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Abstract—Current probabilistic flow-size monitoring can only
detect heavy hitters (e.g., flows utilizing 10 times their permitted
bandwidth), but cannot detect smaller overuse (e.g., flows utilizing
50 – 100% more than their permitted bandwidth). Thus, these
systems lack accuracy in the challenging environment of high-
throughput packet processing, where fast-memory resources are
scarce. Nevertheless, many applications rely on accurate flow-size
estimation, e.g., for network monitoring, anomaly detection and
Quality of Service.

We design, analyze, implement, and evaluate LOFT, a new
approach for efficiently detecting overuse flows that achieves
dramatically better properties than prior work. LOFT can detect
1.50x overuse flows in one second, whereas prior approaches can
only reliably detect flows that overuse their allocation by at least
3x. We demonstrate LOFT’s suitability for high-speed packet
processing with implementations in the DPDK framework and
on an FPGA.

Index Terms—flow monitoring; network monitoring; sketch-
ing; Quality of Service

I. INTRODUCTION

The problem of detecting network flows whose size exceeds
a certain share of link bandwidth has received significant
attention since the seminal paper by Estan and Varghese [15]
and has recently experienced renewed interest, partly thanks
to the emergence of programmable data-planes [4], [6], [33],
[40]. In the conventional formulation of the problem, network
operators define a flow-size threshold and want to identify all
flows that violate this threshold. However, previous work [15],
[4], [6], [10], [12], [38], [37], [33], [40] has not resulted
in monitoring schemes that can detect all threshold-violating
flows (henceforth: overuse flows), but put a strong empha-
sis on detecting so-called heavy hitters (henceforth: high-
rate overuse flows). Heavy hitters are flows that consume
a significant share of link bandwidth and are thus large
compared to the given threshold. Clearly, the detection of
high-rate overuse flows is considerably less difficult than the
detection of overuse flows in general, since even schemes with

a massive measurement error can perform well in the heavy-
hitter challenge while performing badly in general overuse
detection. In fact, the problem of detecting low-rate overuse
flows, i.e., flows that send slightly more (e.g., 1.50x) than the
threshold flow size, is still in need of an effective solution.
In this work, we therefore present LOFT, an algorithm that
can reliably detect even low-rate overuse flows and is therefore
significantly more accurate and more generally applicable than
previous schemes.

As one example of a distributed application relying on low-
rate overuse-flow detection, consider bandwidth-reservation
systems [5], [28], [3]. These approaches consist of allocating
the available bandwidth along a path to flows according to
purchasable reservations. In case of scarce link capacity (e.g.,
in case of a distributed denial-of-service (DDoS) attack), flows
with a reservation can continue sending to the extent of the
reserved allowance, whereas other traffic might be dropped. If
using probabilistic flow-size monitoring for allowance polic-
ing, systems that can only detect high-rate overuse flows, but
disregard the detection of low-rate overuse flows, allow an
adversary to “fly under the radar”. Similar to attacks such as
Coremelt [35] and Crossfire [18], an attacker could wrongfully
consume link bandwidth by creating a large number of flows
that only slightly exceed the corresponding reservation. Thus,
detecting low-rate overuse flows is essential to uphold the
guarantees of bandwidth-reservation systems, as it is for many
more applications such as traffic engineering (e.g., flow-size-
aware routing), anomaly detection, Quality of Service (QoS),
network provisioning, and security applications.

Of course, also previous approaches to probabilistic flow-
size estimation could be made arbitrarily accurate if abundant
memory was available. However, under stringent constraints
regarding memory and computation, these approaches are not
sufficiently accurate to detect low-rate overuse flows, resulting
in many undetected overuse flows. For example, the detection



of overuse flows is highly unreliable on routers that have an
aggregate capacity of several terabits per second (Tbps), han-
dle millions of concurrent flows, and thus require high-speed
packet processing (on the order of 100 ns processing time
per packet). We substantiate this claim of inaccurate previous
algorithms both by a theoretical discussion (in Appendix III)
and an experimental evaluation (in Section V).

The biggest challenge in creating highly accurate flow-size
measurement on high-speed routers is the scarcity of fast
memory compared to the enormous number of flows handled
by these routers. Individual-flow resource accounting is either
too expensive (due to the high cost of fast SRAM memory
for caches) or too slow (e.g., keeping per-flow information
in DRAM [1], [9]). To reduce fast-memory usage, a line of
previous research devises sketches, which use a small number
of counters and map every flow to a random subset of these
counters. The size of each flow is then estimated based on
the values of the counters corresponding to that flow [15],
[12], [37], [27], [19]. Flows with an estimated size exceeding
a pre-defined threshold are considered overusing.

Our key insight is that, due to the high variance of the
counter values (referred to as counter noise in the remainder of
this paper), these shared-counter approaches fail to distinguish
low-rate overuse flows from non-overusing flows. This counter
noise originates from two different sources: (1) the uneven
size of flows within a counter, which leads to non-overuse
flows being mistaken as overuse flows if they are mapped
to the same counter as an overuse flow, and (2) the uneven
number of flows across counters, which leads to non-overuse
flows being mistaken as overuse flows if they are mapped
to the same counter as many other non-overuse flows. Due to
counter noise, a sketch cannot distinguish a 1.50x overuse flow
from a non-overuse flow within reasonable memory limits (cf.
§III-A). Hence, the core research challenge becomes how to
effectively counteract the noise while using limited computing
and storage resources.

In this paper, we propose LOFT, a lightweight detector that
can detect low-rate overuse flows significantly more quickly
and reliably than prior approaches, while conforming to strict
requirements regarding time and memory complexity. LOFT
reduces the counter noise by using a multi-stage approach that
is aware of both the traffic volume and the number of flows in
any counter and aggregates these values over time. Moreover,
LOFT requires fewer operations per packet than conventional
schemes and thereby enables high-speed packet processing,
which we demonstrate with implementations for the DPDK
framework [26] and for a Xilinx Virtex UltraScale+ FPGA on
the Netcope NFB 200G2QL platform [2].

Our evaluation based on both real and synthetic traffic traces
shows that LOFT outperforms prior work. LOFT is at least
300 times faster than prior approaches in detecting 1.50 – 2x
overuse flows: LOFT can reliably detect 1.50x overuse flows
in one second, whereas prior approaches fail to detect even 2x
overuse flows within a time of 300 s.
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Fig. 1. Router packet processing.

II. PROBLEM DEFINITION AND BACKGROUND

A network flow (or flow for short) is a sequence of packets
with common characteristics. For example, NetFlow uniquely
defines a flow by source and destination IP addresses, source
and destination transport-layer ports, protocol, ingress inter-
face and type of service [11].

An overuse flow is a flow that consumes more bandwidth
than it was permitted by the traversed network. More con-
cretely, if a flow’s permitted rate is γ and permitted burst size
is β, then a flow overuses its allocation if it sends more than
γt + β in any time interval with length t. An `-fold overuse
flow is a flow that sends at rate `γ. The permitted amount (i.e.,
the overuse-flow threshold) can be determined by bandwidth
allocation or based on resource usage.

In this section, we review the flow-policing model, with a
focus on how the overuse-flow detection component interacts
with other components. Then we highlight important proper-
ties desirable for overuse-flow detectors.

A. Flow-Policing Model

A typical flow-policing mechanism consists of the following
four components (shown in Figure 1): (1) a flow Classifier
that extracts each flow’s ID and determines its permitted
bandwidth, (2) a Blacklist that filters out blacklisted flows,
(3) a Probabilistic Overuse Flow Detector (OFD) tasked with
finding suspicious flows that could potentially be overusing,
and (4) a Precise monitoring component which analyzes indi-
vidual suspicious flows to determine which ones are actually
misbehaving and should be added to the blacklist. The precise-
monitoring component can access a limited amount of fast
memory (e.g., on the order of the amount used in the overuse
flow detector). This limited fast memory restricts the number
of suspicious flows that can be simultaneously monitored by
the detector, leading to false negatives.

While stateful monitoring of individual flows is practical at
the edge of the network, stateful monitoring has an untenable
fast-memory consumption on routers with Tbps capacity.1

Moreover, schemes with per-flow state in fast memory are
vulnerable to memory exhaustion attacks in which an attacker
creates a high number of flows and thereby depletes the
available fast memory. Hence, only probabilistic monitoring
is a viable option on high-speed routers.

1As the CAIDA dataset suggests flow concurrency of 10 million flows on
a switch supporting an aggregate bandwidth of 1 Tbps[8], individual-flow
monitoring can be expected to require 80MB of fast memory, assuming 4
byte flowIDs and 4 byte counters.



B. Desired Properties

To ensure accurate and timely detection of overuse flows
without affecting the regular packet processing, an overuse-
flow detection algorithm should satisfy the following proper-
ties:
High-speed packet processing on routers. High-speed packet
processing is required for a system that is deployed in the
fast path of Internet routers (i.e., packet processing). How-
ever, high-speed memory that enables the necessary packet-
processing frequency (e.g., SRAM) is expensive. Therefore,
even core switches provide only a very limited amount of fast
memory to ensure sustainable hardware cost. DRAM, albeit
cheaper, is too slow to be accessed for every packet, but
may be used for router slow-path operations (i.e., back-end
processing on a CPU) without impacting fast-path forwarding.
Moreover, even when accessing only SRAM in the router fast
path, memory accesses should be employed economically to
keep up with line rate.
Low false-positive and low false-negative rates. In the
context of overuse flow detection, a false fositive (FP) is a
misclassification of a non-overuse flow as an overuse flow.
Conversely, a false negative (FN) is a misclassification of an
overuse flow as a non-overuse flow, i.e., the failure of detecting
an overuse flow. Although the precise-monitoring component
of a flow-policing mechanism can prevent non-overuse flows
from being falsely blacklisted, the detector itself should still
ensure a low FP rate to not evict suspicious flows in the
precise-monitoring component, thus increasing FN rates.
Detection of low-rate overuse flows. Overuse flows that are
sending slightly above their permitted sending rate should be
detected with high probability after a short amount of time.
Our goal is to detect flows within at most seconds that are
sending at 1.50 their permitted rate; current state-of-the art
algorithms typically assume 10 – 1000 fold sending rates of
overuse flows when budgeting resources.

III. PREVIOUS ALGORITHMS

This work aims to efficiently detect overuse flows, and is
inspired by algorithms for detecting large flows, i.e., flows
which use a significant fraction of the link bandwidth.

However, it is important to note the significant differences
between the two problems. In our context, large flows corre-
spond to high-rate overuse flows, i.e., flows sending at rates
at least 10 – 1000 times higher than the average flow (for
example, flows violating TCP fairness). The goal of previous
work is to quickly identify the large flows to throttle or block
them, thus preventing them from harming the other flows.
These algorithms have a (more or less explicit) threshold above
which a flow is considered large, but below which flows are
allowed to send. This threshold is usually up to three orders
of magnitude larger than the average flow’s sending rate—so
a few flows sending around the threshold rate would rapidly
exhaust link capacity and lead to congestion.

In the rest of this section, we briefly introduce two kinds
of large-flow detection algorithms, namely sketch-based ap-
proaches and selective individual-flow monitoring. In the

following, we discuss why they are inadequate for solving
overuse-flow detection in our target scenario.

A. Sketches

Individual-flow monitoring tracks the size of flows with a
counter per flow, i.e., a memory cell that is increased by the
packet size every time a packet of the corresponding flow
arrives. To monitor flows using limited fast memory, sketches
use each counter to track multiple flows. Two algorithms in
this category are the Count-Min (CM) Sketch [12] (also known
as Multistage Filters [15]) and Adaptive Multistage Filters
(AMF) [13]. They rely on a relatively simple concept, which
we illustrate at the example of the CM Sketch.

In the CM Sketch, flows are randomly mapped to counters,
and each counter aggregates the volume of all flows that are
assigned to it. If a large flow is mapped to a certain counter,
this counter value is expected to be higher than the other
counters as it includes the contribution of the large flow.
To increase precision, the CM Sketch uses multiple stages,
i.e., multiple counter arrays, and for each stage the flows are
mapped to counters in a different way (e.g., using different
hash functions). The CM Sketch classifies a flow as large if
and only if the minimum value of counters to which the flow
is mapped exceeds a certain threshold. For non-large flows, the
probability that all associated counters exceed the threshold is
low, decreasing exponentially in the number of stages.

However, achieving high accuracy with a CM Sketch is only
possible with an untenable amount of memory. According to
the theoretical work on the CM Sketch [12], the measurement
error of the CM Sketch can be related to the amount of
available memory. Concretely, a CM Sketch with dln(1/δ)e
stages, each with de/εe counters, guarantees a probability of
less than δ that the overestimation error amounts to more than
a share ε of total traffic. Assuming that a switch with an
aggregate bandwidth of 1 Tbps handles 10 millon flows [8] and
that the overestimation should almost never exceed 50% of the
average-flow size (hence, δ = 0.01 and ε = 0.5/10−7), then
the CM Sketch would require around 250 million counters.
This memory consumption is even higher than allocating a
counter per flow, which demonstrates that the CM Sketch is
inaccurate on high-capacity routers.

Moreover, conventional sketches have been shown to be too
inefficient to keep up with usual line speeds [20]. In order to
achieve line rate, accuracy has to be traded for speed, which
exacerbates the estimation error of sketches. In this work, we
attempt to refine the sketch-based approach in order to achieve
high accuracy with low processing complexity.

B. Selective Individual-Flow Monitoring

Another category of large-flow detection algorithms dynam-
ically selects a subset of flows for individual-flow monitoring.
In the following section, we will illustrate the general idea
of these schemes using the example of EARDet [38], which
is one specimen of this category. Other examples include
HashPipe [33] and HeavyKeeper [40].



EARDet is based on the Misra–Gries (MG) algorithm [23],
which finds the exact set of frequent items (i.e., items making
up more than a 1/k-share of the stream) in two passes with
limited counters. At a high level, the MG algorithm uses
an array of counters to track frequent item candidates. By
adjusting the counter values and associated items, the MG
algorithm guarantees that every frequent item will occupy one
counter after the first pass. The second pass is nevertheless
required to remove falsely included infrequent items.

For each item in the stream, the MG algorithm adjusts
the counters as follows. It first checks whether the item has
occupied a counter in the array. If so, the corresponding
counter will be increased by one. Else, if there is a non-
occupied counter, the MG algorithm will assign that non-
occupied counter to track this item (and also increase it by
one). Otherwise, it will decrease all counters by one. The
intuition is that infrequent items, should they be assigned to
a counter, are likely to be evicted (i.e., their counter becomes
zero) very quickly. By contrast, frequent items (which are
already more likely to be assigned to a counter to begin with)
are guaranteed to remain assigned to that counter, since their
frequency compensates the occasional counter decreases.

EARDet enhances the MG algorithm to identify large
network flows in one pass. EARDet is based on two flow
specifications of the form γt+ β, where γ is the allowed rate
and β is the allowed burst size. The adaptations guarantee that
a flow sending less traffic than γlt+βl during any time window
with length t will not be falsely blocked (no false positive),
and all large flows sending more than γht + βh in any time
window with duration t will be caught (no false negative).

To catch overuse flows, EARDet could be configured to
have γht+βh set to the permitted bandwidth. However, given a
low permitted bandwidth, this approach either demands many
counters or suffers from high false negatives, as EARDet
recommends using at least linkBW

γh
− 1 counters to achieve

guaranteed detection. If γh equals the maximum size of a non-
overuse flow, fast memory would need to accommodate almost
a counter per flow, which is infeasible on routers that handle
millions of flows (cf. §II-A).

In addition to their high fast-memory consumption, the
overhead of selective individual-flow monitoring, i.e., continu-
ously deciding which flows to monitor closely, is prohibitively
expensive in terms of processing complexity, which results in
an insufficient throughput of such schemes (cf. §V-H).

IV. LOFT ALGORITHM

LOFT is a novel design approach for a probabilistic overuse
flow detector (OFD), the core component of a flow polic-
ing model in router packet processing. We first provide an
overview of LOFT (§IV-A) before describing the design in
more detail (§IV-B–IV-D). We also provide a complexity
analysis of the algorithm (§IV-E).

A. Overview

In this section, we describe our design for the probabilistic
OFD component depicted in Figure 1. As Figure 2 shows,

TABLE I
NOTATION USED IN THIS PAPER.

Symbol Description

N Number of flows
γ, β Rate and burst threshold flow specification
` Overuse ratio
θ Number of minor cycles since last reset
ω Number of minor cycles per second
Z Number of minor cycles per major cycle

θreset Reset cycle
λ Sample rate
W Number of counters in fast memory
Wfm Number of precisely monitored flows
U Flow-size estimate
A Accumulated flow size
C Accumulated flow count

Update

Sampler Estimate

Flow Table

pkt active
flows

counters

read update

suspicious flows

Precise
monitoring

Classifier

Blacklist

Detected overuse flows

pkt

pkt

CROFT Probabilistic OFDProbabilistic OFD

Fig. 2. Details of the structure and information flow of the LOFT Probabilistic
OFD component (cf. also Figure 1).

LOFT OFD contains four components: the update algorithm,
the estimate algorithm, the sampler, and the flow table. Packets
not rejected by the blacklist are forwarded to the update
algorithm and the sampler. The estimate algorithm consumes
their output, updates the flow table and creates a list of
suspicious flows for precise monitoring.

The LOFT update algorithm targets one short time interval
(e.g., 12.50 ms) at a time, which we call a minor cycle. For
each minor cycle, the update algorithm collects aggregated
traffic information over groups of flows by using a single
counter array. For every packet, LOFT maps the packet flow
ID to one counter in the current counter array and increases
that counter by the packet size. At the end of the minor cycle,
the counter array is passed to the estimate algorithm.

The estimate algorithm operates on a larger time scale, at
intervals (e.g., with duration 250 ms) that we call major cycles
(see Figure 3): every time a major cycle is concluded, the
estimate algorithm analyzes the counter arrays stored from
all minor cycles during the major cycle, extracts estimates
for the bandwidth utilization of every flow, and stores the
estimates in a flow table. From this, the algorithm produces a
list of suspected overuse flows, which is handed to the precise-
monitoring component. The sampler provides a list of active
flows which the estimate algorithm uses in its analysis.

In summary, the estimate algorithm uses the sequence of
counter arrays generated by the update algorithm to create
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Fig. 3. LOFT Timeline. ¶ A hash value is computed on the flow ID of the incoming packet, and the corresponding counter is increased by the packet
size. · A different set of counters and hash function are used when the minor cycle changes. ¸ After Z minor cycles, the estimate algorithm aggregates the
counter values and tries to identify a group of overuse flows.

a final flow estimate in each major cycle. Figure 3 visual-
izes how these algorithm components interact. By depicting
packets of two different flows, the figure shows how flows
are mapped to different counters in each minor cycle. Based
on a packet’s flow ID, the update algorithm increases the
associated counter by the packet size. Every major cycle, the
estimate algorithm first updates the flow table based on the
counter arrays generated in the most recent Z minor cycles,
recomputes the estimate for every active flow, and creates
a watchlist from the Wfm largest flows. The flows on the
watchlist undergo precise monitoring in the subsequent major
cycle. This precise monitoring is performed by the leaky-
bucket algorithm [36], which detects any violation of a flow
specification in form of γt+β (cf. §II) without false positives.
Any flow that is found misbehaving by precise monitoring can
thus be blocked by inserting it into the blacklist.

In the following, we will explain the design of the update
algorithm (§IV-B), the estimate algorithm (§IV-C), and the
sampler (§IV-D). The pseudo code of the whole system is
presented in Algorithm 1. The relevant notation is presented
in Table I.

B. Update Algorithm

Similar to a sketch, the LOFT update algorithm maps each
flow to one counter ctr j,k in a counter array in minor cycle k
of major cycle j. Each counter tracks the aggregate bandwidth
of all the flows mapped to that counter during a minor cycle.
In each minor cycle, the association of flows to counters is
randomized by changing the hash function Hj,k for every
minor cycle. When a minor cycle ends, the counter array
is moved to main memory and an empty counter array is
initialized in fast memory.

C. Estimate Algorithm

At the end of a major cycle, which contains a certain
number Z of minor cycles, the estimate algorithm performs
a flow-size estimation for every flow asynchronously (e.g., in
user space of the router), while the update algorithm continues

to aggregate traffic information. The flow-size estimate builds
on two values: the volume sum and the cardinality sum.

For the volume sum, the estimate algorithm sums up the
values of all the counters to which a flow was mapped. This
aggregation over time reduces the counter noise in the sense
of uneven flow size within the same counter: intuitively, an
overuse flow will be consistently associated with large counter
values, which results in a large volume sum for that flow.

Although using multiple counters can reduce counter noise,
it is neither sufficient nor innovative, as the Count-Min Sketch
[12] uses the same idea (although by applying different hash
functions concurrently instead of sequentially) and delivers
insufficient performance. Indeed, the key to reducing counter
noise lies in the cardinality sum. In order to compute this sum,
an active-flow list is consulted to compute how many flows
are associated with each counter within each minor cycle, i.e.,
the counter cardinality. For every flow, the estimate algorithm
sums up the cardinality values of all counters associated with
the flow. The cardinality sum reduces the distortion created
by the varying cardinalities of counters: intuitively, an overuse
flow will be associated with a large counter value even when
the number of flows in that counter is small.

When dividing the volume sum by the cardinality sum, the
strongest increases in a flow’s estimate are produced when the
flow is mapped to high-value counters that contain a small
number of flows. Indeed, flows with these characteristics are
highly likely to be the largest flows among the investigated
flows and are thus candidates for more precise monitoring.

Formally, after major cycle j, we define the estimate of a
flow f to be U

(j)

f = A
(j)
f /C

(j)
f , where

A
(j)
f =

∑
j′∈J(j)

f

Z∑
k=1

ctr j′,k[Hj′,k(f)] (IV.1a)

C
(j)
f =

∑
j′∈J(j)

f

Z∑
k=1

|ctr j′,k[Hj′,k(f)]| (IV.1b)

where J (j)
f contains all major cycles j′ ≤ j in which flow f

was active. The term |ctr j′,k[x]| denotes the number of flows



that have been mapped to counter x in minor cycle k of major
cycle j′ (counter cardinality). A(j)

f is the value aggregate of the
counters that f has been mapped to (volume sum) and C(j)

f is
the summed count of the flows in these counters (cardinality
sum). In order to avoid preserving counter arrays from past
major cycles, the terms Af and Cf are kept in the flow table
and updated after every major cycle, i.e.,

table[f ].A← table[f ].A+

Z∑
k=1

ctrj,k[Hj,k(f)] (IV.2)

and analogously for C(j)
f . These updates are made for all

flows f that were active in the most recent major cycle
and are thus in the active-flow list generated by the sampler
(cf. §IV-D).

These estimates need to be adjusted when some flows send
intermittently. For example, suppose flow f1 sends x GB in
the first and the third major cycle and nothing in the second
major cycle, and flow f2 sends x GB from the first to the third
major cycle, i.e., J (3)

1 = {1, 3} and J
(3)
2 = {1, 2, 3}. Then

A
(3)
1 /C

(3)
1 and A

(3)
2 /C

(3)
2 will be almost the same. Suppose

all counters contain exactly y flows, then A(3)
1 /C

(3)
1 = x+x

y+y =
x
y = x+x+x

y+y+y = A
(3)
2 /C

(3)
2 . However, the total traffic sent by

flow f2 in these three cycles is actually 1.5 times larger than
flow f1 and should result in a higher flow-size estimate.

To fix this problem, we reduce a flow-size estimate Uf
relative to the number of major cycles where flow f was not
active, i.e.,

U
(j)
f =

|J (j)
f |
j
·
A

(j)
f

C
(j)
f

(IV.3)

To enable this computation, the flow table must track |Jf | for
every flow f .

Another issue is that as Af and Cf are accumulated, the
estimate algorithm is actually computing their average over
time. An attacker can take advantage of this approach by
sending low-rate traffic in the beginning for a period of time,
and then start sending bursty traffic. It may not be detected by
our system as its long-term average looks the same as a non-
overuse flow, so old values must be discarded at some point.
Therefore, we define the reset cycle θreset, and clear all the
data every θreset minor cycles. This reset may sound risky, as
an overuse flow could send its traffic around the reset point
so that its estimated size is reset before being detected by our
system. However, an attacker does not know the reset point.
Moreover, even if an attacker could infer the reset point, the
overuse traffic sent by a flow with such a strategy is bounded,
as we show in the mathematical analysis of the full-paper
version [31].

D. Sampler

Clearly, LOFT requires a list of active flows for which
an estimate must be computed. In order to generate such
an active-flow list, we use sampling and limit the number
of sampled packets per second to be λ. LOFT considers a

Algorithm 1 LOFT algorithm.
1: procedure PROCESS(pkt)
2: if pkt.flowID ∈ blacklist then
3: return
4: if pkt.flowID ∈ watchlist then
5: MONITOR(pkt)
6: j ← GETMAJORCYCLE()
7: k ← GETMINORCYCLE()
8: SAMPLER(pkt)
9: UPDATE(pkt, j, k)

10: if Z · j ≥ θreset then
11: RESET()
12: procedure SAMPLER(pkt)
13: if current time ≥ sample time then
14: activeF low ← activeF low ∪ {pkt.flowID}
15: u samples uniformly from U(0, 1]
16: sample time← sample time− lnu

λ

17: procedure UPDATE(pkt, j, k)
18: x← Hj,k(pkt.flowID)
19: ctr j,k[x]← ctrj,k[x] + pkt.size

20: procedure ESTIMATE()
21: j ← GETMAJORCYCLE() - 1
22: for k = 1 to Z do
23: for f ∈ activeF low do
24: x← Hj,k(f)
25: numFlow[x]← numFlow[x] + 1

26: for f ∈ activeF low do
27: x← Hj,k(f)
28: A[f ]← A[f ] + ctrj,k[x]
29: C[f ]← C[f ] + numFlow[x]

30: N ← |activeF low|
31: for f ∈ activeF low do
32: table[f ].A← table[f ].A+A[f ]
33: table[f ].C ← table[f ].C + C[f ]
34: table[f ].numJ ← table[f ].numJ + 1

35: activeF low ← ∅
36: return Wfm flows with largest table[f ].numJ

j
· table[f ].A
table[f ].C

randomized sampling period, which is a random variable of
an exponential distribution with mean 1

λ . This randomization
prohibits an attacker flow from circumventing the sampling by
sending at the appropriate moments.

Having an active-flow list for a major cycle j also allows to
compute the cardinality |ctr j,k[x]| of counters in the estimate
algorithm, namely by counting how many active flows were
mapped to each counter with the respective hash function Hj,k

for any minor cycle k. An alternative to this reconstruction
of counter cardinality would consist in measuring counter
cardinality within the update algorithm, for example using a
Bloom filter [7] or HyperLogLog register [16] per counter.
However, as fast memory is the bottleneck resource, additional
computational complexity in the estimate algorithm is prefer-
able to estimating cardinality in fast memory.

E. Complexity Analysis

1) Time complexity: In the update algorithm, each packet
requires a single read and a single write operation to fast
memory. Moreover, the algorithm requires a single hash func-
tion computation, which results in the major advantage that



LOFT achieves line rate (see §V-H), whereas other sketch-
based algorithms update multiple counter arrays per packet
and therefore fall short of that goal [20]. The hash computation
itself can be performed in hardware or using an efficient
software implementation such as the murmur3 hash function.

The estimate algorithm uses multiple accesses to main
memory. However, the number of accesses is linear in the
number of active flows, which may be much smaller than
the number of packets. In each major cycle, we need to
sum up the corresponding counters in each minor cycle for
each flow. Suppose there are N active flows, then there are
O(ZN) DRAM reads to compute the updates to the estimate
components. After obtaining these values, we need to update
the flow table. For each active flow, the algorithm performs
one lookup and update to the hash table. We use a Cuckoo
hash table [25], which has worst-case constant lookup time.
Although the worst-case insertion time of the Cuckoo table
might be long, its expected complexity is amortized constant.
Additionally, the number of insertions is much lower than the
number of lookups as each flow will be inserted only once
when it’s first seen. Therefore, the update takes O(N) time.

In the sampler, for every sampled packet, there is one
insertion to the active-flow list stored in DRAM, for which
we again used a Cuckoo hash table. By properly setting the
table capacity and sample rate λ, our experiments show that
the sampler is still fast enough to keep up with line speeds.

2) Space Complexity: Only counters of the current minor
cycle reside in fast memory, which is O(W ) and depends on
the size of a counter. Our analysis shows that, if all flows send
almost at threshold rate, a small W (e.g., 8192) can lead to
considerable detection delay.

Other counters are kept in main memory before being
handled by the estimate algorithm, which takes O(ZW ) space.
The active-flow list and the flow table are also in DRAM.
The active-flow list requires O(N) entries and the space
complexity of the flow table is also linear to N (using a
Cuckoo table). Therefore, the total number of main memory
entries used (including counters) is O(ZW +N).

V. EVALUATION

The evaluation of LOFT is conducted through two imple-
mentations and a simulation. First, the behavior of LOFT in a
real-world environment is evaluated using the implementations
and a testbed that supports up to 4x40 Gbps traffic volume.
Second, to evaluate the accuracy of LOFT and compare it to
EARDet, AMF, HeavyKeeper and HashPipe, simulations with
a traffic volume equivalent to 4x100 Gbps are used.

A. Implementations

For the scalability experiments with DPDK, we imple-
mented LOFT in C on the Intel DPDK framework [26]. The
application uses n worker threads that execute the update
algorithm and a separate thread running the estimation algo-
rithm every major cycle. The major and minor cycle indices
are computed based on a monotonic clock with nanosec-
ond resolution. For further scalability experiments, we also

implemented the update algorithm of LOFT on a Xilinx
Virtex UltraScale+ FPGA on the Netcope NFB 200G2QL
platform [2] containing two 100 Gbps NICs. The detailed
design of the FPGA implementation exceeds the scope of this
paper. Therefore, a separate paper has been submitted to a
specialized conference [30].

B. Experiment Setup

Test Setup. The testbed for the DPDK scalability experiment
consists of two machines connected using 4x40 Gbps Ether-
net connections. The traffic is generated using a dedicated
traffic generator (Spirent TestCenter N4U [34]) and sent to
a commodity machine with an Intel Xeon E5-2680 CPU.
For the simulations, we execute LOFT on an Intel Xeon
8124M machine and process synthesized traffic equivalent to
4x100 Gbps.
Traffic Generation. To evaluate the scalability of LOFT with
respect to flow volumes, we generated network traces with
uniform packet sizes and based on an iMix traffic distribution
(avg. size: 353 B) [24].

C. Evaluation Metric: Detection Delay

The detection delay of an overuse flow is the time elapsed
between the first violation of the flow specification and the
time the flow is caught by a detector. A detection delay longer
than the simulation timeout results in a false negative.

When presenting detection rates and false negatives, it is
always crucial to present the corresponding false positive rate,
i.e., the number of non-overuse flows incorrectly marked as
malicious. We note, however, that LOFT is designed to have
no false positives, because benign flows that happen to be
flagged as suspicious by the estimation algorithm will be
exonerated by precise monitoring.

D. Parameter Selection

Several of LOFT’s parameters can be tuned to fit the hard-
ware restrictions of a specific deployment. In the following,
we describe how to experimentally determine these parame-
ters so that they comply with the hardware’s computational
constraints even under the worst-case traffic patterns.

To experimentally determine the sampling rate, we increase
the sampling rate of the sampler until its CPU core is fully uti-
lized, such that the accuracy of the flow ID list is maximized.
With this determined sampling rate and an estimated maximum
number of flows, we calculate the maximum number of major
cycles per second such that there are enough samples between
two executions of the estimation algorithm to build the flow
ID list with the desired accuracy. Finally, we increase the
number of minor cycles per second until the CPU core of
the estimation algorithm is fully utilized. Table II summarizes
these hardware-related parameters used in our experiments.

The flow monitor is set to monitor 64 flows simultaneously
in all experiments, which is small and fast enough to keep
up with a high-bandwidth link. Finally, with the determined
parameters in Table II, the reset cycle parameter θreset in each
experiment is adjusted to achieve 95% detection probability



(detailed in the mathematical analysis [31]) under the given
experiment setting.

TABLE II
HARDWARE-RELATED LOFT PARAMETERS.

Parameter Value

Sampling rate (λ) 2.1 · 106 samp./s
Number of minor cycles 64 cycles/s
Number of major cycles 1 – 4 cycles/s

E. Comparison: Fully Utilized Traffic Trace

We first evaluate LOFT in a setting where every flow
sends at a rate close to the maximum allowed threshold, fully
utilizing the reserved bandwidth.

We simulate a configuration with 4x100 Gbps links with
an aggregate number of 130’000 flows, where each flow
requires 3 Mbps, e.g., for high-quality video streaming. Then,
a misbehaving flow with an overuse ratio ` is injected. Each
detector allocates 16’448 counters in fast memory. LOFT,
AMF, HashPipe and HeavyKeeper use 64 counters (out of
16’448) as flow monitors. To optimize detector performance
for AMF, HashPipe and HeavyKeeper, the fast-memory coun-
ters are structured as counter arrays. LOFT is configured to
run 4 cycles of the estimation algorithm per second, which
reaches the computation limit on our machine.

Figure 4(a) shows the detection delays of LOFT, EARDet,
HashPipe, HeavyKeeper and AMF under different overuse
ratios ` on a log-log scale. Each data point is averaged over 100
runs. We find that LOFT detects a 1.50x overuse flow in less
than one second, whereas all other detectors fail to detect it
before the 300 s timeout. For larger overuse flows, LOFT still
outperforms AMF, EARDet, HashPipe and HeavyKeeper when
the overuse ratio is less than 400x, 7x and 3x, respectively. As
opposed to HashPipe and HeavyKeeper, LOFT delivers high
accuracy at a lower variance. Moreover, LOFT can achieve
much higher throughput (cf. §V-H).

The reason that LOFT is slower in detecting high-rate
overuse flows is that it needs at least one major cycle,
which takes 0.25 s, to select the overuse flow. These results
confirm that LOFT can efficiently detect overuse flows using a
small amount of router resources. While heavy-hitter detection
schemes perform better than LOFT regarding the extremely
large flows that they are designed to catch, these schemes are
ineffective in low-rate overuse flow detection, which is the
goal of this paper.

As Figure 4(b) shows, these results are confirmed by per-
forming the same experiments with 10 million flows, which
is the number of flows to be expected on a Tbps link (cf.
Section II-A). For 10 million flows, the higher accuracy of
LOFT is even more prominent, as even the best other schemes
(i.e., HashPipe and HeavyKeeper) fail to detect the overuse
flows for all overuse ratios below 20.

F. Comparison: CAIDA Traffic Trace

In addition to using synthesized background traffic in which
every non-overuse flow fully utilizes the reserved bandwidth,
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Fig. 4. Detection delay of overuse flow detectors under different overuse
ratios and flow numbers N . The error bars show the minimum and maximum
values over 100 runs.

we also compare detectors on an OC192 link using a real
traffic trace, namely the CAIDA New York Anonymized
Internet Trace [8]. In the trace, the majority of the flows are
smaller than 512 bytes per second, and 95% of the flows are
smaller than 14’000 bytes per second.

We first regulate every flow in the CAIDA trace with the
permitted bandwidth γ. Flows that use more than the permitted
bandwidth are governed by dropping overuse packets. Then, a
2-fold overuse flow is added into the traffic trace. This setting
reflects the scenario where an ISP wants to mitigate DDoS
by putting a bandwidth cap on individual flows. Because the
number of flows in the CAIDA traffic is smaller than in
the fully utilized traffic trace, on this smaller network, we
only allocated 2048 + 64 counters to all detectors (64 flow
monitors). LOFT is configured to run 4 slices of the estimation
algorithm per second.

Figure 5 shows the detection delays of LOFT, EARDet,
AMF, HashPipe and HeavyKeeper under different permitted
bandwidths on a log-log scale. Each data point is averaged
over 100 runs. LOFT detects the 2-fold overuse flow in 0.30 –
1.50 s. EARDet and AMF can quickly and reliably detect the
2-fold overuse flow only when it is much larger than the
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Fig. 5. Detection time of overuse flow detectors to catch an overuse flow
sending 2γ given CAIDA traffic with different regulation threshold γ and
β = 1500 for all.

majority of the non-overuse flows. HashPipe and HeavyKeeper
catch the overuse flow also given a low threshold, but these
schemes still require a multiple of LOFT’s detection time to
identify the overuse flow. Furthermore, the throughput of these
schemes is substantially lower than the throughput of LOFT
(cf. §V-H).

G. LOFT Sensitivity Tests

We have shown that given the same memory budget, LOFT
can detect low-rate overuse flows much faster than AMF,
EARDet, HashPipe and HeavyKeeper. The following exper-
iments further investigate LOFT’s effectiveness by varying its
parameters under a background traffic setting that is challeng-
ing for all evaluated detectors.

LOFT is configured to run one slice of the estimation
algorithm per second since it has to process more flows in
the following tests. We consider a half-utilization scenario, in
which a half of the non-overuse flows send up to the permitted
bandwidth, and the rest sends almost negligible traffic. This
is a more challenging scenario than full utilization for LOFT
because the variance between counters are not only affected
by the number of flows aggregated but also by the variance
of flow sizes. This half-utilization scenario can capture the
behavior of typical streaming traffic, in which one direction is
used to send data and the other to send ACKs.

Half of the non-overuse flows send traffic up to the flow
specification γ = 400Gbps

N and β = 1500 and the other half
send 25 times less traffic. As before, one overuse flow is
injected in the simulation. This `-fold overuse flow follows
a flow specification γ = 400Gbps

N · ` and β = 1500. Each data
point of detection delay is the average of 100 simulations.
Memory budget. In this experiment, we investigate the impact
of fast memory size on the detection delay. Figure 6(a)
shows the cumulative distribution of the detection delay given
different numbers of fast-memory counters, ranging from 1024
to 16’384. As the number of fast-memory counters is doubled,
LOFT’s detection speed increases as lowering the number of
flows sharing a counter reduces the variance of each counter.

However, even with the maximum number of counters and in-
cluding the memory required for monitoring suspicious flows,
the fast-memory consumption of LOFT is around 130 kB,
which represents more than an order of magnitude reduction
compared to the 3 MB of fast memory needed for individual-
flow monitoring under the same traffic conditions (cf. §II-A).
Number of non-overuse flows. We evaluate the impact of
the number of non-overuse flows on the detection delay.
Using 1024 fast-memory counters and one 2-fold overuse
flow, Figure 6(b) shows the cumulative detection delay given
different numbers of non-overuse flows, ranging from 100’000
to 400’000. The detection delay grows with the number of
non-overuse flows because the variance of counter cardinality
increases as the total number of flows grows.
Imprecise active-flow list. In our previous experiments, the
fixed sampling rate (as defined in Table II) is sufficient to
maintain a precise active-flow list. Given that maintaining
this list is bound by the hardware-limited sampling rate, the
number of active flows might be too high to build a precise
active-flow list. For example, for 400’000 active flows and a
sampling rate of 800’000 flows per major cycle, the active-
flow list will miss about 15% of active flows.

To understand the impact of an imprecise active flows list
on LOFT, we evaluate different miss rates of active-flow lists.
Figure 6(c) shows that in case of the half-utilization scenario,
LOFT performs worse with increasing imprecision of the
active-flow list. This is due to the reason that LOFT will use
an inaccurate number of flows to calculate estimators, which
leads to higher variance. Nevertheless, even missing 20% of
active flows, LOFT can still catch the overuse flow under 14 s
with 95% probability.
Flow counting drastically reduces the detection time.
Figure 6(d) shows that the estimator with flow counting and
dividing significantly outperforms the one without counting.
This result supports our perspective in Section IV-A that the
detection accuracy of sketches is suffered by not taking the
number of flows into account. In other words, LOFT is highly
accurate thanks to its efforts to reduce the counter noise that
stems from the variance of counter cardinality.

H. Scalability of LOFT

1) DPDK Implementation: To understand the scalability of
LOFT in a DPDK environment, we evaluate the maximum
packet rate with respect to the packet size and number of cores
that execute the update algorithm concurrently. Figure 7 shows
that LOFT is able to achieve line-rate for iMix-distributed
traffic using 16 cores that execute the update algorithm and
one core that runs the estimation algorithm. With fewer cores,
line-rate can only be achieved for larger packet sizes (1024 B).

Since traffic flows with small sized packets perform consid-
erably worse than flows with large packet sizes, we addition-
ally evaluate the overhead introduced by LOFT by comparing
it to regular L3 packet forwarding in DPDK. Figure 8 shows
the throughput of regular L3 forwarding and the throughput
of forwarding with additional LOFT processing for different
packet sizes. Moreover, the figure gives the LOFT throughput
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Fig. 6. CDF of LOFT’s detection delay given number of counters (W ), number of flows (N ), and sampling miss rate (r).

as a percentage of the corresponding base throughput. As
visible in the figure, even regular L3 packet forwarding using
eight processing cores cannot achieve line-rate for packet sizes
smaller than 1024 B. Compared to regular packet forwarding,
LOFT introduces overhead for small packet sizes, which
results in a maximum packet rate of ˜50 million packets per
second (Mpps) using eight processing cores, i.e., ˜6 Mpps per
core. As for larger packet sizes this maximum packet rate
does not get exhausted, this effect is diminished. However,
LOFT still achieves a much higher packet rate than the
alternative schemes with the best accuracy, i.e., HashPipe and
HeavyKeeper: Prior work has shown a packet rate of ˜2 Mpps
per core for HashPipe [39] and a packet rate of ˜2.50 Mpps
per core for HeavyKeeper [40].

2) FPGA Implementation: We also implemented the fast-
path component of LOFT (i.e., the update algorithm using
16’384 counters) on a Xilinx Virtex UltraScale+ FPGA on the
Netcope NFB 200G2QL platform [2] with two 100 Gbps NICs
and an operating frequency of 200 MHz. The LOFT imple-
mentation can process a packet in every cycle. For minimum-
size packets of 64 B, each NIC manages to transfer one packet
per cycle to the LOFT implementation, which allows to
achieve a packet rate of 200 Mpps per NIC. As the FPGA
platform contains two NICs, it achieves a total packet rate
of ˜400 Mpps. This high throughput demonstrates that LOFT

is suitable for high-speed packet processing if implemented
on programmable NICs. The full implementation is described
in a paper submitted to a specialized conference [30], as the
FPGA-specific implementation details represent a contribution
that goes beyond the scope of this paper.

VI. RELATED WORK

Despite a significant amount of research on the problem of
detecting high-rate overuse flows, the problem of efficiently
detecting low-rate overuse flows has so far been neglected.
Some related schemes have been proposed to address similar
problems, such as large flow detection and top-k ranking.

The problem of detecting top-k flows aims to identify k
flows that consume most of a link’s bandwidth. A recent
proposal called HashPipe [33] tackles the heavy hitter detec-
tion problem on programmable hardware. To ensure line-rate
detection given a limited amount of fast memory, HashPipe
constructs a pipeline of hash tables to efficiently implement
the Space Saving algorithm [22], such that the heavier flows
are more likely to be kept in the next stage of the pipeline.
However, our results in §V show that HashPipe fails to detect
the overusing flow in cases where the difference between
overuse and non-overuse flow is low (i.e., with an overuse ratio
of 1.50 – 2). As another top-k detection scheme, HeavyKeeper
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[40], seems to suffer from the same weakness, these systems
seem unable to effectively filter out the counter noise.

Similar to top-k flow detection, large-flow detection al-
gorithms can be applied to detecting overuse flows. The
shortcomings of these schemes are discussed in Appendix III
and evidenced in Section V.

Hybrid SRAM/DRAM-based architectures for exact count-
ing have been proposed by Shah et al. [32] and were further
improved by Ramabhadran and Varghese [27] and by Zhao
et al. [41]. By default, these schemes only consider the number
of packets per flow, but not the flow sizes. Even though
the authors propose an extension to consider flow sizes, the
use of probabilistic counting in these schemes introduces a
high counter variance, making low-rate overuse flows hard to
detect. Lall et al. [19] propose another SRAM/DRAM hybrid
data structure for efficient detection of both medium and
large flows. However, because the proposed flow monitoring
solution uses shared counters (in the form of spectral Bloom
filters), it performs poorly in catching low-rate overuse flows.

Another approach to tackle aforementioned problems uses
sampling, where only a small subset of packets is used for
flow accounting. Sampled NetFlow [11] is a widely deployed
solution that collects one out of every n packets, and estimates
statistics of the original population by extrapolating from
the sample. Researchers have proposed advanced sampling
algorithms tailored for catching large flows. For example,
Sample and Hold [15] and Sticky Sampling [21] are designed
to bias toward large flows. Instead of using a static sampling
rate, several adaptive sampling algorithms dynamically adjust
the sampling rate so as to keep resource consumption under
a fixed memory limitation [14], [29]. However, without a
sufficiently high sampling rate (resulting in a large amount of
fast memory), sampling-based algorithms are prone to false
positives and false negatives, as shown by Estan and Vargh-
ese [15]. LOFT relies on sampling to generate a list of active
flows (if the list is not provided). However, LOFT ensures
that at least one packet appears in a sample, thus requiring a
lower sampling rate than for accurate flow accounting.

A recent series of work including SketchVisor [17], Elas-
ticSketch [39] and NitroSketch [20] devises techniques to

speed up the updating of detector datastructures based on
sketches. However, these techniques all trade off detection ac-
curacy against processing speed, i.e., these algorithms achieve
even lower accuracy than the unaltered sketches like AMF
evaluated in Section V. In contrast, LOFT can achieve high
accuracy and a low per-packet overhead.

VII. CONCLUSIONS

Due to limitations of previous approaches to probabilistic
flow monitoring, network operators so far lacked effective
measurement tools that could give an accurate insight into the
flow-size distribution on high-capacity routers. Given router
constraints regarding fast memory and computation, existing
schemes suffer from a large measurement error, which only
allows the reliable detection of extremely large flows, but
not flows with a small amount of overuse. In this work, we
show that the source of this measurement error in sketch-based
schemes is counter noise, i.e., the high variance of counter
values. Using this insight, we develop LOFT, a sketch-based
approach that counteracts the counter noise while respecting
the stringent complexity constraints of high-speed routers.

As a result, the measurement error of LOFT is so small that
low-rate overuse flows (i.e., flows only 50 – 100% larger than
the average flow) can be reliably detected with a small amount
of fast memory. Concretely, LOFT can reliably identify a
flow that is only 50% larger than the average flow within
one second, whereas all other investigated schemes fail to
identify such a flow even within 300 s. Moreover, LOFT
accomplishes such high accuracy while reducing the fast-
memory requirement by more than one order of magnitude in
comparison with individual-flow monitoring. We also investi-
gate scalability and overhead of LOFT with a DPDK and an
FPGA implementation, and show that LOFT enables line-rate
forwarding of a realistic traffic mix.

With these demonstrated properties, LOFT can serve as
a powerful flow-monitoring tool, which will allow network
operators to improve the efficacy of existing applications based
on flow-size estimation (e.g., flow-size aware routing) and
to enable new applications based on such estimates (e.g.,
reservation-based DDoS defense).
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