has a critical limitation:
coverage-guided fuzzers can miss bugs even when the associated
code is covered. This limitation arises because merely executing
the associated code is often insufficient to trigger a bug; specific
conditions are usually also required. These conditions are not fully
captured by code coverage, which focuses only on whether the
code was executed.

To address this problem, we propose a new objective: value
state coverage, an additional dimension in coverage metrics that
is orthogonal to code coverage. Value state is a combination of
the values assigned to program variables and the order of their
assignment, and by measuring the coverage of value states, we
can guide a fuzzer to explore the triggering conditions of bugs.
We also introduce Data-Driven Fuzzing, a novel fuzzing technique
that focuses on value state coverage, and utilizes security-related
variables, mutation strategies, and extreme values captured at run-
time to effectively discover bugs. We implemented our approach
in a prototype fuzzer named YFuzz. YFuzz has found 12 bugs in
programs included in the OSS-Fuzz project, including 4 assigned
CVEs, indicating that our approach is effective in finding bugs.

CCS Concepts

« Security and privacy — Software security engineering.

Keywords
Fuzzing, Value State Coverage, Code Coverage, Vulnerability

ACM Reference Format:

Yuan Chang, Chun-Chia Huang, Tatsuya Mori, and Hsu-Chun Hsiao. 2024.
Poster: YFuzz: Data-Driven Fuzzing. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS °24), October

*Also with Academia Sinica.
T This research was supported by grants NSTC-112-2223-E-002-010-MY4, 113-2634-F-
002-001-MBK, and NTU-113L7871, 113L900901/113L900902/113L900903.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3691420

Chun-Chia Huang
National Taiwan University
Taipei, Taiwan
r12922103@csie.ntu.edu.tw

Hsu-Chun Hsiao"
National Taiwan University
Taipei, Taiwan
hchsiao@csie.ntu.edu.tw

14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3658644.3691420

1 Introduction

Code coverage is one of the most popular and effective techniques
in software fuzzing. It provides a measure of progress in exploring
the codebase by monitoring which parts of a program’s code are
executed during testing. By increasing code coverage, fuzzers can
systematically explore new execution paths, thereby increasing
the potential for discovering bugs. Many state-of-the-art fuzzing
techniques and fuzzers have been developed based on the concept
of code coverage and use it as guidance to optimize their strategies.

However, a recent study by Bohme et al. [1] pointed out a critical
limitation of code coverage: "simply reaching a given branch or
statement is often insufficient to trigger a bug." To trigger a bug,
two requirements must be met: first, the associated code needs to
be executed; second, the triggering conditions of the bug, such as
certain variable values being within a particular range, must be
satisfied. Code coverage addresses the first requirement by measur-
ing which code has been executed, but the second requirement is
not addressed. As a result, coverage-guided fuzzers may overlook
bugs even when the associated code is covered, since the triggering
conditions might not be satisfied.

Some existing research has tried to address the second require-
ment using various approaches. These approaches fall roughly into
two categories. The first focuses on extracting security-related or
vulnerability-related information from the program and optimizing
fuzzing in these areas [7]. The second involves defining specific
program states, such as call stack, memory values, data depen-
dencies, or variable values, and encouraging the fuzzer to explore
these states more thoroughly [2], [5]. The first category prioritizes
fuzzing code that is commonly associated with bugs, hoping to
satisfy the conditions for triggering them. However, it does not
explicitly target the states that satisfy those triggering conditions.
As a result, it may still miss bugs due to the lack of awareness
of their triggering conditions. The second category often defines
program states too broadly, which can make it challenging to focus
on the information that truly describes the triggering conditions of
bugs, and can also suffer from the state explosion problem.

To address the problem that code coverage cannot fully capture
the triggering conditions of bugs, we propose a new dimension to
measure the exploration of a program: value state coverage. Value
state coverage measures the value space of program variables. By
guiding fuzzers to explore this space, they can more directly aim to

https://orcid.org/0009-0007-7098-9466
https://orcid.org/0009-0007-9760-786X
https://orcid.org/0000-0003-1583-4174
https://orcid.org/0000-0001-9592-6911
https://doi.org/10.1145/3658644.3691420
https://doi.org/10.1145/3658644.3691420

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

new seeds

input bytes

Mutation

Data-Driven
Mutation

Code
tag[0] [Feedback-Guided
arr256]; Mutation
fn1(arr, size); extreme
values

Figure 1: Workflow of Data-Driven Fuzzing

satisfy the triggering conditions of bugs. We believe this dimension
is critical for finding bugs and has been overlooked by coverage-
guided fuzzing in the past. We also introduce Data-Driven Fuzzing,
a novel fuzzing technique guided by value state coverage. It tracks
the value states of two types of program variables—those typically
involved in vulnerability—and explores the space of value states of
one execution path at a time. By doing so, Data-Driven Fuzzing can
narrow down the search space, thus avoiding state explosion and
focusing on describing the triggering conditions of bugs.

To verify our ideas, we implemented a prototype fuzzer of Data-
Driven Fuzzing, called YFuzz. YFuzz first uses static analysis to
identify the program variables that may lead to security vulnerabili-
ties, which we refer to as security-related variables, and instruments
them to collect their values at runtime. We then design the muta-
tion strategies and seed scheduling to explore a variety of values of
these security-related variables. To effectively explore the values of
these variables, we utilize lightweight data flow analysis to locate
the input bytes that can affect the values of the security-related vari-
ables, thereby reducing the input space for mutation. Additionally,
YFuzz infers the extreme values of the security-related variables
that might cause out-of-bound memory access during runtime and
provides these values as feedback to the mutator. This step helps
the mutator to trigger bugs more efficiently.

In our preliminary experiment, YFuzz discovered 12 vulnerabili-
ties in real-world programs that had been extensively fuzzed, with 4
of these vulnerabilities assigned CVE numbers. These initial results
suggest that our approach are promising in finding bugs.

The contributions of this poster are:

e We propose a new dimension in coverage to guide fuzzers
to satisfy the triggering conditions of bugs by exploring the
value state of program variables.

o We introduce novel seed scheduling and mutation strategies
for exploring the value state space.

o The preliminary results of our prototype, YFuzz, demonstrate
the potential of value state coverage for finding bugs.

2 Value State Coverage

We define a value state as the sequence of values assigned to pro-
gram variables in the order of their assignment along an execution
path. For example, consider an execution path where variable A
is assigned the value 1, then variable B is assigned the value 2,
followed by variable A being assigned the value 3. The value state
of this execution path can be described as [A=1, B=2, A=3].

Yuan Chang, Chun-Chia Huang, Tatsuya Mori, and Hsu-Chun Hsiao

Value state coverage can describe the state of a program that
code coverage cannot capture regarding the triggering conditions
of bugs. This concept is illustrated by the example code shown
below. In this example, there is a buffer overflow bug due to an
incorrect size check, and the bug can only be triggered when the
variable size is in the range of 91 to 99. Code coverage alone is
insufficient to capture the triggering conditions of this bug because
the program state with size in the range of 0 to 90 and size in the
range of 91 to 99 yield the same code coverage. As a result, code
coverage cannot effectively guide fuzzers to satisfy the triggering
conditions, and a scheduling strategy optimized for code coverage
may encourage fuzzers to explore other parts of the code once the
read statement is reached. This could cause the fuzzers to miss
the bug. However, value state coverage can differentiate these two
states because it considers the value of the variable size. It can
thus guide the fuzzer to explore the value space of size before
moving on to other parts of the code.

unsigned size;

char buf[90];

if (size < 100) {
read(@, buf, size);

}

Value state coverage is an orthogonal dimension to code cover-
age, and both can be used by a fuzzer to explore code and satisfy the
triggering conditions of bugs. In this poster, we focus exclusively
on value state coverage; increasing code coverage is beyond the
scope of this work.

// buffer overflow

3 Data-Driven Fuzzing

Inspired by Fioraldi et al’s work [2], the intuition behind Data-
Driven Fuzzing is that the space of value states for an execution
path can be viewed as multiple subspaces divided by the triggering
conditions of bugs. Covering one value state within a subspace is
sufficient to trigger the bug associated with that subspace. Thus,
Data-Driven Fuzzing is designed to increase the diversity of the
value states along a given path, thereby increasing the chance of
exploring different subspaces and triggering bugs.

Data-Driven Fuzzing can be broken down into four components:
Identify Security-related Variables, Locate the Corresponding Input
Bytes, Data-Driven Mutation, and Feedback-Guided Mutation. The
workflow of Data-Driven Fuzzing is depicted in Figure 1.

3.1 Identify Security-related Variables

The space of value state can become infeasible to explore when too
many program variables are considered. To avoid state explosion
and focus on triggering bugs, our approach considers only two types
of variables that commonly lead to vulnerabilities when calculating
value state coverage. These types of variables are selected based on
our real-world experience in software exploitation.

The first type of security-related variable is size-related variables.
These include the size arguments of memory and I/O operations,
such as those used in input, output, memory access, and memory
allocation. Incorrect values in these variables can lead to common
overflow-based bugs and memory allocation errors. The second
type is pointer-related variables. These include pointers and vari-
ables that control arrays, such as array indices. Incorrect values in

Poster: YFuzz: Data-Driven Fuzzing

Table 1: Average # of unique value states explored in 48 hours.

Target YFuzz AFL++
exiv2 17,365,987 (+64%) 10,586,739
sndfile-convert 129,274,865 (+912.3%) 12,770,007
xmllint 31,892,762 (+36.9%) 23,303,361

these variables can result in out-of-bound memory access, causing
unexpected behavior or crashing the program.

We identify the security-related variables through static analysis
and instrument them to gather information at runtime.

3.2 Locate the Corresponding Input Bytes

To increase the value diversity of the security-related variables and
thereby explore the space of value states for an execution path, we
locate the bytes in the input that affect the values of these variables
without changing the execution path. This ensures that the seeds
generated by mutation mostly follow the same execution path.

To locate these bytes without introducing excessive overhead, we
use a lightweight taint analysis technique similar to Taint Inference
in GERYONE [4]. First, the target program is executed with an input,
and both code coverage and value state coverage are recorded.
Next, we mutate each byte of the input one by one, comparing
the new code coverage and value state coverage with the original
ones. If only the value state coverage changes, indicating that the
byte affects the value of some security-related variables without
changing the execution path, then the byte is labeled. Each byte is
mutated multiple times before labeling to verify its effect on code
coverage and value state coverage. Finally, the labeled bytes are
grouped into tags, with each tag representing the bytes that affect
the value of a security-related variable on the execution path.

3.3 Data-Driven Mutation

To mutate an input, we randomly select a tag each time before
reaching the energy limit, then mutate only the labeled bytes asso-
ciated with that tag. This approach ensures that the mutated seeds
follow the same execution path, allowing us to explore different
value states along the path and cover more subspaces.

3.4 Feedback-Guided Mutation

The value range of variables that trigger bugs can be narrow. In our
real-world observations, overflow-based bugs often have a limited
range of values that can trigger them, typically near the boundaries
of the memory they access. For example, off-by-one byte overflow
bugs are only triggered when the variable takes on a specific value,
usually just one step beyond the buffer size.

To aid the fuzzers in reaching these value ranges, we capture
the boundaries of the security-related variables and use them as a
guide for mutation. This helps the fuzzers focus their exploration
on the value states near the triggering conditions, which are the
boundaries of subspaces, making it more likely to trigger bugs.

4 Preliminary Results

YFuzz discovered 12 bugs in 4 programs: Exiv2, libxml2, libsndfile,
and openjpeg, which have been extensively fuzzed in the OSS-Fuzz

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

afl aflplusplus yfuzz
FuzzerMedian 98.00 98.00 9150
FuzzerMean 98.00 98.00 91.50
harfbuzz_hb-shape-fuzzer_17863b 99.00 98.00 89.00
php_php-fuzz-parser_Odbedb 97.00 98.00 94.00

Figure 2: Results of code coverage using FuzzBench

project. 4 of these bugs have been assigned CVE numbers: CVE-
2021-3482, CVE-2021-29623, CVE-2021-3537, and CVE-2021-3575.
While further evaluation is still in progress, the ability to find new
bugs in programs already included in the OSS-Fuzz project demon-
strates the capability of YFuzz in identifying new vulnerabilities.

As shown in Table 1, the value state coverage of YFuzz is consis-
tently higher when compared to AFL++ [3]. Although increasing
code coverage is not our goal, our early evaluation using FuzzBench
[6] indicates that YFuzz tends to achieve lower code coverage com-
pared to AFL [8] and AFL++, as shown in Fig. 2.

5 Conclusion

This poster proposed value state coverage, a new dimension for
fuzzing that addresses the limitations of code coverage. Our ap-
proach focuses on exploring the value states of security-related pro-
gram variables, guiding fuzzers to meet the triggering conditions of
bugs. This method enhances the ability to uncover vulnerabilities
that may be missed by relying solely on code coverage. The prelim-
inary results demonstrate the potential of our approach, although
some challenges remain. For instance, the code coverage achieved
by our approach tends to decrease, and an execution path with too
many security-related variables may still lead to a state explosion.

Value state coverage is promising for finding bugs previously
missed by coverage-guided fuzzing. Many fuzzing concepts and
techniques developed based on code coverage, such as seed sched-
uling, mutation strategies, and hybrid fuzzing, could be adapted
and applied to value state coverage in the future. Additionally, com-
paring, integrating, and balancing value state coverage with code
coverage offers promising opportunities for future research. We
encourage researchers to study this new dimension of coverage
and explore the triggering conditions of various bugs.

References

[1] Marcel Bshme, Laszl6 Szekeres, and Jonathan Metzman. 2022. On the reliability
of coverage-based fuzzer benchmarking. In ICSE.

[2] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. 2021. The Use of
Likely Invariants as Feedback for Fuzzers. In USENIX Security.

[3] Andrea Fioraldi, Dominik Maier, Heiko Eif}feldt, and Marc Heuse. 2020. AFL++:
combining incremental steps of fuzzing research. In WOOT.

[4] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu, and
Zuoning Chen. 2020. GREYONE: data flow sensitive fuzzing. In USENIX Security.

[5] Alessandro Mantovani, Andrea Fioraldi, and Davide Balzarotti. 2022. Fuzzing with
Data Dependency Information. In EuroS&P.

[6] Jonathan Metzman, Laszlé Szekeres, Laurent Simon, Read Sprabery, and Abhishek
Arya. 2021. FuzzBench: an open fuzzer benchmarking platform and service. In
ESEC/FSE.

[7] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu, and
Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by Coverage
Accounting for Input Prioritization. In NDSS.

[8] Michat Zalewski. 2016. American Fuzzy Lop. Retrieved July 31, 2024 from https:
//lcamtuf.coredump.cx/afl/

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Value State Coverage
	3 Data-Driven Fuzzing
	3.1 Identify Security-related Variables
	3.2 Locate the Corresponding Input Bytes
	3.3 Data-Driven Mutation
	3.4 Feedback-Guided Mutation

	4 Preliminary Results
	5 Conclusion
	References

