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Abstract—A Byzantine Fault-Tolerant (BFT) protocol protects
a distributed system from faulty participants. To provide both
liveness and safety, many such protocols assume they are dealing
with a partially-synchronous network, which will eventually
stabilize after a global stabilization time (GST). In a real-world
network environment, however, there is no such guarantee of
bounded transmission time for network packets. For this reason,
even if a BFT protocol is mathematically proven to achieve both
liveness and safety, its overall performance is difficult to analyze
theoretically, especially if there are bad network conditions or
adversarial behaviors. Accordingly, we propose a simulator for
evaluating the performance of BFT protocols under various
network conditions and attacks, and we implement it to empiri-
cally compare the performance of eight representative protocols.
Experiment results show that our simulator can simulate 16 times
as many nodes as an existing simulator supports (512 vs. 32),
and it is over 500 times faster when simulating 32 nodes (38
milliseconds vs. 19.4 seconds).

Index Terms—BFT Protocols, Simulation Tool, Byzantine Fault

I. INTRODUCTION

The Byzantine Generals Problem, first delineated by Lam-
port et al. [1], is the problem of reaching an agreement in
a distributed system that includes faulty nodes. Such nodes,
also called Byzantine nodes, can perform arbitrary behaviors
(Byzantine behaviors), including but not limited to crashing,
not following a protocol, and sending misleading messages. A
Byzantine fault-tolerant (BFT) protocol prevents inconsistent
states in a distributed system, achieving both liveness and
safety, despite the presence of Byzantine nodes. An already
extensive body of research on BFT protocols [2]–[5] has been
considerably augmented since the rise of blockchains [6]–
[10]. Each such protocol has a different design, which leads
to varying performance claims and attack resistances across
different network environments.

As BFT protocols are usually applied to time-critical sys-
tems, such as blockchains and avionics, their inefficiency
is a critical security issue. A successful attack that causes
performance degradation or even denial of service (DoS) on a
blockchain increases the risk of double-spending [11], while a
DoS attack on aircraft systems can lead to crashes. However,
theoretical analysis of any BFT protocol’s correctness and
performance is difficult, due both to attacks and to the complex
nature of its underlying networks. Thus, such analysis has
been simplified via a number of assumptions. Notably, to
overcome the FLP impossibility result [12], many analysts
of BFT protocols assume a partially-synchronous network,
which eventually stabilizes after a global stabilization time

(GST). Under a partially-synchronous network model, such
protocols are free to focus on maintaining safety throughout
their execution—i.e., even when the network is unstable—and
then attempt to terminate after the network stabilizes.

Such assumptions are useful for confirming a BFT pro-
tocol’s liveness and safety properties, and for analyzing its
worst-case performance under particular conditions. However,
assessing its overall performance (e.g., the time it takes to
reach a consensus and terminate) remains difficult in a real
network environment, which may be unstable intermittently.
It is also unknown how such performance will be impacted
by adversarial behaviors. For example, the security and per-
formance analysis came with the HotStuff protocol [10] was
limited to scenarios in which its nodes are in the same view;
but as our evaluation will show, when the HotStuff BFT
protocol is using a naive view-doubling synchronizer, nodes
in HotStuff can be knocked out of synch easily when the
network delay is underestimated, resulting in undesirably long
latency. Since our implementation of HotStuff may differ from
its intended implementation, we annotate our version as Hot-
Stuff+NS (naive synchronizer) in this paper. Some researchers
seeking insights into the behaviors of BFT protocols have used
experimentation to empirically compare such protocols’ per-
formance [13], [14], and several simulators are now available
to facilitate the testing process. However, existing simulators
are either not general enough to support a broad range of BFT
protocols [15], or can only simulate benign failures (e.g., fail-
stop) [16], [17]. In addition, they are inefficient and cannot
reliably support larger sets of nodes (e.g., beyond 32), causing
them unsuitable for simulating newer protocols.

In this paper, therefore, we propose an efficient and flexible
simulator for BFT protocols. Our goal is that it should be able
to simulate the execution of a BFT protocol under multiple
attack scenarios and network conditions in a short period
of time; and that it should enable empirical performance
evaluation despite attacks occurring.

A key difference between our approach and prior ones lies in
how we model Byzantine behaviors. Existing work instantiates
Byzantine nodes and controls their individual behaviors to
simulate attacks against honest nodes [15]. Moreover, the set
of Byzantine nodes is usually fixed before simulation begins,
and cannot modify the network messages transmitted by other
nodes. This limits the simulated attacker’s capabilities, and
thus, such simulators cannot support some of the attacks
that we introduce in Section III-C. For example, an adaptive
attack should be able to compromise nodes during protocol



execution, and a rushing attack should be able to observe or
modify messages from other nodes. Accordingly, instead of
controlling individual Byzantine nodes to model Byzantine
behavior, we construct an abstracted global attacker that is
able to observe or modify messages between honest nodes
and selectively attack some of them.

To demonstrate the power of our simulator, we use it to
implement eight representative BFT protocols (e.g., PBFT,
HotStuff+NS, and LibraBFT) and three attacks, and compare
their performance. This yields several interesting findings
about the behaviors of these protocols. One such finding
is that, when the network delay is higher than expected,
HotStuff+NS needs to change its leader frequently before
deciding one value, and this results in a 5.3-fold higher latency
than when network delay is normal.

II. BACKGROUND

This section provides background about BFT protocols,
including the formal definition, common network models, and
performance metrics.

A. BFT Protocols
Suppose there are n nodes in a distributed system, and there

are f Byzantine nodes among them. The remaining n − f
nodes are called honest nodes. A BFT protocol allows each
honest node to reach a consensus while guaranteeing safety
and liveness. Safety ensures the consistency between any two
honest nodes, and liveness requires all honest nodes eventually
reach a consensus.

This paper mainly considers BFT state machine replication
(SMR) protocols, which continuously reach a sequence of
consensuses. To exemplify and unify the terms used in this
paper, we describe a simplified BFT SMR protocol below.
All nodes locally maintain a monotonically increasing number
called view. Each view has a dedicated leader known to every
node, and the remaining nodes are followers. Importantly, the
leader need not be honest. The leader creates a proposal and
sends it, along with the view number, to all followers. If a
follower’s view is the same as the leader’s, and it agrees to
the proposal, it sends a vote back to the leader. The process
consisting of a message being sent from the leader and voted
by followers is a round. After a certain number of successful
rounds, the proposal is decided, and it is agreed by all nodes.

B. Common Network Models
Correctness and performance claims about BFT protocols

are often rooted in certain assumptions about their underlying
networks. The three most common network models are [18]:

• Synchronous Network. There is a known upper bound
∆ on the message delay among honest nodes.

• Partially-Synchronous Network. There is an unknown
upper bound ∆ on message delay among honest nodes;
equivalently, there is an unknown time called Global
Stabilization Time (GST), and the message delay is upper
bounded by a known value ∆ after GST.

• Asynchronous Network. There is no upper bound on the
message delay among honest nodes.

C. Performance Metrics of BFT Protocols

When analyzing the performance of BFT Protocols, we will
mainly focus on two metrics: time usage and message usage.
A detailed explanation of each is provided below.

• Time Usage is calculated as the time elapsed between
the beginning and termination of a BFT protocol. Even
though round complexity, which is defined as the number
of rounds taken before a BFT protocol terminates, is more
commonly used in theoretical analysis, the latency of a
round can vary considerably across BFT protocols. Thus,
we have elected to use the former in our simulations,
while our simulator can support round complexity as well.

• Message Usage reflects the communication cost of a BFT
protocol. As messages may be encoded in various ways,
instead of calculating their actual sizes in bytes, we cal-
culate the number of transmitted messages. If necessary,
the total bytes can be reconstructed via estimating the
size of each message and calculating the sum of size of
all messages.

As well as facilitating empirical/quantitative comparison of
the performance of different BFT protocols, as mentioned
above, using these two low-level metrics enables further in-
vestigation of whether a BFT protocol achieves two important
properties that greatly influence the performance of a BFT
protocol: view synchronization (§II-C1) and responsiveness
(§II-C2). Each is discussed in its own section, below.

1) View Synchronization: Many view-based BFT protocols,
including PBFT [3], HotStuff [10], and LibraBFT [19], will
only terminate when nodes are in the same view. Thus, if nodes
have trouble converging to the same view—for example, due to
an unstable network or an attack—the performance of these
BFT protocols will be negatively affected. Naor et al. [20]
formalized this as the view synchronization problem.

The round complexity and the message complexity of
each of the above-mentioned protocols have been extensively
studied via theoretical analysis. However, such analysis has
assumed not only that networks are stable, but also that nodes
are synchronized in their views; and even so, it has usually
yielded only rough time bounds for termination. Our simulator,
in contrast, can quantitatively evaluate the performance of a
BFT protocol even when its nodes are out of sync.

2) Responsiveness: A BFT protocol is deemed respon-
sive [21] if it proceeds as soon as the majority of nodes
agree. This means that the latency of its agreement process
depends only on the actual network latency, rather than on
any predefined parameters such as timeouts. Responsiveness is
considered a desirable property, because the faster the network
is, the faster the nodes can reach a consensus.

III. TOOL DESIGN AND IMPLEMENTATION

This section describes the design and implementation of
our simulator tool 1, beginning with its high-level infrastruc-
ture and core components, and then proceeding to its BFT
protocols and the attackers we implemented with it. Because

1https://github.com/csienslab/BFT-Simulator
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this simulator handles the fundamental components required
for running and evaluating a BFT protocol—such as net-
work communication, metrics calculation, and data logging—
researchers who would like to experimentally evaluate their
new algorithms can easily implement both of the core logic
of their BFT protocols and customized attacks. This simplicity
is reflected in the relatively few lines of code required for our
reference implementation, as summarized in Tables I and II.

We implemented our simulator using JavaScript program-
ming language and a Node.js runtime environment [22].

A. Infrastructure

As shown in Fig. 1, the simulator consists of five main com-
ponents: controller, event queue, consensus module, network
module, and attacker module. For purpose of demonstration,
we have implemented eight representative BFT protocols and
three attack scenarios using our simulator. Users can also
import or write customized BFT protocols or attack scenarios.
Specifically, a user of our simulator needs only to write a con-
figuration file specifying the network model and parameters,
the BFT protocol, and, optionally, the attack scenario.

Below, we explain the functionality of each module.
1) Controller: The controller initializes all the other mod-

ules according to a configuration file provided by the user.
It also manages the event queue, which sorts all events
according to their event timestamps; dispatches events to the
corresponding modules; and updates the simulation clock ac-
cordingly. After a consensus is reached, the controller outputs
the simulation result calculated from the performance metrics
(i.e., time and message usage defined in §II-C).

2) Event Queue: We adopt a technique commonly used by
network simulators [23]: using a simulation clock and event
queue to calculate simulation time, instead of measuring the
wall-clock time. We use a priority queue as our event queue
to sort all events by timestamps, and the simulation clock
is advanced according to a timestamp attached to an event
popped from the event queue. The event queue manages two
types of events: message event occurs when a node receives
a message, and time event occurs when a simulation clock
reaches a certain time.

3) Consensus Module: The consensus module implements
the core logic of a BFT protocol and controls the behaviors
of honest nodes; all adversarial behaviors are performed by
the attacker module. The consensus module is able to send
messages to other nodes through the network module, or
register time-triggered events with the controller.

To simulate a customized protocol, a user of our simulator
needs only to implement three functions:

• onMsgEvent. The callback function that is executed when
a node receives a message event.

• onTimeEvent. The callback function that is executed when
a node receives a time event.

• reportToSystem. The communication interface the con-
sensus module uses to send result to the controller.

While the BFT protocols we implemented are mostly single-
leader protocol, multi-leader or leaderless protocols are also
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Fig. 1: The infrastructure of the proposed simulator.

supported since the consensus module can freely decide which
nodes or no nodes at all are the leaders.

Note that we currently does not calculate the computational
cost of an honest node, and therefore measuring the throughput
of a BFT protocol is not possible. One way to add this
feature is to estimate the computation time through calculating
the number of computational extensive operations, such as
cryptography operations.

4) Network Module: The network module simulates a peer-
to-peer network. To achieve this, each node is connected to
this module; to simulate message delivery from one node
to another, the sender node sets the source (sender) and
destination (receiver) variables in the message and sends it
to the network module. The network module then sets a
delay variable for each message according to the network
configuration, and forwards these messages to the attacker
module to simulate attacks. The delay variable can be sampled
from any distribution, such as a Gaussian distribution or a
Poisson distribution, which can easily be changed to simulate
various types of networks.

After passing through the attacker module, each message
is registered as a message event and delayed according to its
delay variable. When a message event is triggered, the message
is dispatched to its destination by the controller.

By adjusting the delay of each message in the network
module, we can simulate common network models:

• Synchronous. If a BFT has a predefined network config-
uration λ, and all packet delays are bounded by a fixed
bound b ≤ λ, we are simulating a synchronous network,
as the BFT runs with a known network bound λ.

• Partially-Synchronous. If a BFT has a predefined net-
work configuration λ, and all packet delays are bounded
by a fixed bound b, we are simulating a partially-
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synchronous network, as the network has a bound b that
is unknown to the BFT protocol.

• Asynchronous. If all packet delays are sampled without
any bounds, we are simulating an asynchronous network.

5) Attacker Module: The attacker module simulates at-
tacker behaviors. Specifically, it simulates Byzantine nodes,
which receive and send messages to deceive honest nodes
that do not know which among them are Byzantine nodes.
To support the simulation of various attacker capabilities, the
attacker module has access to the entire network, and simulates
attacks by setting the delay variable, dropping messages, or
inserting new messages.

To construct a customized attacker, two functions need to
be implemented. These are:

• attack. The callback function that is executed when the
network module forwards messages to the attacker.

• onTimeEvent. The callback function that is executed when
the time events registered by this module are dispatched.

Section III-C provides the guidelines for implementing an
attacker and the list of attackers that we implemented.

6) Validator Module: The validator module is a special
mode of the network module designated for cross-validating
the simulation result against a given ground-truth result. The
ground-truth event sequence (e.g., commit, pre-prepare) can be
generated by another simulator or the actual implementation
of the BFT protocol. When the validator module is enabled,
it replays the message events according to the ground-truth
event sequence. When a consensus is reached, the validator
module checks whether the consensus module produces the
same result (i.e., which node agrees on what value) as the
ground truth.

B. BFT Protocols Implementations

The BFT protocols we implemented, which collectively
correspond to all three of the network models discussed above,
are listed in Table I. Each is also described below.

1) Three Versions of ADD+ BA: ADD+ BA [7] is a syn-
chronous BFT protocol with optimal resilience and expected
constant-round termination. They began by providing a basic
protocol (which we call ADD+v1), and then extended it to
include a verifiable random function (ADD+v2) to tolerate a
static attack. Finally, they added a prepare round to tolerate
the adaptive and rushing attacks (ADD+v3). We simulate these
three variants to demonstrate our simulator’s ability to support
various attacks.

2) Algorand Agreement: Algorand Agreement [6] is a fast
and partition-resilient BFT protocol. Designed for a syn-
chronous network, it can reach agreement in an expected
constant number of rounds if the network latency between
honest nodes is smaller than a known bound. We selected
Algorand Agreement because it is one of the best-known
synchronous BFT protocols with partition resilience.

3) Async BA: Asynchronous Byzantine Agreement (async
BA) [2] is a classic binary-value BFT protocol designed for
an asynchronous network. Its key contribution is that it limits
the behavior of Byzantine nodes using reliable broadcast plus

a validation function. Due to the FLP impossibility result [12],
async BA only provides probabilistic liveness instead of guar-
anteeing liveness.

4) PBFT: Practical Byzantine Fault Tolerance (PBFT) [3]
is one of the best-known BFT protocols. It has been widely
used in many projects, notably including early versions of
Tendermint [24] and Hyperledger Sawtooth PBFT [25]. It fea-
tures responsiveness and can work in a partially-synchronous
network by doubling its timeout every time it changes its view.

5) HotStuff+NS: HotStuff [10], for partially-synchronous
networks, reduces latency by pipelining the three-phased con-
firmation process. Like PBFT, HotStuff provides responsive-
ness. Given an honest leader and a stable network, HotStuff’s
communication complexity is linear to the number of nodes.

HotStuff decouples liveness from safety via a module called
PaceMaker: a view-synchronization algorithm responsible for
keeping the nodes in the same view. While HotStuff’s paper
states that PaceMaker can be constructed using an expo-
nential back-off mechanism, it did not provide a reference
PaceMaker implementation. Thus, we implemented our own
PaceMaker for HotStuff+NS: a view-doubling synchronizer
utilizing an exponential back-off mechanism, as described by
Naor et al. [20].

6) LibraBFT: LibraBFT [19] is a product based on Hot-
Stuff. The main difference between them is how they imple-
ment the PaceMaker. In LibraBFT, a node broadcasts a timeout
certificate when timeout occurs, and a node advances to the
next view when it receives more than a threshold number of
such certificates. LibraBFT thus guarantees a time bound on
termination after GST, whereas HotStuff does not. As shown
in later experiments, this difference allows LibraBFT to have
a much better performance when network is unstable.

C. Attacker Implementations

Our construction of an abstracted global attacker allows
out simulator to flexibly supports many attacks. As a demon-
stration, we implemented three attacks, which are listed in
Table II. Next, we will list the attacker’s capabilities and
explain how our simulator implements them.

• Fail-stop. A fail-stop node simply stops participating
in the protocol. This is the weakest form of Byzantine
behavior. To simulate fail-stop nodes, we start the system
with n−f honest nodes, and set the total number of nodes
to n. This gives us f fail-stop nodes.

• Partition Attack [6]. We consider the partition attack
described in Algorand [6], which divides a network into
two or more subnets. As all messages pass through
the attacker module, a partition attack is simulated via
between-node packet-filter rules. The attacker can either
drop or delay the packets between different subnets.

• Static and Adaptive [7]. An attack is static if the attacker
has to decide which nodes to control and transform into
Byzantine nodes before a BFT protocol starts. On the
other hand, an adaptive attack can choose and compro-
mise a node during execution, as long as the number of
Byzantine nodes remains ≤ f . An adaptive attacker can
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TABLE I: Implemented BFT Protocols

BFT Protocols Network Model LoC
ADD+v1 BA [7] Synchronous 304
ADD+v2 BA [7] Synchronous 307
ADD+v3 BA [7] Synchronous 376

Algorand Agreement [6] Synchronous 387
Async BA [2] Asynchronous 265

PBFT [3] Partially-Synchronous 606
HotStuff+NS [10] Partially-Synchronous 502

LibraBFT [19] Partially-Synchronous 568
Note. LoC = lines of code (n).

TABLE II: Implemented Attacks

Attacks Attacker Capability LoC
Network Partition Attack Partition 86
ADD+ BA Static Attack Static 86

ADD+ BA Adaptive Attack Rushing + Adaptive 117
Note. LoC = lines of code (n).

turn an honest node into a Byzantine one by dropping,
modifying, or inserting messages of the Byzantine node
from the attacker module. Since nodes can only interact
by messages, controlling a node’s messages is equivalent
to controlling its behavior observed by other nodes.

• Rushing [7]. An attack is termed rushing if the attacker
waits to decide upon its next action after observing every
message sent by the honest nodes. Since all messages
pass through the attacker module before being sent to
their destinations, it is by nature a rushing attack.

D. Implementation Validation

Formally verifying the correctness of a BFT implementation
is challenging. Instead of proving its correctness, we examined
whether our simulator generates the same execution traces as
another well-known BFT simulator, BFTsim [17]. Our valida-
tor module confirms that our simulation of PBFT generated
identical event sequences as BFTsim’s in cases we tested. This
validation is limited within those protocols and attacks that
both ours and BFTsim support. To gain more confidence in our
simulation results, users can also use our validator module to
compare the simulated trace with the actual ones generated by
a full-blown BFT network. We do not claim to use simulation
to prove the correctness of a BFT protocol.

IV. EXPERIMENTAL EVALUATION USING OUR SIMULATOR

Classic distributed systems [3], [4], [18] are usually de-
ployed in a size n = 4, 7, 10, and newer protocols [10], [19],
[26] designed for blockchains are better suited to larger sets of
nodes (e.g., 64, 128, 256). However, existing simulators [17]
can only support a small number of nodes and require long
simulation time, as shown in Fig. 2. While our simulator is
capable of simulating a large number of nodes, we use 16
nodes in the following evaluation by default, because this is
sufficient for observing protocols’ behaviors, and acceptable
for both classic BFT and BFT protocols for blockchains.

In the following descriptions of our experiments, the fol-
lowing two notations are used. A predefined parameter, λ,
is used in synchronous or partially-synchronous protocols to
represent the estimated upper-bound of network delay. Its unit

4 8 16 32 64 128 256 512
Number of Nodes

10 3

10 2

10 1

100

101

102

103

Ti
m

e 
(s

)

Our Simulator
BFTSim

Fig. 2: Simulation time for PBFT using our simulator and
BFTSim [17] (λ = 1000; N = (250, 50)). Note that BFTSim
can only simulate 32 nodes due to out-of-memory errors.

is milliseconds. A normal distribution, N (µ, σ), is used to
sample network delays in the network module, with mean µ
and standard deviation σ. In a network setting, the units of µ
and σ are milliseconds.

As LibraBFT and HotStuff+NS optimize their decision
processes via a pipeline technique, they need more successful
rounds to decide the values proposed in the first few rounds. To
reflect their performance under normal conditions, we measure
their time/message usage by calculating the average latency or
message count for each decision after ten values are decided.
For other protocols, we measure their performance after one
value is decided. Each experiment is performed 100 times to
calculate the average and standard deviation. The following
experiments were run on a Ubuntu 18.04.1 machine with a
4.0GHz 12-core AMD Ryzen 9 3900X CPU and 32 GB RAM.

A. Performance across Different Delays

We adjusted our network environments in terms of their
means and variances that ranged from fast and stable to
slow and unstable, and setting λ to 1,000 ms. The averages
and standard deviations of latencies and message counts are
shown in Fig. 3a and 3b, respectively. In these figures, the bar
height represents mean value, and the vertical line running
down the center of each bar represents standard deviation.
For time usage, HotStuff+NS had the shortest latency most
of the time, except in the case where the network was set
to N (1000, 1000). In that case, PBFT was slightly faster
than HotStuff+NS. As for message usage, HotStuff+NS also
outperformed the other protocols.

B. Performance across Different Timeout Configurations

1) Performance when Delay is Overestimated: Fig. 4 illus-
trates the responsiveness of BFT protocols when we increased
the timeout configuration λ from 1000 ms to 3000 ms, while
leaving the network delays fixed at N (250, 50). It shows that
increasing λ only affects synchronous protocols.

2) Performance when Delay is Underestimated: Only
partially-synchronous protocols are included in this experi-
ment as underestimated delay violates synchronous protocols’
assumption, and async BA’s performance is not affected by
different λ configuration. Fig. 5 shows that LibraBFT was
not affected by underestimated delay, while PBFT performed
better when λ is closer to the actual delay. HotStuff+NS
became very unstable when delay is underestimated, because
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Fig. 3: The performance of BFT protocols under four different network environments.
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Fig. 4: Latency when timeout is overestimated. Protocols with
responsiveness are to the right-hand side of the dotted line.

its PaceMaker sometimes cannot solve the view synchroniza-
tion problem (see §II-C1) efficiently, and struggle to reach a
consensus. Section IV-D discusses this situation in detail.

C. Performance under Attack

We simulated network partition attacks, which target the
network, before proceeding to fail-stop attacks and rushing
adaptive attacks, which target multiple Byzantine nodes.

1) Network Partition: As synchronous protocols are gener-
ally not partition-resilient, we only include Algorand, which is
resilient to partition attacks, in this experiment. Most protocols
terminated a few seconds after the partition resolved, but Hot-
Stuff+NS spent roughly an additional 100 seconds to reach a
consensus. Since HotStuff+NS’s PaceMaker doubles its delay
when a timeout occurred, its delay grew exponentially when
the network was partitioned. Therefore, when the partition
resolved, it still needs to wait a long period of delay before
the protocol proceeds to execute.

2) Performance under Fail-stop Attack: As Fig. 7 shows,
partially-synchronous protocols are less resilient to fail-stop
nodes. This was because these protocols rely on messages from
honest nodes to proceed. Also, we found that the latency of
HotStuff+NS degraded drastically.

3) Static Fail-stop Attack on ADD+v1 and ADD+v2: Since
ADD+v1 has a deterministic leader sequence, a static attacker
can select the first f nodes that will become the leader,
and fail-stop them when they do so. All of its nodes are
thereby forced to enter the next view, and this will delay its
termination for f rounds. The relevant performance results
are shown in the left-hand subgraph of Fig. 8. To prevent this
attack, ADD+v2 utilizes a verifiable random function (VRF)
to randomize leader election.

4) Rushing Adaptive Attack on ADD+v2 and ADD+v3:
When confronting a rushing adaptive attacker, i.e., one capable
of deciding which node to compromise after receiving each
node’s VRF value, ADD+2 cannot terminate in an expected
constant round. ADD+v3, however, can terminate in an ex-
pected constant round despite being targeted by a rushing
adaptive attacker model. This is achieved by adding a prepare
round to decide on the proposed value. Their performance are
shown in the right-hand subgraph of Fig. 8.

D. View-synchronization Analysis

In this section, we report on the use of our simulator to 1)
analyze the view-synchronization problem and 2) visualize the
view of each node during simulation.

As shown in Fig. 5, HotStuff+NS experiences severe per-
formance degradation when λ is set to 150 ms and N =
(250, 50). That is, its latency can be as high as 80 seconds
in some extreme cases, as shown in Fig. 9. Its nodes are
separated into groups of different views after 5 seconds, and
this situation prevails for an additional 75 seconds, when the
nodes are finally synchronized to the same view. This indicates
that underestimated delays can cause nodes to have divergent
views, and to spend a considerable amount of time resolving
the view-synchronization problem.

V. RELATED WORK

BFTSim [17] is a BFT simulation framework using the
P2 declarative logic language and the ns-2 network simula-
tor. It supports testing BFT protocols under various network
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Fig. 7: Time usage across different numbers of fail-
stop nodes (λ = 1000; N = (1000, 300)).

Fig. 8: Latency in seconds (y-axis) associated with static (left)
and adaptive (right) attacks on all three ADD+ variants

Fig. 9: Each node’s view during HotStuff+NS execution (λ =
150; N = (250, 50)). Each color represents a view number.

conditions (e.g., latency and bandwidth) and configurations
(e.g., cryptography primitives, timeout, and faults). Thus, its
users can compare BFT protocols’ performance objectively.
However, BFTSim only models performance under benign
failures such as misconfiguration or silent replicas; in contrast,
our simulator is designed to support the modeling of various
attacks. It is unclear whether and how to extend BFTSim and
model more complicated logic (e.g., different view synchro-
nization algorithms) or sophisticated attack strategies [27] us-

ing the P2 language. Moreover, BFTSim simulates a complete
network, including the physical and link layers, using the ns-
2 network simulator, which slows down the simulation. In
contrast, our simulator focuses on high-level network models
closely relevant to BFT protocols and thus scales better than
BFTSim.

Bano et al. [15] proposed the Twins approach, which tests
the security of a BFT protocol by automatically generating
several Byzantine attack scenarios. The Byzantine behaviors
covered by Twins include equivocation, double voting, and
losing internal state. Its creators implemented a unit-testing
apparatus for LibraBFT, which showed that Twins could dis-
cover protocol flaws within minutes. However, Twins focuses
chiefly on test-case generation, whereas we aim to simulate
various attacks and network conditions for helping assess BFT
protocols’ safety and liveness properties.

VI. FUTURE WORK AND CONCLUSION

Many BFT protocols have been proposed. To further un-
derstand their behavior under a range of network conditions
and attacks, we designed and implemented a simulator sup-
porting various attacks and simplified the network structure to
reduce simulation time. Using our simulator, we discovered
several aspects that significantly influenced a BFT protocol’s
performance, e.g., view synchronization and network stability.
Our tool can facilitate further research, not least by providing
crucial insights into the proving, analysis and design of new,
more secure BFT protocols.
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