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Abstract. Trigger-action platforms empower users to interconnect var-
ious physical devices and online services with custom automation. While
providing convenience, their centralized design raises privacy concerns
for end users. Unlike prior work that consider privacy leakage to action
services, we consider privacy leakage to compromised platforms. After
investigating potential privacy exposure to a popular trigger-action plat-
form, IFTTT, we identified three types of leakages: event data, trigger
event presence, and device possession. We also found that 91% of the
top 500 triggers on IFTTT potentially leak sensitive information to the
platform, and 25% leak implicitly. To achieve the paradoxical goal of
hiding the event data and presence while asking the platform to trig-
ger corresponding actions when an event occurs, we propose Obfuscated
Trigger-Action Platform (OTAP) and Anonymous Trigger-Action Plat-
form (ATAP). ATAP additionally provides device set confidentiality at
the cost of minor platform modification. Our schemes can preserve user
privacy without sacrificing convenience, and are incrementally deploy-
able in various use cases. Our work addresses a crucial missing piece in
securing the trigger-action ecosystem, and can be integrated with solu-
tions that ensure integrity against untrusted platforms or solutions that
address untrusted vendor services and users.

1 Introduction

Fueled by the growing demand for home automation, trigger-action platforms
(e.g., IFTTT [7], Zapier [11], and Microsoft Power Automate [1]) are gaining
popularity among smart home users. Such cloud-based platforms empower users
to connect heterogeneous devices from different vendors and write automation
rules, which often take the form of “If a certain trigger occurs, then do a certain
action.”4 In addition to home devices, these platforms are also integrated with
many online services such as Google, Amazon, and Instagram. Due to their
ease of use and the variety of supported services, these platforms have attracted
millions of users running billions of rules per month [8].

The convenience comes at the cost of privacy. Because trigger-action plat-
forms are authorized to collect and manipulate data from various services, some
of which may contain sensitive information including users’ location, purchase
history, private social media posts or photos, privacy concerns are raised if the

4 For example, “If I am approaching home, turn on the air conditioner.”
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platforms are untrusted or hacked. Moreover, cloud-based centralized architec-
ture makes these platforms an attractive target for attackers, as demonstrated
by recent incidents targeting the cloud services of famous companies, includ-
ing Equifax [9], Yahoo [3, 4] and Target [2]. Therefore, unlike prior work [28,
13, 14, 23] which focused on the privacy leakage to action services or rule au-
thors through improperly configured rules, we consider the case of compromised
platforms. We also note that a compromised trigger-action platform is more dan-
gerous than any single compromised vendor (e.g., Samsung, Google, etc.) due to
the amount of aggregated information.

To better understand the privacy risks of a compromised trigger-action plat-
form, we first conduct a case study on one popular trigger-action platform,
IFTTT. Instead of categorizing triggers by the functionality of their associated
services [13], we categorize by the types of information they may leak, and iden-
tified three types of leakage: event data, trigger event presence, or device pos-
session. Among the most popular 500 triggers, we found that 91% potentially
send sensitive data to IFTTT, and 25% may leak sensitive information implicitly
by the presence of their triggers. For example, a hearing-aid device leaks health
conditions, and a surfing sports application leaks a user’s personal interest. Cat-
egorizing potentially-leaking information types revealed that IFTTT can build
a profile of a user who installs a sufficient number of rules.

To enhance the privacy of the trigger-action ecosystem in a practical manner,
we investigate the problem of preventing an untrusted platform from learning
users’ private information (via either received data, trigger event presence, or
device possession), while simultaneously keeping the benefits of a cloud-based
solution. The goal seems paradoxical, as we would like to maintain both of the
trigger data and trigger event presence secrecy, while asking the platform to
trigger corresponding actions when an event occurs. Existing solutions based
on encryption or fine-grained access control such as DTAP [20] fail to achieve
this goal, as they can only hide the data but not the presence of triggers, and
simply limiting access to sensitive information could affect the platforms func-
tionality. In this work, we demonstrate that it is possible to build such schemes
using obfuscation and anonymization techniques, and propose (1) Obfuscated
Trigger-Action Platform (OTAP) and (2) Anonymous Trigger-Action Platform
(ATAP). In short, OTAP hides real triggers by also sending fake triggers to
confuse the platform, and ATAP preserves users’ privacy by breaking the links
between a user and his/her data. According to our empirical evaluation using
realistic configurations, our schemes can balance the trade-offs between secu-
rity and utility under different assumptions and requirements. For example, our
schemes add at most 25 ms to rule execution time and can achieve the same
throughput as existing solutions with at most 8x computation resources.

To summarize, this work makes the following contributions:

– We conducted an empirical study on potential privacy exposures to trigger-
action platforms. We categorized the types of leaked information and the
ways they are leaked.

– We designed and implemented two privacy-preserving trigger-action plat-
form solutions, OTAP and ATAP, based on trigger obfuscation and anonymiza-
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tion. OTAP hides information about data and trigger event presence. ATAP
additionally hides information about device/account possession.

– Through security analysis and empirical experiments, we show that our pro-
posed schemes can be deployed in various practical scenarios.

2 Problem Definition

Our core goals are to (1) identify the privacy risks of trigger-action platforms and
information leakage types, and (2) alleviate the exposed privacy risks in a prac-
tical manner. We provide formal privacy framework and proofs in Appendix A.

2.1 Threat Model

We consider an untrusted trigger-action platform that can be compromised and
violate end-users’ confidentiality. An adversary can collect users’ information
through the following three sources:

Data & parameter: The raw data of trigger and action parameters and trigger
event data.

Trigger event presence: The occurrence of trigger events. For example, the
occurrence of trigger-event “leave home” allows an attacker to infer if the
user is at home.5

Device/account possession: Status of users’ ownership of devices or online
accounts. For example, if one connects a hearing aid (e.g., Oticon [6]), an
attacker may infer that the user has hearing issues.

We do not consider action presence in our threat model since no information
is sent back from the action service to the platform when an action is fired. Thus,
there is no way for the platform to verify whether an action is indeed executed.
We also assume that the platform will not collude with partner services and
there are secured channels (e.g., HTTPS) between different parties.

Since we only focus on confidentiality in this work, the following attacks are
considered out of our scope.

– Breaking action integrity, including replaying old triggers or triggering unau-
thorized actions, which can be mitigated with existing solution [20].

– Denial-of-service, which has low incentives from platforms’ perspectives as
DoS attacks will drive users away and hurt the platform’s reputations.

– Leaking sensitive information to partner services.

2.2 Desired Properties

In respect to Section 2.1, we define the following three types of confidentiality
that a privacy-preserving trigger-action platform should preserve.

5 Turn off WiFi on your Android when you leave home to save power [10].
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Table 1: Example of a Trigger-Action Rule
Rule If saying a specific phrase to

Google Home, then set the Hue
light brightness

Trigger Say a phrase with a number
Trigger Params phrase: set hue brightness to #

Action Set brightness
Action Params brightness: number spoken

Event Data
number spoken: 50
triggered at: 2020/01/01 12:00

Rule

Trigger-Action Platform

Trigger Service Action Service

Fig. 1: Example of a Trigger-
Action Ecosystem

Data & Parameters Confidentiality. The platform should not learn the trig-
ger and action parameters and the event data.

Trigger Event Presence Confidentiality. The trigger-action platform should
not be capable of infering when or whether a trigger event occurs.

Device Set Confidentiality. The trigger-action platform should not learn what
devices or service accounts a user possesses.

For practicality, the following should also be taken into account.

Minimal Information Exposure. Every entity in the system should not learn
additional information compared to what it knows from the original scheme
(i.e., IFTTT). Otherwise, a solution simply delegates the job of the platform
(i.e., rule storage and execution) to partner services, which does not protect
users’ privacy. In the existing IFTTT ecosystem, the trigger and action ser-
vices know the trigger and action-related information, respectively, while the
platform knows both of the information and the rules. Though the attacker
we considered in this work is the platform, we would also want to ensure that
the proposed solutions do not leak additional information to either of the
trigger or action service so that the privacy risks are not shifted or raised.

Performance. The system should be able to handle thousands of concurrent
triggers per second, the rule execution should be fast enough, and the delay
between the trigger and action being done should be reasonable (e.g., 15 min
of maximum delay in IFTTT as of 2020).

3 Case Study: Privacy-Risks of IFTTT

To understand the security risks of a compromised trigger-action platform, we
inspect the trigger specifications of 500 most popular triggers on IFTTT, and
investigate the types of information that IFTTT can learn and the sources of
leakage. Datasets are available [12].

3.1 Background: IFTTT & Trigger-Action Platforms

A trigger-action platform is a cloud service that allows end-users to connect
different IoT devices and online services based on conditional rules. The rules
are in the form of “IF a certain trigger happens, THEN do a certain action,”
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such as “IF saying a specific phrase to Google Home, THEN set the Hue light
brightness,” or “IF someone posts a new photo on Instagram, THEN upload it
to my Google Drive.” As shown in Table 1, triggers and actions are provided by
certain third-party partner services such as Phillips Hue, Instagram, or Google,
and they are customized by the trigger and action parameters, respectively.

A rule will be triggered when there is an event that satisfies the condition
described by its trigger and trigger parameters. Event data represents the data
associated with the event, and the event data can be used as part of action
parameters. Some platforms also allow users to write a piece of code (called
filter code), which filters and transforms the event data.

Figure 1 illustrates a typical ecosystem of trigger-action platforms [27]: upon
executing a rule, the trigger-action platform receives the data from the trigger
service, transforms them into the parameters of the action, and calls the API
of the action service. The platform usually does not connect to devices directly,
but through cloud services provided by their vendors for ease of management.
Partner services communicate to their devices using proprietary protocols, and
use the platform’s web-based protocols to fire triggers or receive action requests.

3.2 Methodology

Dataset. We obtained the list of event-data fields (known as ingredients in
IFTTT) of each trigger using IFTTT’s undocumented GraphQL API [12]. We
queried in March 2019, and retrieved all of the 524 services and 2,396 triggers.
We identified the 500 most popular triggers based on a popularity rank derived
from a public dataset collected in May 2017 [27]. Their dataset includes about
280,000 rules of IFTTT, and contains the number of installed users for each
rule. We assessed the popularity of each trigger by summing up the number of
installed users having that trigger.

Approach. We assigned several labels to each trigger to indicate what types
of information may be leaked and how the leakage would occur. To indicate the
possibility of containing private information, we assigned a score from 1 to 3:
Scores of 1, 2, or 3 indicate that the data does not contain, possibly contains,
or absolutely contains private information, respectively. For example, a “photo
uploaded” trigger may leak private information depending on the content of the
photo and hence we assigned the score of 2; an “arrive at” trigger definitely leaks
a user’s location and hence we assigned 3.

3.3 Results

Types of leaked information. As shown in Table 2, we identified 12 categories
of leaked information, and labeled triggers for each category. Note that a trigger
may be assigned to more than one category. This list captures the most common
types, but is not exhaustive.

Among these triggers, 91% leak at least one type of private information (i.e.,
not labeled as public). As shown in Figure 2, lifestyle/activities category is a
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Table 2: Categories of Leaked Information
Basic Information name, age, email address, phone number, physical address, occupation, etc.
Location current location, location history
Finance bank account balance, transaction logs, purchase history, etc.
Health Status weight, BMI, blood pressure, heart rate, etc.
Social contacts, membership status of organizations, etc.
Communication call records, SMS, voicemail, email, social media posts, etc.
Lifestyle / Activities data or logs that show user’s activities. e.g., the time the user wakes up,

turns on the TV or goes to work, etc.
Activities Summary the summary of user’s activities. e.g., total working hours, distance of driv-

ing, etc.
Interest videos liked or watched, interested news topics, followed stocks, etc.
Physical Sensor temperature of a room, indoor CO2 level, etc.
Others (Personal) information not publicly available and not fit in any of the above categories.
Public publicly available information. e.g., weather forecasts, public posts, etc.

Table 3: Sources of Leakage (n = 500)
sources of leakage # of triggers %

event data 456 91%
trigger event presence 127 25%

device/account possession 2 0.4%

Fig. 2: # of Triggers For Each Category

broad category into which most of the state change events fall, and hence is
most likely to be leaked, while health status is least likely.

Sources of leakage. We labeled the sources of leakage of each trigger event
based on our definitions in Sec. 2.1. We found that a trigger may leak information
through multiple sources, and triggers that leak information by trigger event
presence or device/account possession will always leak information by data too.

Table 3 shows the number of triggers subject to each of the three leakage
sources. We count the number of triggers assigned a score 2 or 3. We found the
most of the information is leaked through event data. Even if event data were to
be hidden from IFTTT, 25% of triggers still leak information by their presence.

4 Proposed Solutions

We propose OTAP and ATAP that achieve different sets of security goals as
outlined in the previous section. Table 4 provides a preview of comparisons of
the different schemes. Besides IFTTT, we also compare our schemes with a
Pairwise Connection approach, in which trigger and action services connect to
each other directly without communicating with the platform.

Pairwise Connection achieves the security goals, since no information is given
to the platform. However, Pairwise Connection breaks minimal information ex-
posure, as a trigger service can gain the information of what other device a user
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Table 4: Comparison of Schemes. Properties 4-6 are compared against the base-
line. The Pairwise Connection approach has no platform, and thus trivially
achieves Properties 1-3 and 5 (*).
Property / Scheme IFTTT (baseline) Pairwise Connection OTAP ATAP

1. Data & Parameters Confidentiality No Yes* Yes Yes
2. Trigger Event Presence Confidentiality No Yes* Yes Yes
3. Device Set Confidentiality No Yes* No Yes
4. Minimal Information Exposure - No Yes Yes
5. No Platform Modification Required - Yes* Yes No
6. No Service Modification Required - No No No
7. Ease of Maintenance Easy Hard Easy Easy

owns if it connects to the action service. Also, removing the platform from the
system makes the maintenance more difficult. Without a trigger-action plat-
form, a service must notify all other services when it changes its API, but with
a trigger-action platform, the service only needs to notify the platform.

Core techniques. In both OTAP and ATAP, encryption is employed to provide
data & parameters confidentiality. One challenge is that, due to the requirement
of minimal information exposure, the trigger and action services should not con-
nect to each other directly, thus making key establishment a non-trivial task.

Another challenge is to provide trigger event presence confidentiality. Indeed,
it sounds paradoxical to hide triggers from the platform while asking the platform
to execute certain rules when a trigger is fired. To that end, we propose two
techniques: trigger obfuscation and trigger anonymization.

For trigger obfuscation, we can notify the platform when some trigger occurs,
along with fake triggers when there is no actual event. In this way, the platform
cannot be sure whether there is a real event happening when receiving triggers.

On the other hand, the idea of trigger anonymization is different. We still
allow the trigger-action platform to learn when a trigger occurs, but make it
impossible to associate the trigger with a certain user. The advantage of this
technique is that, in our system, we already have trigger and action services
which can act as proxies or “mixes” naturally, and thus it is unnecessary to add
other parties for anonymization.

For the rest of this paper, we assume that user U wants to setup a rule r,
the associated trigger and action services are T and A, respectively, and the
trigger-action platform is denoted by P .

4.1 Obfuscated Trigger-Action Platform (OTAP)

OTAP is based on trigger obfuscation and is designed to protect both data & pa-
rameters confidentiality and trigger event presence confidentiality without plat-
form modification. The protocol flow of OTAP is the same as the existing IFTTT
flow except that encryption is used to provide data & parameters confidentiality.
In addition, to obfuscate the trigger-action platform, the trigger service period-
ically sends out a trigger event, either real or fake, every τ seconds, where τ
refers to trigger period and the time points are called trigger points. Note that
τ is configurable by the user and will be part of the trigger parameters. A sym-
metric encryption is used and the encryption function is denoted by Enc(k,m),
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𝐷 = Enc(𝑘𝑟, Trigger Data)

Trigger Params, 𝑘𝑟 𝑘𝑈𝑇

Trigger Params, 𝑘𝑟 𝑘𝑈𝑇

Action Params, 𝑘𝑟 𝑘𝑈𝐴

User

(𝑼)

Trigger-Action

Platform

(𝑷)

Trigger Service

(𝑻)

Action Service

(𝑨)

𝑘𝑈𝑇𝑘𝑈𝑇
Authentication/Authorization

Authentication/Authorization
𝑘𝑈𝐴𝑘𝑈𝐴

Gen 𝑘𝑟

𝐷, Action Params, 𝑘𝑟 𝑘𝑈𝐴

Service

Setup

Rule

Setup

Rule

Execution

Fig. 3: OTAP Protocol

(ℛ𝑃(ℰ𝑃 𝐴 )), 𝛽𝛾𝐺

Enc(𝑘, Trigger Data, 𝐼𝐷𝑎 )

User

(𝑼)

Trigger-Action

Platform

(𝑷)

Trigger Service

(𝑻)
Action Service

(𝑨)

Action Params

𝐼𝐷𝑎Rule

Setup

Rule

Execution

[Trigger Params, 𝐼𝐷𝑎], ℰ𝑃(𝐴), [𝛾𝑄𝑎 , 𝛾𝐺]

Enc(𝑘, Trigger Data, 𝐼𝐷𝑎 ), 𝛽𝛾𝐺

Gen 𝛽
𝑘 = 𝛽(𝛾𝑄𝑎)

𝑘 = 𝛼(𝛽𝛾𝐺)

Fig. 4: ATAP Protocol

where k is the encryption key and m is the message to be encrypted. We also
introduce two types of encryption keys:

– User-Service Keys: For each user U and service S, there is a shared key
kUS , which will be used for encrypting trigger and action parameters.

– Rule-Specific Keys: For each rule r, there is a key kr shared by the corre-
sponding trigger and action services, and is used for encrypting event data.

We now present the phases of the protocol, as shown in Figure 3. From the
user’s perspectives, note that the key managements and encryption/decryption
can be done by installing a local app or a browser plugin to ease the burden.

Phase 1: Service Setup. Besides the authentication and authorization flows in
the original scheme, in OTAP, the user’s client (e.g., local app or browser plugin)
establishes the shared keys kUT and kUA with T and A during this phase.

Phase 2: Rule Setup. Before uploading the rule to the platform, the rule-specific
key kr must be obtained. As highlighted earlier, the trigger and action services
should not be directly connected. Thus, OTAP relies on the user’s client to do
this job since the user can connect with both parties. After generating kr, the
key will be uploaded by the user client to the platform as part of the rule along
with the trigger and action parameters. If there are multiple actions in a single
rule, then all of the involved action services will share the same key.

To ensure security and parameter confidentiality, the parameters must be
encrypted, Therefore, the actual messages received by the platform will be
〈Trigger Params, kr〉kUT

and 〈Action Params, kr〉kUA
, where

〈m, kr〉k = [Enc(k,m),Enc(k, kr),HMAC(k,Enc(k,m)‖Enc(k, kr))].

The first two terms are the parameters and kr encrypted by the user-service key,
and the last term is a Message Authentication Code providing integrity check.

Phase 3: Rule Execution. The trigger service is able to decrypt the trigger pa-
rameters and rule-specific key kr using kUT . At each trigger point, T sends to
the platform a trigger event, with event data encrypted by kr. The platform
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OTAP

Triggers

Actual

Events

Time

1 2 3 4 5

1 2 3 4 5

1 real trigger fake trigger

(a) Guaranteed Delivery

OTAP

Triggers

Actual

Events

Time

1 2 3 4 5

1 3 4 5

1 real trigger fake trigger

(b) Latest-Only Delivery

Fig. 5: Illustration of Two Delivery Strategies

then forwards the encrypted data, encrypted action parameters, and the key to
the action service. Upon receiving these, the action service first decrypts using
kUA to obtain the action parameters and kr. Finally, with kr, the action service
decrypts event data and perform the action.

Note that the size of the encrypted event data can still leak sensitive infor-
mation. However, we observed that the trigger fields of the same type are in
fixed size in most cases. For example, the temperature is always an integer with
the size of one block after encryption. If such a side-channel attack is a concern,
the trigger service can pad the trigger field to its maximum allowed size.

To summarize, in OTAP, the information learned by the trigger and action
services is the same as the existing solution. The platform knows the rules (i.e.,
which trigger and action are related), but not trigger and action data as they
are encrypted. Trigger presence is also hidden by having fake triggers. The de-
lay, whether deterministic or not, does not expose information about the real
triggered events, as real triggers are indistinguishable from fake ones in OTAP.

Obfuscated Trigger and Delivery Strategies. Thus far, we have claimed
that a fake event may be sent out at some trigger points. However, we have not
discussed how to decide when to send out a fake trigger and how to cancel a false
action when a fake trigger is sent. The latter issue can be caused because the
platform is unaware of the truthfulness of the trigger and fires an action even if
the incoming trigger is fake. To address this issue, we add an additional Boolean
field is real to the event data so that the action service can safely discard the
message when it is set to be false. Since the flag resides in the event data, which
is encrypted, the platform is unable to infer its value.

As for the former issue, we propose two main strategies called guaranteed
delivery and latest-only delivery to decide which trigger is to be sent at each
trigger point, as illustrated in Figure 5. The guaranteed delivery strategy ensures
that every real trigger event is sent out. Specifically, the trigger service will queue
all the trigger events and send out the oldest unreported event at trigger points.
However, the delay (the time between when an event occurs and is fired) may
increase quickly if the trigger period is not short enough.

In contrast, the latest-only delivery strategy keeps only the latest trigger that
is not yet fired. Hence, if many trigger events occur between two consecutive
trigger points, only the latest one would be sent out. This strategy effectively
shortens the delay, but may lead to event loss (e.g., event 2 in Figure 5b).

How to choose the best trigger period and delivering strategy depends on
the type of trigger and the rule, and can be adjusted dynamically to adapt the
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scenario of use. For example, for the rule “If the motion sensor detects I’m in
the room, then turn on the light,” one might want to have a short trigger period
so that the action can be fired near real-time.

As for the delivery strategies, the guaranteed delivery is probably a better
option for rules like “Log the time I enter and leave the office and home,” as
one would simply like all the events to be logged and might care less about
delays. For the rule “If the temperature changes, adjust the thermostat,” one
may choose the latest-only delivery strategy as only the most recent temperature
is the relevant information.

Finally, one may also wonder that if it is possible to use a randomized trigger
period instead of a constant τ . Indeed, using a randomized trigger period will
not weaken the security as long as the distribution of the trigger period is inde-
pendent of actual trigger events. However, as shown in Appendix B, among all
trigger period distributions of the same mean value, the constant trigger period
will minimize the average delay. Note that the selection of trigger period and
strategy will only affect the utility but not security.

To integrate OTAP with the existing IFTTT ecosystem, the user clients (i.e.,
app or browser plugin) and partner services need to implement the encryption
and decryption functionalities, while no platform modification is required. The
existing IFTTT basically sends the user-provided parameters to the partner
services and forwards the data from the trigger service to the action service. In
OTAP, the only difference is that the parameters and data are now encrypted and
an additional parameter is added (i.e., the rule-specific key). Since the platform
can operate without knowing the actual content of parameters and data, there
is no need to change the platform’s implementation.

4.2 Anonymous Trigger-Action Platform (ATAP)

ATAP achieves all three security goals at the cost of trigger-action platform
modification. The scheme preserves trigger event presence confidentiality based
on the idea of anonymization. The trigger service will drop user information
before sending out a trigger to the trigger-action platform.

However, with this approach, we can no longer rely on the trigger-action
platform to execute the rule. This is because if the platform were to know which
rule to execute, it can distinguish between triggers of different users, contra-
dicting our goal. Therefore, we have to store the rules on trigger and action
services and use the platform only for forwarding, which also achieves our inten-
tion to preserve device set confidentiality. Although most of the functionality of
the platform are discarded, we achieve minimal information exposure and easier
system maintenance by keeping the platform, which the Pairwise Connection
approach of removing the platform fails to do so. Also, as the approach is based
on anonymization, its security is bounded by the number of users of the system.

Before diving into the protocol, we first introduce some cryptographic-related
notations and techniques that will be used. We use a symmetric encryption
function denoted by Enc(k,m), where k is the key and m is the plaintext to
be encrypted. We use ES(m) to represent the ciphertext of m encrypted by S’s
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public key under ElGamal. Finally, an elliptic curve G is also used in ATAP with
G being its base point.

To preserve data confidentiality, we need to encrypt the event data and a
shared key must be established between the trigger and the action services.
OTAP accomplishes this requirement by having the user’s client generate the key
and distribute it to both services. However, ATAP requires different approach
because the triggers are anonymized. Specifically, the action service cannot de-
termine which key to use for decryption upon receiving the event data. Public
key exchange protocols, such as ECDH, would break minimal information ex-
posure, since the trigger and action service can identify their counterparts by
matching the public key. Therefore, the public key needs to be randomized. The
modified ECDH protocol is described as follows.

Suppose that the ECDH public key of A is QA and the associated private
key is α (i.e., QA = αG). The protocol consists of three steps:

1. Client U selects a random scalar γ and sends γQA, γG to trigger service T .
2. T selects another random scalar β and sends βγG to action service A.
3. T and A can both compute the shared key k = β(γQA) = α(βγG).

Figure 4 shows the protocol of ATAP. Note that there is no service setup
phase since the user no longer needs to register on the trigger-action platform.

Phase 1: Rule Registration. When setting up a new rule, the client starts by
registering the action with A and receives an action ID IDa. Then the client
registers the trigger with T . The information given to T falls into three groups.

1. Trigger params and IDa: Information needed for trigger-action.
2. EP (A): The name of the action service encrypted by P ’s public key, such

that the platform knows where the event data should be forwarded to.
3. γQA and γG: Used for ECDH key exchange, as described previously.

Phase 2: Rule Execution. When a trigger event occurs, the trigger service simply
fires the event to the platform. The event data and IDa will be encrypted by the
shared key k. Similar to OTAP, the event data can be padded to prevent leaking
sensitive information through data sizes, if necessary. The service name is re-
randomized through RP (EP (A)) = EP (A) + EP (0) exploiting the homomorphic
property of ElGamal. The key exchange message βγG is also sent out. Upon
receiving the messages, the platform obtains the service name A by decrypting
RP (EP (A)), and forwards the rest of the messages to A. The action service
computes the shared key k and decrypts the event data and action ID IDa.
With IDa, the action service can find the corresponding action parameters and
fire the action.

Re-randomization is needed for EP (A) since EP (A) is fixed for a given rule.
Without re-randomization, some information can be used to fingerprint the
user—the platform can learn that two different triggers are from the same user.
Re-randomization is required to limit the attack impact: even if the attacker can
break trigger presence confidentiality of one trigger, he/she cannot easily break
trigger presence confidentiality of other triggers by linking them together.
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To sum up, in ATAP, the trigger and action services know only the informa-
tion of trigger and action, respectively. The platform knows nothing but some
triggers of a service occurred and some actions of a service were fired.

4.3 Security Analysis

We provide security proof sketches here and detailed analysis in Appendix A.
Assume the use of IND-CPA symmetric encryption scheme Enc(·) (e.g., AES-

CBC) and IND-CPA asymmetric encryption scheme E(·) (e.g., ElGamal encryp-
tion). For OTAP, since all transmitted messages are encrypted by Enc(·), data
& parameter confidentiality is satisfied. By the definition of IND-CPA, an ad-
versary cannot distinguish between pairs of ciphertexts even with the knowledge
of plaintexts, and hence an adversary cannot distinguish between real and fake
trigger events. Hence, OTAP preserves trigger event presence confidentiality.

For ATAP, all transmitted messages are encrypted by either Enc(·) or E(·),
and thus data & parameters confidentiality is satisfied. In addition, since IND-
CPA leads to randomized encryption, this implies that the adversary in ATAP
is unable to link between different triggers, achieving trigger event presence con-
fidentiality. Device set confidentiality is also achieved, as no further information
is provided to the platform.

5 Performance Evaluation

To evaluate the performance of our proposed schemes, we implemented proto-
types of our systems and a skeleton version of IFTTT as our baseline (referred
to as the plain scheme). We ran several experiments to measure the end-to-end
latency and the throughput of our systems, as described in Sections 5.1 and 5.2.

Experiments Settings. We implemented all the partner services and trigger-
action platforms as web servers using Node.js, and used MongoDB as the backend
database. We used 128-bits AES-GCM for symmetric encryption and curve P-
256 for elliptic curve algorithms. Inspired by Fernandes et al. [20], we use the
rule “IF new item added to TODO list contains the word ‘cat’, THEN send an
SMS of this item.” This contains all the essential elements of a typical rule: a
trigger parameter that indicates the trigger condition, and using event data as
action parameters.

We hosted each service on separate Google Compute Engine g1-small in-
stances. Each instance was configured with 1 Intel Xeon vCPU @ 2.2 GHz, 1.7
GB memory, and 10 GB SSD storage in Ubuntu 18.04.

5.1 Latency

We compare end-to-end latency of the privacy-preserving versions with the plain
version. The latency increment mainly derived from (1) computational overhead
of the cryptographic operations, and (2) the delay caused by sending triggers
periodically, only for OTAP.
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Fig. 6: Latency Breakdown

Table 5: Goodput of Different Schemes
Scheme Avg. (req/sec)
Plain 411.78
OTAP (τ = 17, guaranteed) 52.46
OTAP (τ = 1796, latest-only) 162.64
ATAP 69.54
ATAP (w/o re-randomization) 360.27

Computational Overhead. We measured the time spent at different services
and the network overheads. The end-to-end latencies are largely affected by the
size of the event data, as they need to be encrypted and decrypted by the trigger
and the action services, respectively. Therefore, we varied their size from 0.5 KB
to 128 KB, and the experiment result is shown in Figure 6.

A gap exists between the network overheads of the plain scheme and OTAP
(ATAP) when the trigger size is 32 KB, which is caused by TCP congestion
control. With encryption, transferred data is slightly bigger than the congestion
window size, requiring an additional round-trip for OTAP and ATAP. Despite
network overhead, the results show that OTAP adds at most 5ms latency while
ATAP adds at most 25ms. Both are small compared to network overheads or
other delays, given that there are no real-time requirements in these systems.

Triggering Delay. For OTAP, we conducted an empirical study on how the
trigger period affects the delay between the time a trigger occurs and the time
it is sent out. We used the CASAS hh104 dataset [17], which contains sensor
data that was collected in the home of a volunteer adult for about two years.
We selected the MA022 motion sensor events as triggers, which are the most
frequent events in this dataset. Appendix C describes the event distribution.

We ran the experiment for both delivery strategies, and the result is in Fig-
ure 7a. For guaranteed delivery, the delay grows quickly as the trigger period
increased; in this case, if we still want to guarantee real-time triggering, then the
trigger period should be set around the bursty rate of the trigger (2s in this ex-
ample). For latest-only delivery, in contrast, the delay remains low as the trigger
period increases; the delay is around one-third of the trigger period. However,
there is a trade-off between the delay time and trigger event loss. For reference,
we show the resulting event loss rate of different trigger periods in Figure 7b.

5.2 Goodput

Besides the end-to-end delay of a single rule execution, we also examine the
number of rules our schemes can handle, which affects the delay. We define the
goodput to be the maximum number of real rules being executed per second.
The rule we used in this experiment is the same as in Section 5.1 with size being
0.5 KB, and we used ApacheBench [5] to conduct the experiment by sending
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(a) (b) (c)

Fig. 7: Trigger Period vs. (a) Delay, (b) Event Loss Rate, (c) Real Trigger Ratio

10,000 trigger activations with up to 400 concurrent connections. The results
are presented in Table 5. We set the concurrency level to 400 by estimating
the maximum concurrent execution of the current IFTTT. According to their
website [8], around 1 billion rules are executed per month, which means, on
average, approximately 385 rules are executed per second.

For OTAP, the goodput depends heavily on the delivery strategy and the
trigger period τ . A longer trigger period will not only increase the goodput but
also increase the latency, as shown in Figures 7a and 7c. In the experiment,
we choose the maximum τ such that the average trigger delay is less than 15
minutes. Choosing a “best” trigger period to balance the trade-offs depends
on the distribution of the trigger and other system requirements. We leave the
parameter selection as future work.

For ATAP, the goodput (which is the same as the throughput in this case)
dropped drastically by about 80%. We found that one of the performance bottle-
necks is the re-randomization of action service ID on the trigger service. However,
the action service ID is fixed for each rule and is not event-dependent, which
indicates that the re-randomization does not need to be performed for each trig-
ger and can be generated beforehand. Without re-randomization, our test results
show that the goodput only decreases by 12.5%.

6 Discussion

Incentive of Adoption. Similar to anonymous communication, which cannot
achieve strong anonymity, low bandwidth, low delay simultaneously as proved
in [18], our solution does not aim at providing all of them. Instead, by presenting
various modes and configurable parameters, our system allows users to best
fit their requirements. For example, for delay-critical applications in trigger-
action platform, the user can decide whether to activate our schemes for strong
anonymity at the cost of performance.

From the perspective of trigger-action platforms and partner services, we
acknowledge that adopting our schemes may increase their operating costs. With
the increased interest in the pay-for-privacy model [19], business incentives may
exist to offer privacy-enhanced trigger-action system for additional revenues.

Deployability. Though several changes are required to adopt our scheme, we
will explain how the transition to our schemes can be made easier with the help
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of a proxy. In our schemes, the core functions of the partner services remain the
same. Therefore, the adoption of our schemes could be done by having a proxy
that sits in between the service and the platform and transforms the requests and
responses. Since all partner services follow the same API specification, the proxy
can be written once by the platform and distributed to all partner services. It
should be published in an open-source manner and run by each partner service
on its own, so that the proxy can be trusted.

For OTAP, as discussed in Section 4.1, the existing trigger-action platform
can be reused, though all the data and parameters sent to the trigger-action
platform must be encrypted by the user clients and partner services.

Compared to OTAP, ATAP requires modifying the platform, and a reimple-
mentation is inevitable. However, since its function is simpler compared to the
existing one, it is likely that it would not require excessive development effort.

As for the user-side, the key managements and encryption/decryption can
be done by installing a local app or a browser plugin to ease the burden.

7 Related Work

Researchers have worked on the security and privacy issues in the trigger-action
ecosystem. We first review the related work on the platforms, and review other
parts of the ecosystem, including automation rules, and IFTTT.

Untrusted Trigger-Action Platform. Xu et al. [30] studied privacy leakage
in smart homes to the trigger-action services and the mitigation. They proposed
“Filter-and-Fuzz (F&F)” that filters out events unneeded by IFTTT and fuzzes
the event data and their frequencies. This fuzzing component is somewhat similar
to our OTAP scheme, as it randomizes the values of event data and sometimes
sends fake triggers. However, their usage scenario is limited to Boolean or nu-
merical event data fields and they only consider the cases where the trigger and
action services are the same.

Fernandes et al. [20] studied the security of IFTTT’s OAuth-based authenti-
cation protocols, and they found that 75% of the tokens are over-privileged and
can be exploited by the attackers to control users’ devices when the platform
is compromised. They proposed a decentralized trigger-action platform frame-
work (DTAP), which allows the use of fine-grained transfer tokens (XToken).
The trigger-action platform stores only rule-specific tokens while the XToken is
stored in the newly-introduced trusted-client, which is controlled by the user.
Although DTAP does not provide data confidentiality and privacy, DTAP can
be combined with our solution to enhance the system privacy and integrity.

Security and Privacy Concerns of Automation Rules. Bastys et al. [13,
14] examined IFTTT applets that contain filter code, and found that such applets
are susceptible to URL-based attacks, which can exfiltrate private information
to a third-party when the applet is created by a malicious maker. A malicious
applet could also lead to integrity and availability violations. Authors proposed
FlowIT that can monitor and prevent malicious apps from being executed.
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Surbatovich et al. [28] analyzed 19,323 IFTTT rules based on information-
flow techniques. They defined a four point lattice that checks whether the infor-
mation flows from a trusted source to an untrusted sink using static analysis.
A series of work utilized dynamic analysis techniques such as model checking or
symbolic execution to detect and fix insecure interactions between rules or to
synthesize secure trigger-action programs [25, 24, 15, 31, 23, 29].

IFTTT Ecosystem. Mi et al. [27] conducted an empirical study on IFTTT to
understand its ecosystem and the performance of rule executions. They leveraged
the self-implemented IFTTT server to profile the interaction among different
entities. Their work provides a deeper understanding of the architecture and the
execution path of a rule, which inspired our design.

8 Conclusion

Emerging trigger-action platforms empower users to conveniently combine var-
ious online services and physical devices for customized automation. However,
their centralized design allows these platforms to collect personal information
from multiple services, which raises privacy concerns. This work conducted the
first empirical study on potential privacy exposures to trigger-action platforms,
and presents two practical mitigations that enhance privacy without sacrificing
the convenience promised by these platforms. In our empirical study of the 500
most popular IFTTT triggers, we found that the platform is capable of obtaining
a variety of sensitive information, and 91% of the popular triggers are susceptible
to privacy leakage. To mitigate the problem, we designed and implemented two
privacy-preserving trigger-action platform systems, OTAP and ATAP. Trigger
obfuscation and trigger anonymization techniques can hide trigger presence, so
that the platform (1) sees real and fake triggers that are indistinguishable, or
(2) cannot determine which user is related to a given trigger. We believe that
our work provides an immediate remedy to enhance today’s trigger-action plat-
forms, and an interesting future direction is utilizing a clean-slate approach that
ensures security and privacy by design.
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A Formal Security Analysis

Privacy Framework. We adopt the ideal/real-world paradigm to analyze the
privacy of our schemes, which is standard in MPC literature [22, 16, 21]. Concep-
tually, there are two worlds, one is ideal and the other is real, both evaluating
the functionality Ftap, the trigger-action platform protocol. The “ideal-world”
has a trusted party T carrying out all the computations. All other parties send
their input to T and receive their prescribed output through a secure channel.
In “real-world”, no such party exists and all parties perform the computation
themselves. To show that a real-world protocol is secure, we need to show that
for every possible real-world adversary A, there exists an ideal-world simulator
S such that when controlling same parties as A, the outputs of the protocols in
ideal-world and real-world are computationally indistinguishable. This implies
that every attack that can be done by A in real-world can be done by S in the
ideal-world. Since the simulator learns nothing but the input/output of the cor-
rupted parties, the real-world adversary A can only learn the same information.

Adopting this framework, the security of a privacy-preserving trigger-action
system can be defined as follows.

Definition 1. A trigger-action protocol Π that computes Ftap is secure if given
any adversarial trigger-action platform A, there exists a simulator S such that
IDEALFtap,S ≈ REALΠ,A are computationally indistinguishable, where IDEALFtap,S
is the joint output of simulator S in the ideal-world, while REALΠ,A is the output
of adversary A in the real-world.

Theorem 1. Let Π be the protocol of OTAP and assume Enc(·) is an IND-CPA
encryption scheme. Given any adversarial trigger-action platform P , there exists
a probabilistic simulator S which takes as inputs the rules sets ~r1, · · · , ~rM and
the trigger periods ~τ satisfies Definition 1.

Proof. Let I = {(u, dt) ∈ ~ri | i = 1, . . . ,M} be the set of users and trigger pa-
rameters of rules, and τ(u,dt) be the associated trigger period for each (u, dt) ∈ I.
The simulator S will interact with the adversary A internally, and can be con-
structed as follows. For each (u, dt) ∈ I, S passes (u, dt, c) to A as input as
if it was sent by the triggering service T at each corresponding trigger point
(i.e., τ(u,dt), 2 · τ(u,dt), . . .) and outputs whatever A outputs, where c is randomly
sampled from the ciphertext space of Enc(·).

Now we show that the output of S is computationally indistinguishable
from the output of A in real-world. In the real-world, the service T sends out
(u, dt,Enc(k, δ)) to A periodically for every (u, dt) ∈ I, where δ is the event
data. Based on the CPA secure assumption of Enc, we know that (u, dt, c)
and (u, dt,Enc(k, δ)) are computationally indistinguishable. Thus, the outputs
of S = A(u, dt, c) and A(u, dt,Enc(k, δ)) must also be computationally indistin-
guishable, which completes the proof.



On the Privacy Risks of Compromised Trigger-Action Platforms 19

Since the simulator is given only the rules sets ~ri of every user i and the trigger
periods, it is clear that the platform learns nothing about the trigger events, and
thus preserved trigger presence confidentiality and trigger data confidentiality.
However, device set confidentiality is broken, as the devices owned by a user can
be inferred from the rules they are using.

Theorem 2. Let Π be the protocol of ATAP, and G be the elliptic curve used
in Π, whose base point being G and order being q. Assume that use of IND-CPA
encryption schemes Enc(·) and E(·), then given any adversarial trigger-action
platform A, there exists a probabilistic simulator S satisfies Definition 1, while
S takes as input a list ~E that contains the 3-tuples of events occurrence time,
trigger service name, and action service name.

Proof. The simulator S will interact with the adversary A internally, and can be
constructed as follows. For each (t, T,A) ∈ ~E, the simulator S passes (EP (A), c, γ′G)
to A as if it was sent by the trigger service T , where c is randomly picked up
from the ciphertext space of Enc and γ is randomly chosen from {1, . . . , q − 1}.
Then S simply outputs whatever A outputs.

Now we show that the output of S is computationally indistinguishable from
the output of A in real-world. It is suffices to show that (EP (A), c, γ′G) and
(EP (A),Enc(k, δ), βγG) are computationally indistinguishable, following from
the CPA security of underlying encryption schemes and the decisional Diffie-
Hellman (DDH) assumption.

From the above proof we know that the platform learns nothing but the time
of each event. However, since the platform will not know the name of the event
and the associated user, the trigger presence confidentiality is still preserved.
Trigger data confidentiality and device set confidentiality are also achieved, as
no further information is provided to the platform.

B Triggering Delay Analysis

This subsection will show that the average delay for OTAP with the guaranteed
delivery strategy is minimized when using a constant trigger period.

Consider a general case where the trigger period is not a constant but follows
a distribution I with E[I] = τ . In the following, we focus on a particular trigger
event and its corresponding service. We assume that the arrival of events is a
Poisson process with a rate of λ. We model the trigger service of OTAP as a
M/G/1 queueing system, where the customers (events) are served only at the
trigger points and the service time is zero.

When an event arrives, it first needs to wait a short period of time before
the queue starts serving new events, denoted as R. Then the event needs to wait
for all the events in the queue to be served before it is sent out. The duration
is the sum of NQ trigger periods, where NQ denotes the size of the queue when
the event arrives. As a result, we can derive the average delay of an event:
E[D] = E[R] +E[NQ] ·E[I]. By Little’s Law [26], we have E[NQ] = λE[D], and

from queueing theory, we know that E[R] = λ
2E[I2], which implies

E[D] =
E[R]

1− λE[I]
=

λE[I2]

2(1− λτ)
=
λ(Var[I] + (E[I])2)

2(1− λτ)
=
λ(Var[I] + τ2)

2(1− λτ)
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(a) Distribution of Inter-trigger Inter-
vals (b) Number of Triggers in Each Hour

Fig. 8: Trigger Distribution in the CASAS hh104 Dataset

The result shows that the average delay is minimized when the trigger period
is constant, since the minimum of Var[I] (= 0) happens when I is constant.

C Trigger Distribution

Figure 8a shows the distribution of the intervals between consecutive triggers
and Figure 8b shows the number of trigger events in each hour from the first
720 hours of the CASAS hh104 dataset [17]. The occurrence of events is not
uniformly distributed. Since the sensor only monitors motions within a specific
area, a series of bursty triggers occurs when the user is present in that area, and
no trigger occurs when the user is elsewhere.

D Supporting Filter Code

As mentioned in Section 3.1, some trigger-action platforms allow users to write
code to run during rule execution. Our schemes are capable of supporting a filter
code by letting the action services store and run such codes. However, it might
not be ideal to put this workload on action services instead of the trigger-action
platform. Therefore, we propose two potential solutions to support this feature
and leave them as future work.

The first direction is to replace the current encryption scheme with Homo-
morphic Encryption (HE), which allows computation over ciphertext without
knowing the underlying plaintext. However, a challenge is achieving acceptable
performance as HE schemes are computationally expensive.

Another possible solution is to build the trigger-action platform on trusted
hardware. Intel Software Guard Extension (SGX), for example, provides an iso-
lated execution environment called an enclave whose contents are protected, and
only processes running inside the enclave are allowed access. Since the protec-
tion is at the hardware level, a malicious OS cannot read those data. SGX also
provides another mechanism called remote attestation, which allows the client
to attest that the code running on the remote machine is indeed the expected
one. Thus, an SGX-based solution would support the trigger-action platform
to handle sensitive data inside an enclave and partner services to attest that
the platform is indeed running the privacy-preserving version at each interac-
tion. However, the resources inside an enclave are limited and hence, a challenge
becomes designing an algorithm that can use memory effectively.


