ProMutator: Detecting Vulnerable Price Oracles in DeFi by Mutated Transactions

Shih-Hung Wang, Chia-Chien Wu, Yu-Chuan Liang, Li-Hsun Hsieh and Hsu-Chun Hsiao
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
{b04902019, 09922191, r08922008, 09922185, hcshiao} @ csie.ntu.edu.tw

Abstract—This paper presents ProMutator, a scalable security
analysis framework that detects price oracle vulnerabilities
before attacks occur. ProMutator’s core idea is to simulate
price oracle attacks locally by mutating the data needed for
price calculation. ProMutator analyzes existing transactions
to reconstruct probable DeFi use patterns, thereby reducing
the required simulation runs drastically. ProMutator does
not require any examined contracts’ high-level source code.
Additionally, ProMutator generates a report for each detected
vulnerability to facilitate further investigation. In our evalua-
tion, ProMutator successfully discovered five out of six known
and 27 new price oracle vulnerabilities in DeFi protocols.
Index Terms—DeFi, price oracle, price oracle attack

1. Introduction

Decentralized Finance (DeFi) allows users to trade
financial products on a distributed system, typically a
blockchain, thus eliminating the dependency on centralized
brokers (e.g., banks). Since its debut in 2018, DeFi’s total
value locked (TVL) has rapidly grown to around 60 billion
US dollars [I]. This high TVL has attracted attackers
exploiting DeFi composability [2], [3] for financial gains.
DeFi composability allows developers to build complex
financial services by combining DeFi protocols, creating a
deeply interconnected ecosystem. Consequently, a vulner-
able smart contract or DeFi protocol can indirectly affect
many others depending on it.

A notable example is price oracle attacks, whose cost
exceeded 43 million dollars in 2020. Price oracles provide
price information of digital assets to a wide variety of DeFi
protocols and are critical components in the DeFi ecosys-
tem. In a price oracle attack, the attacker manipulates
the price information to profit from victims relying on it.
Unfortunately, existing security tools are either 1) limited
to conducting post-incident analysis [4]-[9] or 2) focusing
on security issues within individual smart contracts and
may scale poorly when being applied to composed DeFi
protocols [10], [11].

This work presents ProMutator, a scalable security
analysis framework that discovers price oracle vulnera-
bilities before attacks occur, thereby protecting DeFi de-
velopers from devastating financial loss. ProMutator takes
advantage of existing transactions as references to learn
how DeFi protocols are composed with others, and mutates
the transactions to proactively find potential vulnerabilities
instead of reactively reporting the attack incidents. More-
over, ProMutator reports high-level attack steps for fur-
ther manual verification. Our preliminary evaluation shows
promising results. ProMutator successfully re-discovered
five known attacks using transactions predating these at-
tacks and found 27 confirmed price oracle vulnerabilities
in existing DeFi protocols.

2. Price Oracle Attack

This section provides a systematic overview of price
oracle attacks and summarizes six known attacks in 2020.

Attacker
Controllable

Victim Contracts

AMM price-
related
Function

Customized

Function

Figure 1. AMM-Based Price Oracle. Attackers can easily control the data

feeds with flash loans and try to make profits from victim contracts.

Because price oracle attacks typically take advantage of
flash loans to manipulate market prices on automated
market makers, we also cover these concepts for ease of
understanding. Readers interested in smart contracts and
DeFi may refer to recent surveys [12], [13].

Automated Market Maker (AMM). Unlike the con-
ventional market order books, AMMSs execute trades on-
chain automatically. There are mainly two types of traders
in AMM, liquidity providers and liquidity takers. Liquid-
ity providers deposit assets to the liquidity pool to earn
exchange fees, while liquidity takers exchange assets by
a predefined mathematical formula. One simple AMM
model is the constant product market makers adopted by
Uniswap [14], which keeps the product of the two asset
reserves in a liquidity pool constant during trades.

Flash Loan. Flash loans are uncollateralized loans only
valid within one blockchain transaction. Unlike traditional
lending, flash loans allow traders to borrow any available
amount of assets from the liquidity pool without upfront
collateral, as long as the loan is repaid at the end of the
transaction. If not, the transaction fails, and the execution is
reverted as if the loan is never issued. As of April 2021, top
flash loan providers include dYdX, Aave, and bZx [15]-
[17]. Flash swaps, e.g., from Uniswap V2, similar to flash
loans, allow users to withdraw up to the total reserves of
the liquidity pools and repay them with a small fee by the
end of the transaction [18].

Price Oracle. Price oracles are smart contracts that
report the price of certain assets to DeFi protocols. Price
oracles fetch price data from sources that are either off-
chain or on-chain. This work focuses on on-chain oracles,
which usually derive price information from the state of
AMM liquidity pools. Several AMMs, including Uniswap,
Curve, and Kyber Network [19], [20], have been used by
numerous DeFi protocols to build on-chain price oracles.
A price oracle can infer the market price of an asset
with a customized function processing the price data feeds
from price-related functions (Figure 1). For example, a
liquidity pool of Uniswap V2 provides a function called
getReserves, which returns the current reserves of the two
tokens in the pool. A developer may write a customized
function, such as f(ry,r2) = r1/ra, to calculate the ratio
of the reserves, representing the price of one token to the
other according to Uniswap’s price model.

Price Oracle Attack: Overview This paper defines a
price oracle attack as an attack that manipulates price ora-
cles (i.e., controlling or biasing the reported price) to profit
from the victim at a relatively low cost. Table 1 summarizes

TABLE 1. SUMMARY OF PRICE ORACLE ATTACKS

Victim Date Flash Loan Provider AMM Price-Related Function Target Asset Loss
Warp Finance 2020.12.17 dYdX, Uniswap V2 Uniswap V2 getReserves DAI-WETH-LP $7.8M
Value DeFi 2020.11.14 Aave, Uniswap V2 Curve calc_token_amount USDC $7.4M
Cheese Bank 2020.11.06 dYdX Uniswap V2 balanceOf CHEESE-WETH-LP $3.3M
Plouto Finance 2020.10.29 Aave, Uniswap V2 Curve calc_withdraw_one_coin DAI $700K
Harvest Finance 2020.10.26 Uniswap V2 Curve calc_withdraw_one_coin USDC, USDT $24M
Kyber getExpectedRate
bZx 2020.02.18 bZx . getTokenToEthInputPrice sUSD $665.8K
Uniswap V1
getEthToTokenInputPrice

six high-profile price oracle attacks in 2020 [6], [7], [21].
The victim DeFi protocols were Warp Finance, Value DeFi,
Cheese Bank, Plouto Finance, Harvest Finance, and bZx.
Notice that an attack may invoke multiple AMMs and
price-related functions, but we only list those manipulated
by the attacker. We will use these attacks in our evaluation.

The root causes of these attacks were the misuse of
AMM price-related functions, such as implementing on-
chain oracles that only reference a single source or cal-
culating the target asset price using a formula vulnera-
ble to manipulation. In these attacks, the attacker biased
the AMM data feeds, and the bias was propagated by
the vulnerable customized function, causing the victim to
obtain inaccurate price information. Thus, the victim was
deceived into overvaluing or undervaluing the target assets.

One mitigation to price oracle attacks is using time-
weighted average price (TWAP) oracles, whose reported
prices are more expensive to manipulate. The reason is
that a typical on-chain TWAP oracle does not query the
spot price (e.g., getReserves) from AMM functions but
the cumulative price (e.g., price0Cumulative Last) with a
last-recorded timestamp for calculating the time-weighted
average price. To manipulate the cumulative price, an
attacker must move the market price at the end of a block
since it is updated at the beginning of each block according
to the market price. However, because the attacker may be
unable to arbitrage it back in the next block, the attacker
risks the loss caused by price slippage [22].

Price Oracle Attack: Steps Price oracle attacks typ-
ically consist of four steps, all executed within the same
transaction to prevent being interrupted by other users:

1) Preparing target assets: First, the attacker prepares
the rarget asset, whose price he intends to inflate, from the
victim or other DeFi protocols. He also needs to prepare
additional funds for the next phase.

2) Inflating target assets price: The attacker manipu-
lates the price oracles by imbalancing the reserves of the
corresponding AMM liquidity pools, i.e., swapping a large
number of tokens from one to another. Due to the oracle’s
vulnerable design, it is affected by the AMM state change
and reports the manipulated price to the victim.

3) Profiting from the victim: This step is where the
attacker gains profit during the whole attack. By exchang-
ing the target assets for other assets through the victim’s
services (e.g., collateralized borrowing), the attacker gains
profit since the victim overvalues the target assets.

4) Recovering target assets price: The attacker per-
forms the reverse actions on the pools to restore the
imbalanced AMM liquidity pools to their original state.
As a result, the attacker avoids losses caused by the price
slippage in the second step and gets back all his original
assets, only paying for swap fees.

After performing the four steps described above, the at-

tacker repaid the flash loans with optional borrowing fees.
In practice, the attacker requires large capital to effectively
shift the reserves in the liquidity pools, which is feasible
by borrowing sufficient funds from one or multiple flash
loans, as we have seen in past attack incidents. Appendix A
provides a detailed example of these four steps.

3. Our Proposed Framework: ProMutator

ProMutator is a security analysis framework to assess
whether a DeFi protocol is susceptible to price oracle
vulnerabilities. At a high-level view, ProMutator simulates
price oracle attacks locally and observes how a price oracle
handles abnormal AMM price data feeds. We designed
ProMutator with three objectives. First, it proactively dis-
covers vulnerabilities in the target contracts instead of reac-
tively reports the incidents after the attacks have occurred.
Second, ProMutator is based on transactions; it requires
the transactions sent to the target contracts but not their
high-level source code (i.e., high-level code written in
smart contract languages such as Solidity [23]). Third, it
flexibly allows users to define mutation and detection rules
to support various price-related functions and determine
how the data feeds are mutated.

To use ProMutator, a user specifies a target contract
to be analyzed and provides transactions to ProMutator as
the input. The provided transactions can be either history
transactions on the Ethereum Mainnet or testing transac-
tions generated by the user. As shown in Figure 2, each
transaction is processed through three phases: Decoding,
Mutation, and Analysis. ProMutator comes with built-in
mutation and detection rules for price oracle vulnerabili-
ties. ProMutator can be extended to cover other types of
vulnerabilities with custom mutation and detection rules.
Finally, ProMutator outputs whether the target contract is
vulnerable with a detailed report. We describe each phase
in detail next.

3.1. Decoding

In this phase, the ABI of the target contract is used
to decode the transactions to identify interesting input
parameters. The decoded parameters are then passed to the
next phase for mutation. As we will explain later, mutating
input parameters can lead to the discovery of additional
vulnerabilities. The phase is skipped for contracts without
an available ABI.

3.2. Mutation

ProMutator identifies and mutates interesting values
(which may affect the price oracle output) and simulates
the execution to generate execution traces within our modi-
fied Go-Ethereum EVM [24]. The execution trace includes
a summary of 1) functions called in the given transaction
and 2) parameters provided [25]. A mutated trace refers to

Raw
Transaction i Modified EVM

‘ : Normal Normal
\(i | Execution | Trace

v

Detection
Rules

Decoding —>{ Mutation Mutated Analysis
: : Traces
gg? tract Mutation J Report
Rules
\/\

Figure 2. ProMutator’s workflow

the execution trace of a mutated transaction. ProMutator
currently supports the following two mutation rules, but
more can be easily imported in the future if needed.

Return values of price-related functions. As men-
tioned in Section 2, the data feeds from AMMSs can be
easily manipulated with the assists of flash loans. Thus,
we directly multiply or divide the return values of these
functions by some mutation factor to simulate an attack
without changing the AMM contracts’ state. We choose
mutation factors in the range of 1.2 to 10, which are
not only theoretically possible but feasible in practice and
supported by real-world incidents [260]. Take getReserves
as an example, which returns two values, al and a2, with
their product, al x a2, being a constant. We multiply a1l by
a chosen factor, say, 1.5, and divide a2 by 1.5 to simulate
the imbalanced state of the liquidity pool. A complete list
of mutated price-related functions with applied mutation
operations is listed in Table 4.

Transaction input parameters. Many DeFi protocols
require specifying the exact number of tokens to trade or
operate in the function parameters, so we may be unable
to observe the effect of the first mutation rule. Therefore,
we mutate the input parameters of normal transactions
to indicate the user’s intention to operate with more or
fewer tokens. All input parameters with type int or uint
are multiplied by a mutation factor in the range of 0.1 to
10. For example, Warp Finance provides a function, bor-
rowSC(address,uint256), allowing users to borrow stable
coins with the amount specified by the second parameter.
We multiply this parameter by, for example, 0.5 or 2.5, to
simulate the action of borrowing a smaller or larger number
of coins and observe the changes.

In short, the first mutation rule simulates the price
oracle attack, while the second rule decides the number of
tokens to operate. The second mutation rule is primarily
for the Rule of Revert detection rule (Section 3.3). The two
mutation rules are independent of each other and can be
applied simultaneously. If each interesting value is mutated
five times, for a transaction with four price-related func-
tions involved and two integer-type parameters, ProMutator
generates one normal trace and (4x54+1)x (2x5+1)—1 =
230 mutated traces. The more mutated traces, the more
accurately ProMutator detects a vulnerability, but with
lower efficiency as a trade-off since the number of mutated
traces is proportional to the total runtime.

3.3. Analysis

In this phase, the normal execution trace and the mu-
tated ones are compared with each others to determine
whether the target contract is vulnerable or not, based on
detection rules. For price oracle vulnerabilities, we specify
two detection rules.

TABLE 2. EVALUATION ON PAST ATTACKS
v: VULNERABILITY IS DETECTABLE, X: UNDETECTABLE

Victim [RT [RR | Vulnerable Functions
Warp Finance v v borrowSC, withdrawCollateral
Value DeFi v v deposit, withdraw
Cheese Bank X X N/A
Plouto Finance v X deposit, withdraw
Harvest Finance v X deposit, withdraw
bZx X v borrowTokenFromDeposit

Rule of Transfer (RT) The Rule of Transfer detects
whether the transfer value of ETH or any ERC20 token
changes due to mutation, which indicates that the price data
feeds affect the number of tokens transferred, including
those minted or burned. Since one of the most crucial con-
cerns of smart contract security is to prevent the attacker
from controlling or influencing the token transfers between
contracts, the Rule of Transfer detects the vulnerability
with high confidence and accuracy.

Rule of Revert (RR) The Rule of Revert only focuses
on transactions whose input parameters are mutated. If a
transaction fails after mutating the input parameters but
becomes successful after also mutating the data feeds from
AMMs, then the target contract is considered vulnerable
by the Rule of Revert. The Rule of Revert is designed
to detect vulnerable functions that the Rule of Transfer
cannot, such as some in Warp Finance, Value DeFi, and
bZx. A more detailed explanation with an example is
provided in Appendix A.

ProMutator supports contracts with and without an
ABI. With ABI, ProMutator can additionally recover and
mutate integer-type parameters and thus apply the Rule of
Revert. When the transaction input parameters are not mu-
tated, ProMutator applies the Rule of Transfer. Otherwise,
ProMutator applies the Rule of Revert. The target contract
is flagged vulnerable if either detection rule is met, and
ProMutator outputs a report specifying the mutation de-
tails. An example attack report is presented in Appendix C.

4. Evaluation

ProMutator examines whether a DeFi protocol is sus-
ceptible to price oracle vulnerabilities. To evaluate Pro-
Mutator’s effectiveness, we applied ProMutator to analyze
1) the transactions predating known attack incidents and 2)
transactions from block 11,090,000 to 11,490,000 (Oct.—
Dec. 2020) on the Ethereum Mainnet. We set up an
Ethereum node on an Ubuntu device with AMD Ryzen 9
3950X, 2TB NVMe SSD, and 256GB RAM. In the second
part of the evaluation, we collected 5,964 contracts and
randomly picked four transactions for each contract. If a
contract called any of the AMM price-related functions
listed in Table 3, whether directly or indirectly, this contract
was identified as using AMM price feeds and evaluated in
our experiment. The runtime of evaluating all transactions
was within 24 hours (3.62 seconds per transaction), which
was an acceptable amount of time.

4.1. Past Attacks

Table 2 shows the evaluation results on the six attack
incidents (see Table 1 for a summary of these incidents).
ProMutator successfully rediscovered that five out of six
victims (except for Cheese Bank) were vulnerable to price
oracle attacks, with their vulnerable functions shown in
the column Vulnerable Functions. We further manually
confirmed that the produced attack reports are valid.

TABLE 3. EVALUATION ON UNDISCLOSED VULNERABILITIES

AMM Type [Total [Sampled | Unique [TP [FP [Precision

Uniswap 176 20 17 5 12 29.41%
Curve 39 39 29 21 8 72.41%
Kyber 4 4 4 1 3 25.00%

Among the past attacks, the only undetectable vulner-
ability was that of Cheese Bank, which updated token
prices in a two-stage manner. The fetched prices were
stored in state variables first, and read from the variables
each time when needed. Unless the function refresh is
explicitly called, the token prices will not be updated
from the oracle. While developers and benign users did
not call refresh before calling borrow of Cheese Bank, a
successful attack should. ProMutator could not find the
vulnerability of Cheese Bank because it could not recover
such combination of actions from benign transactions.

4.2. Undisclosed Vulnerabilities

Apart from those known attack incidents in the past,
we evaluated ProMutator on existing DeFi protocols and
identified a total of 219 potentially vulnerable price or-
acles, with 27 of them confirmed vulnerable by manual
examination. (Table 3).

‘We manually evaluated all potential vulnerabilities built
on Curve and Kyber and 10% of those built on Uniswap
to determine whether they are true or false positives.
A complete evaluation list with vulnerability details will
be published on our official vulnerability disclosure plat-
form [27] in accordance with our responsible disclosure
plan.

Most of the ProMutator’s false positives were cases
in which the examined protocols directly operate (e.g.,
swapping) on the referenced AMM pools and thus affected
their state. The attacker may suffer losses if the protocol’s
operation reduces the price spread caused by the attacker
previously, and the losses may be higher than the swap
fees. Thus, we consider the price oracle attack unsuccessful
according to our definition. We leave it as future work to
support the detection of AMM state-changing operations
such that ProMutator can rule out such false positives.

ProMutator performs the best in vulnerabilities built
on Curve, which were mostly price oracles for vaults.
The compromise of a vault’s price oracle could lead to
significant loss of users’ funds, as shown in the Harvest,
Plouto, and Value DeFi attacks. Moreover, ProMutator
correctly reported that TWAP oracles are not vulnerable
to price manipulations (i.e., true negatives) because we ex-
clude functions that are expensive to manipulate (e.g., price
accumulators, commonly used by TWAP oracles) from our
list of to-be-mutated AMM price-related functions.

5. Related Work

Security issues in smart contracts have attracted signif-
icant attention since the DAO attack [28] and the Parity
multi-sig wallet attack [29] occurred in the early days
of Ethereum [30]. To find smart contract vulnerabili-
ties, researchers have applied automated software testing
techniques such as symbolic execution [12], [31]-[34],
fuzzing [10], [35], static analysis [36], [37], and formal
verification [38]. These tools can efficiently spot critical
vulnerabilities within individual contracts, and many of
them have become built-in functionalities of modern smart
contract development frameworks [39]. However, applying
existing analysis tools on a combination of contracts would

scale poorly due to numerous possible contract combina-
tions.

Several approaches [4], [5], [40], [41] use existing
transactions to narrow down possible combinations for
improved scalability. Wu et al. [9] converted existing trans-
actions to a high-level semantic to detect past price oracle
attacks. The idea of using existing transactions has inspired
our work. Our tool can discover price oracle vulnerabilities
before attackers exploit them, whereas previous approaches
are limited to conduct post-incident analysis.

A line of research focuses on analyzing or modeling
DeFi composability [3], [6], [7]. Zhou et al. [3] applied
an SMT solver to find profitable actions interacting with
several contracts. Wang et al. [8] performed symbolic
reasoning on oracles and data flow analysis to identify
oracle-dependent state updates. Tolmach et al. [42] applied
a process-algebraic approach to model DeFi protocols in
a compositional manner for efficient property verification.
Our work differs from previous works in that ProMutator
finds vulnerabilities by locally simulating composable ac-
tions instead of modeling the DeFi components.

At a high-level view, ProMutator falls into the category
of grey box testing and differential testing. ProMutator
applies grey box testing since it knows valid user inputs
and mutates them to fuzz price oracles. Besides, given the
same transaction input, ProMutator observes the difference
between a normal and mutated trace.

6. Discussion, Conclusion, and Future Work

Aiming at a more generic and lightweight approach, we
chose to directly mutate the AMM data feeds instead of
simulating the attack using an actual flash loan. Although
a full simulation could increase ProMutator’s accuracy, it
would require additional engineering efforts and protocol-
specific implementation because ProMutator would have
to prepare corresponding tokens to imbalance a particular
AMM pool. For example, imbalancing the Curve Y pool
requires obtaining yTokens from the Yearn protocol be-
forehand [43]. Thus, we assume AMM pools have been
imbalanced and focus on mutating the return values of the
AMM price-related functions.

ProMutator outperforms general smart contract fuzzers
in finding price oracle vulnerabilities since it does not
require the examined contracts’ high-level source code and
supports various price oracles without manual intervention.
As far as we know, well-known and open-sourced general
fuzzers require knowing high-level source code, which
may be unavailable or depend on additional libraries to be
compiled before fuzzers could run. Moreover, it is difficult
for general fuzzers to determine whether a price oracle
is vulnerable without knowing its behavior under normal
circumstances. On the other hand, ProMutator “learns”
the expected behavior of price oracles by examining the
given transactions, which is comparably more automated
and convenient to use.

This paper demystified price oracle attacks and pro-
posed ProMutator to detect whether a DeFi protocol is sus-
ceptible to price oracle attacks by examining and mutating
transactions. Our future work is to extend ProMutator to
cover more price oracle vulnerabilities, e.g., those in the
Cheese Bank Attack. This may be achieved by propagating
the mutation effect from one transaction to another, iden-
tifying the affected state variables during a mutation, and
providing additional mutation rules for state variables.

References

[1]

[2]

[3]

[4]

[51

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

“Defi pulse - the decentralized finance leaderboard,” https:/
defipulse.com, accessed: 2021-05-22.

L. Gudgeon, D. Perez, D. Harz, A. Gervais, and B. Livshits,
“The decentralized financial crisis: Attacking defi,” CoRR, vol.
abs/2002.08099, 2020. [Online]. Available: https://arxiv.org/abs/
2002.08099

L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On
the just-in-time discovery of profit-generating transactions in defi
protocols,” CoRR, vol. abs/2103.02228, 2021. [Online]. Available:
https://arxiv.org/abs/2103.02228

M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “TXSPECTOR: Un-
covering attacks in ethereum from transactions,” in 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020, pp. 2775-2792.

T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He, Y. Tang, X. Lin, and X. Zhang, “SODA: A generic
online detection framework for smart contracts,” in 27th Annual
Network and Distributed System Security Symposium, NDSS 2020,
San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020.

K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the defi
ecosystem with flash loans for fun and profit,” 2021.

Y. Cao, C. Zou, and X. Cheng, “Flashot: A snapshot of flash loan
attack on defi ecosystem,” 2021.

B. Wang, H. Liu, C. Liu, Z. Yang, Q. Ren, H. Zheng, and
H. Lei, “Blockeye: Hunting for defi attacks on blockchain,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). 1EEE, 2021, pp. 17—
20.

S. Wu, D. Wang, J. He, Y. Zhou, L. Wu, X. Yuan, Q. He, and
K. Ren, “Defiranger: Detecting price manipulation attacks on defi
applications,” 2021.

G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
Effective, usable, and fast fuzzing for smart contracts,” in
Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 557-560.
[Online]. Available: https://doi.org/10.1145/3395363.3404366

“Mythril,” https://github.com/ConsenSys/mythril, accessed: 2021-
05-13.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 254-269.

S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz,
and W. J. Knottenbelt, “Sok: Decentralized finance (defi),” arXiv
preprint arXiv:2101.08778, 2021.

“Uniswap,” https://uniswap.org/, accessed: 2021-05-13.
“dydx,” https://dydx.exchange/, accessed: 2021-05-13.
“Aave,” https://aave.com/, accessed: 2021-05-13.
“bzx,” https://bzx.network/, accessed: 2021-05-13.

“Flash swaps,” https://uniswap.org/docs/v2/core-concepts/
flash-swaps/, accessed: 2021-05-13.

“Curve,” https://curve.fi/, accessed: 2021-05-13.
“Kyber network,” https://kyber.network/, accessed: 2021-05-13.

“Plouto was attacked by flashloan,” https://ploutoprotocol.medium.
com/plouto-was-attacked-by-flashloan-c309161c6281, accessed:
2021-05-13.

“Oracles,” https://uniswap.org/docs/v2/core-concepts/oracles/, ac-
cessed: 2021-05-13.

“Solidity,” https://docs.soliditylang.org/en/v0.8.6/, accessed: 2021-
06-29.

“Go ethereum,” https://geth.ethereum.org/, accessed: 2021-05-13.

“Evm tracing,” https://geth.ethereum.org/docs/dapp/tracing, ac-
cessed: 2021-06-29.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

“Analysis for cheese bank incident’s at-
tack transaction,”’ https://ethtx.info/mainnet/
0x600a8692a3a259158310a233b815ff67cad1eab8961a49918¢2031\
297a02f1cc, accessed: 2021-06-29.

“Promutator,” https://github.com/csienslab/ProMutator, accessed:
2021-07-07.

D. Siegel, “Understanding the dao hack for journalists,”
June 2016. [Online]. Available: https://pullnews.medium.

com/understanding-the-dao-hack-for-journalists-2312dd43e993#
kwOufw25q

B. S. Palladino, S. Palladino, 0. Security, and
OpenZeppelin, “The parity wallet hack explained,”
May 2020. [Online]. Available: https://blog.openzeppelin.com/

on-the-parity-wallet-multisig-hack-405a8c12e8f7/

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks
on ethereum smart contracts sok,” in Proceedings of the
6th International Conference on Principles of Security and
Trust - Volume 10204. Berlin, Heidelberg: Springer-Verlag,
2017, p. 164-186. [Online]. Available: https://doi.org/10.1007/
978-3-662-54455-6_8

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: analyzing
safety of smart contracts,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.
[Online]. Available: http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018_09- 1_Kalra_paper.pdf

I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor,
“Finding the greedy, prodigal, and suicidal contracts at scale,” in
Proceedings of the 34th Annual Computer Security Applications
Conference, ACSAC 2018, San Juan, PR, USA, December
03-07, 2018. ACM, 2018, pp. 653-663. [Online]. Available:
https://doi.org/10.1145/3274694.3274743

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,”
in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 1186-1189.

J. Krupp and C. Rossow, “teether: Gnawing at ethereum to
automatically exploit smart contracts,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 1317-1333. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity 1 8/presentation/krupp

B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in 2018 33rd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE),
2018, pp. 259-269.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli,
and M. Vechev, “Securify: Practical security analysis of smart
contracts,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS *18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 67-82.
[Online]. Available: https://doi.org/10.1145/3243734.3243780

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in Proceedings of the Ist Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain, 2018, pp. 9-16.

E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian,
D. Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu,
“Kevm: A complete formal semantics of the ethereum virtual ma-
chine,” in 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF), 2018, pp. 204-217.

“Solidity ~ visual developer,” https://github.com/ConsenSys/
vscode-solidity-auditor, accessed: 2021-05-13.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” arXiv preprint
arXiv:1812.05934, 2018.

C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “The eye of
horus: Spotting and analyzing attacks on ethereum smart contracts,”
2021.

P. Tolmach, Y. Li, S.-W. Lin, and Y. Liu, “Formal analysis of
composable defi protocols,” arXiv preprint arXiv:2103.00540, 2021.
“Yearn finance,” https://yearn.finance/, accessed: 2021-06-29.
“Warpfinance incident: Root cause analysis,” https:
//blog.peckshield.com/2020/12/18/warpfinance/, accessed: 2021-05-
13.

https://defipulse.com
https://defipulse.com
https://arxiv.org/abs/2002.08099
https://arxiv.org/abs/2002.08099
https://arxiv.org/abs/2103.02228
https://doi.org/10.1145/3395363.3404366
https://github.com/ConsenSys/mythril
https://uniswap.org/
https://dydx.exchange/
https://aave.com/
https://bzx.network/
https://uniswap.org/docs/v2/core-concepts/flash-swaps/
https://uniswap.org/docs/v2/core-concepts/flash-swaps/
https://curve.fi/
https://kyber.network/
https://ploutoprotocol.medium.com/plouto-was-attacked-by-flashloan-c309161c6281
https://ploutoprotocol.medium.com/plouto-was-attacked-by-flashloan-c309161c6281
https://uniswap.org/docs/v2/core-concepts/oracles/
https://docs.soliditylang.org/en/v0.8.6/
https://geth.ethereum.org/
https://geth.ethereum.org/docs/dapp/tracing
https://ethtx.info/mainnet/0x600a869aa3a259158310a233b815ff67ca41eab8961a49918c2031\ 297a02f1cc
https://ethtx.info/mainnet/0x600a869aa3a259158310a233b815ff67ca41eab8961a49918c2031\ 297a02f1cc
https://ethtx.info/mainnet/0x600a869aa3a259158310a233b815ff67ca41eab8961a49918c2031\ 297a02f1cc
https://github.com/csienslab/ProMutator
https://pullnews.medium.com/understanding-the-dao-hack-for-journalists-2312dd43e993#.kw0ufw25q
https://pullnews.medium.com/understanding-the-dao-hack-for-journalists-2312dd43e993#.kw0ufw25q
https://pullnews.medium.com/understanding-the-dao-hack-for-journalists-2312dd43e993#.kw0ufw25q
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://doi.org/10.1145/3274694.3274743
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1145/3243734.3243780
https://github.com/ConsenSys/vscode-solidity-auditor
https://github.com/ConsenSys/vscode-solidity-auditor
https://yearn.finance/
https://blog.peckshield.com/2020/12/18/warpfinance/
https://blog.peckshield.com/2020/12/18/warpfinance/

TABLE 4. AMM PRICE-RELATED FUNCTIONS WITH MUTATION RULES

Price Data Source Component Price-Related Function Return Value Type | Mutation Operation
getEthToTokenInputPrice(uint256)
tEthToTokenOutputPri int256
UniswapV1 [14] Pair getEihToTokenOuiputPrice(uint256) uint256 Multiply
getTokenToEthlnputPrice(uint256)
getTokenToEthOutputPrice(uint256)
UniswapV2 [14] Pair getReserves() uint256,uint256 Multiply, Divide
calc_token_amount(uint256/2],bool)
calc_token_amount(uint256/3],bool) uint256 Multiply
StableSwap
. calc_token_amount(uint256(4],bool)
Curve Finance [19] - — - - -
calc_withdraw_one_coin(uint256,int128) uint256 Multiply
R calc_token_amount(address,uint256[4],bool) uint256 Multiply
DepositZap -
calc_withdraw_one_coin(address,uint256,int128) uint256 Multiply
Kyber Network [20] | Network Proxy | getExpectedRate(address,address,uint256,bool) uint256,uint256 Both Multiply

Appendix A.
An Example of Price Oracle Attack

We take the Warp Finance incident as an example to
further illustrate the details of a price oracle attack. On
Dec. 17, 2020, Warp Finance was attacked [44] by the
attacker artificially inflating the price of the DAI-WETH
Uniswap V2 LP token, which was then provided to Warp
Finance as the collateral to borrow DAL

This attack consisted of four steps. First, the attacker
borrowed WETH and DAI from dYdX flash loan services
and three Uniswap V2 flash swaps, adding his DAI and
a portion of WETH to the Uniswap V2 DAI-WETH pool
to mint LP tokens. He then provided all his LP tokens
to Warp as collateral, whose price was 58.8 USD before
manipulation. Next, he swapped the rest of his WETH to
DALI to skew the reserves in the liquidity pool, causing the
LP token price to rise to 135.5 USD due to the vulnerable
pricing formula Warp used. Lastly, he borrowed DAI and
USDC from Warp at a high price of LP tokens, repaid the
flash loan and flash swaps, left the loan underwater, and
walked away with 7.8 million dollars.

The vulnerability of Warp Finance’s price oracle was
its pricing formula

_ PoTo +pim
pLp totale

that calculated the price of Uniswap V2 DAI-WETH-LP
tokens, where pg, 1o, p1, and r; were the price and reserves
of DAI and WETH, respectively. Though the prices were
calculated using a Uniswap’s TWAP oracle, the reserves
were fetched directly from the liquidity pool and thus were
vulnerable to manipulation.

Appendix B.
An Example Detected by Rule of Revert

The function borrowSC(token,amount) calculates
the value of the user’s collateral with the above vulnerable
pricing formula to determine whether the borrowing is
allowed. In the Warp attack, the attacker exploited this
function to borrow more stable coins than he could by
manipulating the price of collateral he provided. Although
this function is vulnerable, it cannot be detected by the
Rule of Transfer due to its parameter design. Consider
a normal transaction calling borrowSC(DAI, 100). This
transaction always transfers 100 DAI to the borrower,
though the collateral price has been inflated.

29
30

The purpose of mutating the input parameters and
applying the Rule of Revert is to reduce false negatives
as in this situation. For example, by mutating the second
parameter to a large value (e.g., 1,000), the transaction
may fail since the user does not provide enough collateral
for borrowing that much DAI. However, if the transaction
becomes successful by additionally mutating the AMM
data feeds, the target function is likely to be vulnerable
since the transaction’s success depends on the AMM’s
state. Therefore, the Rule of Revert identifies this situation
and correctly marks this function as vulnerable.

Appendix C.
An Example of Attack Report

The attack report of Value DeFi protocol is listed as
follows. Value DeFi is identified vulnerable by a transac-
tion calling the function withdraw, according to the Rule
of Transfer. The report points out that the price data feed
from the two AMM pools, Curve 3pool and Curve BUSD
Deposit, could affect the transfer amount of 3CRV.

Analyzing transaction: Oxa07d381e
Entry function: ValueMultiVaultBank.withdraw (0x23deedcf)

Found 2 price—related functions:
— Curve_BUSD_Deposit.calc_withdraw_one_coin
— Curve_3pool.calc_token_amount
Collected 2 Transfer events:
— VALUE.Transfer
— 3CRV.Transfer

Found 2 successful mutations:
Function: Curve_BUSD_Deposit.calc_withdraw_one_coin
Multiply factor: 2.0
Detected: Rule of Transfer
— 3CRV transfer amount changed
— Before: 1000937998334335426
— After: 1231650125499646858
Attack:
— Swap in USDC to Curve_BUSD_Deposit
— Call ValueMultiVaultBank.withdraw

Function: Curve_3pool.calc_token_amount
Multiply factor: 2.0
Detected: Rule of Transfer
— 3CRYV transfer amount changed
— Before: 1000937998334335426
— After: 1264652768033323364
Attack:
— Swap out USDC from Curve_3pool
— Call ValueMultiVaultBank.withdraw

	Introduction
	Price Oracle Attack
	Our Proposed Framework: ProMutator
	Decoding
	Mutation
	Analysis

	Evaluation
	Past Attacks
	Undisclosed Vulnerabilities

	Related Work
	Discussion, Conclusion, and Future Work
	References
	Appendix A: An Example of Price Oracle Attack
	Appendix B: An Example Detected by Rule of Revert
	Appendix C: An Example of Attack Report

