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Abstract
The current state of healthcare is challenged by the widespread use
of legacy systems, which often lack the advanced security features
necessary to combat modern cyber threats. However, our investi-
gation reveals that hospitals are often reluctant to upgrade their
systems, which is primarily due to the following factors: low tol-
erance to service downtime and patch errors, platform diversities,
and the resource constraints of embedded medical devices.

Motivated by these challenges, we propose AdapSan, a frame-
work that allows users to dynamically deploy input sanitization
schemes for kernel according to the risk profiles of the target sys-
tem. AdapSan utilizes eBPF as the key technique to enable dynamic
reconfiguration of defense strategies, thereby avoiding downtime.
Additionally, it uses eBPF’s verification mechanisms to sandbox
patch code, minimizing the impact of potentially buggy patches.
Furthermore, the platform-agnostic nature of eBPF bytecode and
its Just-In-Time (JIT) compilation facilitate the deployment of this
solution across various platforms while maintaining the execution
speed of native code. AdapSan incorporates two types of insertion
schemes, offering a balance between usability and code complexity.
Preliminary evaluations of AdapSan indicate that the patching time
can be less than 19 milliseconds and the average runtime overhead
post-patching can be maintained below 36%.
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1 Introduction
Healthcare organizations and medical systems have become popu-
lar targets of cyberattacks in recent years [21, 24]. Since 2020, there
has been a 239% increase in large healthcare breaches involving
hacking and a 278% increase in ransomware [23]. For example, the
recent Black Basta ransomware has disrupted the operation of 140
Ascension hospitals across the U.S. [6]. One culprit of such trends is
healthcare organization’s reliance on legacy systems. It was found
that 83% of imaging computers run an unsupported operating sys-
tem [5], which is a direct result of modern operating systems being
mostly incompatible with healthcare components [16].

The prevalence of legacy medical systems opens up a wide at-
tack surface. However, patching healthcare systems is often chal-
lenging in light of several operational constraints in the medical
environment. A primary concern for upgrading healthcare systems
is the expected resource-consuming and disruptive process of patch
deployment. Currently, there are no consistent mechanisms to de-
velop and verify the reliability of a patch before deployment, risking
downtime due to patch errors [8]. The fact that the medical environ-
ment comprises various interconnected systems and devices, each
from different vendors and designed to support patients with dif-
ferent conditions, further complicates the development and testing
of patches, and is sometimes even infeasible for legacy systems.
Our Solutions. To address the healthcare industry’s reliance on
legacy systems and adapt to their unique operational requirements,
we propose AdapSan, a framework that utilizes extended Berkeley
Packet Filter (eBPF) as the core technique for kernel protection.
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eBPF provides several key advantages. First, its dynamic instrumen-
tation supports online updates without requiring system reboots,
minimizing service downtime [13, 31] and enhancing availabil-
ity [28, 29]. Second, eBPF’s verifier ensures memory safety, im-
proving patch reliability. Third, its just-in-time (JIT) compilation
facilitates portability across a wide range of medical systems and
devices. Finally, eBPF allows for selective code instrumentation that
helps manage performance overhead more effectively. Given the
constraints of writing eBPF programs, AdapSan incorporates two
schemes, each designed to balance usability and code complexity.
Evaluation and Future Work. We implemented AdapSan and
conducted a preliminary evaluation on a Raspberry Pi 3b and a
desktop with an Intel i9-12900K processor. The evaluation shows
that the patching time can be less than 19 milliseconds, and the
average runtime overhead post-patching can be maintained below
36%. In future work, we plan to fully realize AdapSan’s potential by
enabling more sophisticated use cases and automatic generation of
an eBPF program from user-provided patches.

2 Background & Motivation
2.1 State of Hospital Digital Infrastructure
Heterogeneous Hospital Networks. Digital systems in health-
care can be divided into two main categories: IoT Systems and IT
systems. Medical IoT systems contain a wide range of medical de-
vices interconnected in a hospital network. Devices such as infusion
pumps (38%), imaging systems (5%), patient monitoring (19%), and
point-of-care systems (10%) are the most likely to be IoT-enabled [9].
Meanwhile, medical IT systems comprise devices that are often not
purpose-built and instead run applications important for hospital
management on generic hardware. This includes EHR terminals
for retrieving and entering patient data, PACS servers for storing
patient imaging data, and HMS systems that manage operations
such as discharge paperwork and billing.
Efforts to Secure Medical Systems. Previous efforts to secure
medical systems started with non-adversarial safety analysis, such
as the introduction of ISO 14971 [1]. Its modern revision provides
a general risk management framework for assessing the risks of
medical systems based on their ability to harm in the event of
malfunction [3]. On the other hand, IEC 80001-1’s introduction in
2010 contained more security-specific guidelines for medical device
security, proposing a three-phase life cycle and a decommissioning
plan in addition to network security recommendations [2]. Later,
device-specific guidelines emerged, such as the NIST SP 1800-8 in
response to the high adoption of IoT-enabled infusion pumps [22].

Despite the available guidelines, definitive security requirements
for medical devices in the U.S. were not established until the pas-
sage of Section 3305 in the 2023 federal omnibus, which sets mini-
mum cybersecurity requirements for devices submitted to the FDA,
including accelerated premarket applications such as 510(k) [4].
The FDA’s draft standard for cybersecurity requires that device
manufacturers maintain procedures to provide reasonable security
assurance, disclose post-market vulnerabilities, and provide a soft-
ware bill of materials [12]. MITRE and the FDA have also released a
white paper on cybersecurity risks for legacy medical devices that
are in use but are considered unable to be patched to standard [20].

However, studies show a poor adoption of these guidelines and
security measures in the medical sector. While a growing number of
hospitals adopted network segmentation practices such as VLAN,
72% of these mixed medical systems with non-medical ones [5].
Even simple device-level protections, such as firewall and anti-
malware software, have not yet been fully adopted, with 11% and
9% of hospitals operating without them, respectively [30]. Some of
these oversights could be attributed to underfunded IT and minimal
security spending, in addition to technical constraints, as 75% of
hospitals believe that they do not spend enough on security, despite
a predicted 1.8 million healthcare IT worker shortage in 2021 [30].

2.2 Barriers to Updating Systems
Downtime. Due to the critical nature of medical infrastructure,
downtime is required to be extremely minimal. A study of EHR
downtime found that a disrupted EHR system can cause the mean
time to perform clinical tests to increase by 62% [17]. As a result, sys-
temmaintenance is required to be short and occur during low-traffic
periods. For example, a Cornell hospital issued an emergency bul-
letin that they would be performing an emergency maintenance up-
date on Epic EHR at 1:00 AM, which would last 3 minutes and would
restore app context to users after the update was completed [14].
Patch Verification. Hospitals are also particularly sensitive to
downtime caused by incorrect patches that break an application or
system. For example, a case study from an emergency diagnostic
division details how a security update to Internet Explorer 6 broke
a proxy connection to their PACS server that stores images from ra-
diology. The outage caused 10 days of downtime to fix and resulted
in a statistically significant decrease in the utilization of worksta-
tions to diagnose illnesses [16]. More recently, CrowdStrike pushed
a flawed update to a security module that managed named pipe
execution in Windows which causes a bad dereference in forbidden
memory [8]. The flaw resulted in complete kernel panic and many
hospitals were left unable to operate critical systems [7].
Generalizability across Platforms.Medical systems span a wide
set of different hardware and software combinations. Among a 2020
Palo Alto Networks survey of imaging systems, 9% of the systems
use a custom embedded OS with 9% of systems using a variety of
Linux and Unix versions (both supported and unsupported). The
report did find a majority 82% of imaging systems using Windows,
but this was further segmented between usage of unsupported ver-
sions like Windows 7 and XP and supported versions like Windows
8.1 and 10 [5]. A more recent Cynerio study in 2023 presents an
even more scattered landscape for all medical IoT where 46% of
medical IoT devices run a version of Linux, with the remaining
54% comprised of a mix of proprietary RTOSes, Windows (both
embedded and desktop), and other operating systems [9].
Resource Constraints. The market size of medical microcon-
trollers has been increasing rapidly, projected to reach 75 billion by
2032 [10]. Microcontrollers’ healthcare applications mostly include
implantable devices such as pacemakers, infusion pumps, CPAP
machines, etc., all of which require signal controls to be precise and
real-time data processing to ensure timely responses [27]. However,
compared to traditional processing units, microcontrollers have
minimal memory, storage, and computational power.
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3 Threat Model and System Goals
Threat Model. We assume the adversary has arbitrary memory
read and write ability in user-space, but cannot alter any data in the
kernel memory space. This can be achieved by installing a malicious
third-party application [15] or exploiting network vulnerabilities
to remotely compromise a user-space application. The primary ob-
jective of the adversary is to exploit the kernel vulnerability from
user-space to corrupt the kernel’s functionality. The goals could
be manipulating critical medical device sensor data or tampering
with actuation data to cause harm to patients. We assume that the
target system’s kernel is trustworthy, but may contain vulnerabil-
ities that can potentially be exploited by user-space applications.
Since AdapSan leverages eBPF [26] as a substrate, we assume that
the eBPF toolchain is trustworthy and free of bugs. Hardware at-
tacks, side-channel attacks, covert-channel attacks, and availability
attacks [18] are outside the scope of this work.
System Goals. The design of AdapSan is guided by the following
goals motivated by the barriers discussed in Section 2.2.
R1 - No service disruption. Defense should be able to be dynamically
adjusted at runtime without having to reboot the system.
R2 - Reliability of patch. Ensuring the logical correctness of a patch
is essential but depends heavily on domain knowledge and the
semantics of the target application. As a system-level solution,
AdapSan focuses on ensuring memory safety for the added code,
preventing it from corrupting the kernel.
R3 - Agnostic to Target Platform. Given the diverse platforms used in
medical devices, the solution must be compatible across platforms.
R4 - Low runtime overhead. The defense should incur minimal re-
source costs, introducing only manageable runtime and memory
overhead. This is crucial for embedded environments, where most
medical IoT devices operate.

4 Design of AdapSan
Overview. AdapSan is designed to deploy input sanitization mech-
anisms within the kernel at runtime, eliminating the need for a sys-
tem reboot. The centerpiece of AdapSan is an eBPF-based dynamic
instrumentation framework, which inherently satisfies requirement
R1. Additionally, AdapSan leverages the eBPF verifier to ensure
that newly added patch code is sandboxed, thereby minimizing
impacts on other parts of the kernel, which meets R2. eBPF’s avail-
ability on Linux, which is present in 46% of medical IoT devices,
and its platform-independent bytecode, modular design, and uni-
form interface allow for adaptation on other systems, satisfying R3.
Furthermore, dynamic instrumentation enables selective patching
of the kernel without maintaining multiple instances, and the JIT
compilation of eBPF converts bytecode to native machine code with
minimal impact on runtime performance, meeting R4.

The workflow of AdapSan is depicted in Figure 1. (1) A user
writes patch code based on the vulnerability report; (2) the user
specifies the location in AdapSan to patch; (3) AdapSan compiles
the user’s code and verifies its correctness; (4) AdapSan notifies
the user if the verification fails; (5) otherwise, AdapSan adds the
compiled program into the kernel; (6) the kernel then runs the
compiled bytecode at the locations predefined by the user.

1 Patch generation 
from bug report

AdapSan

Verifier

2 Patch location

3 eBPF compilation and 
verification

5 Load patch

6 Kernel runs eBPF 
program4 Notify user if verification fails

Kernel

Figure 1: AdapSan workflow.

Dynamic Input Sanitization. AdapSan incorporates two schemes
for dynamic input sanitization, each with its own advantages and
limitations. The first scheme involves transforming patch code di-
rectly into an eBPF program, which is then loaded into the kernel to
replace the vulnerable code. This approach leverages the eBPF veri-
fier to ensure the program is sandboxed and thus secure. However,
due to eBPF’s stringent requirements, the complexity of the eBPF
program is limited. Highly complex patches may not pass the veri-
fication process, making this method unsuitable for patches with
intricate code logic. Additionally, eBPF programs cannot be added at
predefined points in the kernel, further limiting their applicability.

The second scheme involves instrumenting reference monitor-
ing code to achieve input sanitization by inserting it into the ker-
nel before the vulnerable code region. This is accomplished using
KProbe [25], which allows adding tracing points in most kernel
code regions without modifying the kernel itself. It can be used
alongside eBPF to add more instrumentation points, enhancing
eBPF’s flexibility. However, a drawback is that KProbe does not
provide security guarantees for the inserted code. This makes it
unsuitable for directly deploying patch code without additional
measures, such as instrumenting address masking for sandboxing.
Helper Functions. eBPF programs, unlike built-in kernel code,
drivers, or loadable kernel modules, do not have access to the entire
kernel address space and cannot call arbitrary kernel functions.
This limitation can pose challenges for the development of eBPF
programs. To facilitate the implementation, we provide specialized
helper functions in eBPF tailored to networked medical systems.
These helper functions fall into two main categories: (1) Data In-
spection and Analysis: These functions inspect and analyze sensor
and actuation data communicated by various devices, ensuring
secure and reliable communication between medical devices and
other systems; (2) Event Timestamping: These functions retrieve
precise timestamps for events, which is crucial for monitoring and
logging time-sensitive medical data. By using these tailored helper
functions, eBPF programs can effectively support the secure and
reliable operation of networked medical systems.

5 Preliminary Evaluation
We implemented AdapSan on Linux with kernel version 5.15 and
on Raspbian with kernel version 6.6. The core functionalities are
implemented as a set of Python scripts. To evaluate AdapSan, we
aim to answer the question – Does AdapSan achieve low downtime?
This will be assessed by measuring the downtime caused by the first
scheme. To this end, we use an open-source SparkFun heart rate
monitor (HRM) [11] as the evaluation target. The original source
code runs on Arduino; we modified the code to run on Linux while
maintaining the original code logic. The experiments are conducted
on a Raspberry Pi 3b and a PC with an i9-12900K processor. We
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Figure 2: Performance evaluation of AdapSan.
inspected the interface of the HRM application and found that the
main components required are the network stack and bus drivers.
As such, we assumed vulnerabilities reside in these locations. The
sanitization codes are instrumented in ioctl, read, and write syscalls.

Figure 2 presents the evaluation results. The loading time, mea-
sured in milliseconds, remains within 16 milliseconds on i9-12900k
and 52 milliseconds on Raspberry Pi 3b. This duration is generally
within acceptable limits for medical device deadlines. The loading
time may vary with the size of the eBPF program, but this accounts
for a relatively small part of the overall latency and does not exceed
100 ms in our experiments. In terms of runtime overhead, intercept-
ing the target system calls and performing reference monitor checks
incur a higher cost compared to static instrumentation techniques.
In our experiments, this overhead can reach up to 36% because
the target workload is relatively simple such that its baseline exe-
cution time is small. However, the execution time for each check
remains at the microsecond level, making the overhead tolerable
for scenarios where I/O interactions are infrequent.

6 Limitations and Future Work
AdapSan faces several limitations in terms of compatibility, capabil-
ity, and usability. First, it relies on the eBPF infrastructure, which
may not be available on legacy systems. However, as eBPF becomes
more widely supported in modern systems, this issue is expected
to diminish [19]. Second, the protection scope of AdapSan is con-
fined to the kernel space. We argue that kernel code is particularly
critical in medical IoT environments, as it primarily interacts with
peripherals and its vulnerabilities are more challenging to address
in practice. Extending protection to user-space programs is left for
future work. Finally, the programmability of eBPF poses usability
challenges, as converting patch code into eBPF programs requires
significant effort. Future work will focus on enabling AdapSan
to support more advanced use cases and automatically generate
application- and environment-specific patches.
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