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Abstract—The proliferation of Internet of Things (IoT) is reshaping our lifestyle. With IoT sensors and devices communicating with
each other via the Internet, people can customize automation rules to meet their needs. Unless carefully defined, however, such rules
can easily become points of security failure as the number of devices and complexity of rules increase. Device owners may end up
unintentionally providing access or revealing private information to unauthorized entities due to complex chain reactions among
devices. Prior work on trigger-action programming either focuses on conflict resolution or usability issues, or fails to accurately and
efficiently detect such attack chains. This paper explores security vulnerabilities when users have the freedom to customize automation
rules using trigger-action programming. We define two broad classes of attack—privilege escalation and privacy leakage —and
present a practical model-checking-based system called SAFECHAIN that detects hidden attack chains exploiting the combination of
rules. Built upon existing model-checking techniques, SAFECHAIN identifies attack chains by modeling the IoT ecosystem as a Finite
State Machine. To improve practicability, SAFECHAIN avoids the need to accurately model an environment by frequently re-checking
the automation rules given the current states, and employs rule-aware optimizations to further reduce overhead. Our comparative
analysis shows that SAFECHAIN can efficiently and accurately identify attack chains, and our prototype implementation of SAFECHAIN

can verify 100 rules in less than one second with no false positives.

Index Terms—Trigger-Action Attack Chains, Privilege Escalation, Information Leakage, Model Checking, Internet of Things

F

1 INTRODUCTION

W E now live in an era with smart technologies that utilize
connected devices and sensors to automatically adapt,

enhance performance based on prior experience, and use reasoning
to modify the next behavior [35]. According to a recent survey [6],
around 8.4 billion networked devices are expected to be in use by
2017 and the projected number escalates to more than 20 billion by
2020. This speculation indicates that these Internet of Things (IoT)
are already beginning to reshape our daily lifestyles seamlessly.

Similar to prior advancement in technology, IoT will bring
convenience to our daily lives, at the cost of security and privacy.
As IoT devices are tightly entangled with the physical world, an
adversary in cyberspace can threaten human users’ safety and pri-
vacy in the physical world via IoT devices. The lack of appropriate
security mechanisms in IoT has already been highlighted in recent
news, ranging from cyber incidents (e.g., hacking smart fridges
to send spam emails [5], compromising smart meters to reduce
power bills [16], and hijacking toys to leak information [8]) to
detrimental cyber-physical threats (e.g., exploiting cardiac devices
to induce inappropriate pacing or shocks [3], injecting a worm
on IoT devices using ZigBee communication to launch a massive
city-wide light disruptions [40], and compromising IoT devices
to disrupt the power grid’s normal operations [41]). As more and
more vulnerabilities are discovered, relying on vendors to patch
IoT devices in a timely manner is insufficient. Additional defenses
must be in place to limit the impact on vulnerable devices.

An interesting feature of IoT is supporting customized interac-
tion among devices using end-user programming, such as trigger-
action programming [43]. This often takes the form of “if trigger,
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then action” and allows users to specify a trigger that represents a
condition and the corresponding action to be taken whenever that
trigger event occurs. Once defined, such trigger-action rules can
be automatically applied without user involvement. As the number
of connected devices multiplies1, the complexity of interactions
among them will also increase with customized automation. The
increasingly complex interdependencies between devices can eas-
ily allow for various attacks, because an adversary controlling one
IoT device can now expand influence to more devices through
such interdependencies. Unfortunately, attacks leveraging trigger-
action rules are difficult to detect manually, as device owners may
unintentionally provide access or reveal private information to
unauthorized entities due to complex chain reactions [46].

This work presents an automated prevention system called
SAFECHAIN which identifies exploitable trigger-action attack
chains. SAFECHAIN can thus work in conjunction with methods
that support postmortem attack reconstruction from logs [46],
methods that identify errors in individual rules [37], and methods
that resolve conflicts between rules [30], [31], [32], [33].

We first formulate two classes of attack that exploit trigger-
action rules. The first is privilege escalation, in which an adversary
gains control of more devices than it initially has via automation
rules. For instance, given the rule “if someone is home, turn on
the light”, an attacker who compromises the occupancy sensor
can also affect the status of the lightbulb. The other attack class
is privacy leakage, in which an adversary learns more information
about the devices than it initially has via automation rules. For
example, given the rule “if someone is home, turn on the light”,
an attacker who observes the state of the lighting device (e.g.,
the light is publicly observable or hacked) can infer the status of

1. The number of connected IoT devices per household are anticipated to
rise to 50 by 2020 [9].
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the occupancy sensor. In other words, turning the lighting device
on and off with respect to the occupancy of the home leaks
information to the adversary. The attacker can also leverage the
combination of multiple rules to create a chain effect.

To efficiently and accurately identify the two attack classes,
we present SAFECHAIN, a practical system built upon model-
checking techniques and enhanced by domain specific optimiza-
tions. SAFECHAIN models the IoT ecosystem as a Finite State
Machine (FSM)2 such that finding an attack can be reduced to a
reachability problem in the FSM. Both static and dynamic analysis
techniques have been used in prior work to verify IoT automation.
Static analysis [42] is often more efficient but comes with higher
false positives as no runtime information is provided. On the other
hand, prior work [30], [47] that similarly utilizes model-checking
tools lacks a clear and detailed specification, or mostly focuses on
resolving conflicts and making sure individual rules match user
intent. Dynamic analysis, either FSM or symbolic execution [31],
often suffers from scalability problems and needs a reliable
method of modeling the execution environment. Therefore, we
only consider dynamic analysis to be practical unless the following
challenges have been overcome.

Challenge 1: Environment modeling in FSM. As model check-
ing verifies properties against a given “model,” an inaccurate
model may miss detection or create false alarms. Accurately
modeling environment variables (e.g., trajectory of a user and
temperature) is nevertheless challenging because it requires exten-
sive knowledge about physical environments. Instead of aiming
to create an accurate environment model (e.g., using differential
equations and control theory), SAFECHAIN relaxes the require-
ment by frequently re-calibrating a simple environment model
based on the current state and the extrapolated near-future state.
SAFECHAIN then re-checks (e.g., every 1s or when the current
state changes) the automation rules given the updated model.

Challenge 2: The state explosion problem in model checking.
The number of states in FSM grows exponentially with attributes.
Given hundreds of rules (and device attributes), how can we
accurately and efficiently detect vulnerable rules? In addition, to
support frequent rechecking as stated in the first challenge, the
verification should be able to run as close to real-time as possible.
SAFECHAIN employs two rule-aware optimization techniques to
reduce redundant checks and to run significantly faster than using
an off-the-shelf model checker.

Our comparative analysis shows that SAFECHAIN can ef-
ficiently and accurately identify attack chains. Our prototype
implementation of SAFECHAIN can efficiently verify up to 300
automation rules within one second, outperforming the baseline
without any optimization, which can take more than 15 minutes.
The experimental results also show that SAFECHAIN has no false
positives under appropriate assumptions.

Contributions. This paper makes the following contributions:

• We analyze the attack chains found in a real-world dataset,
investigate two attack classes (i.e., privilege escalation
and privacy leakage), and formulate them as checkable
properties on FSMs.

• We design and implement SAFECHAIN, a lightweight
system to detect the two attack classes.

2. A state is a value assignment of all device variables, rules are modeled
as state transitions, and exploitable devices are modeled as arbitrary change of
the variables of these devices at any time.

• We evaluate SAFECHAIN using a large-scale dataset and
compare with prior work. We show that SAFECHAIN can
verify 300 rules in less than 1s, which is up to 1,000 times
faster than the baseline approach, with no false negatives.

2 BACKGROUND

Before explaining how to identify vulnerable trigger-action rules
using model checking, we introduce the related background
knowledge and terminologies.

2.1 Trigger-Action Rules and IFTTT

Networking capabilities allow IoT devices to communicate and
share information with each other. For example, an occupancy
sensor can control the lighting or heating system in a smart
home when it detects motion in the space, making daily life
more convenient and reducing unnecessary power consumption.
To support such custom automation, users can utilize trigger-
action programming to specify triggering circumstances to execute
actions. The general format of a trigger-action rule is as follows:

IF trigger, THEN action.

For example, the trigger of the previous instance is when the
occupancy sensor detects something and the action is to turn on
the light or activate the air conditioner. Thanks to its simplicity
and straightforwardness, novice users can use such programming
to customize their IoT device behavior [43]. These rules can also
be machine generated [20], [35] or learned [38], [43] from user
intent.

IFTTT [11] is one of the leading services and platforms to help
users define custom automation on their IoT devices. With more
than one million registered users, IFTTT has connected more than
400 devices and online services, and in 2015, more than 19 million
rules have been created and 600 million rules have been executed
monthly [18]. Other platforms providing similar services include
Samsung SmartThings [17], Zapier [19] and Microsoft Flow [12].

2.2 Model Checking

Model checking is a method to formally verify finite-state systems.
A model (i.e., an abstract representation) of a system is auto-
matically and exhaustively checked to determine if it complies
with specified properties. The desired property of a system is
usually expressed in logic languages, such as Linear Temporal
Logic (LTL) and Computational Tree Logic (CTL).

The characteristics of exhaustive checking from model check-
ing is especially suitable for security validation, because every
hidden threat can be found with no false alarm. Several off-the-
shelf model-checking tools are provided to help verify systems,
such as NuSMV. Once the users model their systems as finite state
machines and express properties in supported logic languages, the
model checker can help determine if there are any violations.

3 CASE STUDY

Before formally defining the problem, we show it is possible
to launch an attack using several harmless automation rules and
describe a home scenario as a working example throughout the
paper.
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TABLE 1: Examples of chained recipes

Chain Recipe 1 Recipe 2 Type
C1 Convert an e-mail to event in

Google Calendar
Send recurring Square Cash pay-
ments with Google Calendar &
Gmail

privilege

C2 Disconnect from home Wi-Fi,
start recording on Manything

When Manything detects mo-
tion, scare the intruder.

privilege

C3 Turn off sprinklers when I arrive
home

If irrigation stopped, then blink
lights

privacy

C4 When your nest thermostat is
set to away then put your water
heater in vacation mode

If water heater enters vacation
mode, then turn off the lights

privacy

3.1 Chained Recipes
Table 1 shows interesting examples of chained recipes we found
that can lead to attacks. The recipes are all chosen from the
publicly available information on the IFTTT website in April,
2018.3 For simplicity, we only consider chains of length two.

The first two examples show privilege escalation attacks. C1
exhibits how untrusted inputs flow through recipes to a trusted
action. The first recipe of C1 enables almost anyone to create
calendar events by sending mails to the owner, and the second
recipe of C1 creates recurring payments if an event added to
Google Calendar matches a given format. Therefore, an attacker
can receive payments from the victim by simply sending a crafted
email. C2 shows another example in which the recipes are chained
implicitly. The first recipe of C2 will turn on the security camera
(i.e., Manything) when the user leaves home, while the second
recipe of C2 will turn on lights, sounds or speakers in order to
scare an intruder. This implies that even if the user is home and
the camera is turned off, an attacker can jam the Wi-Fi to control
the house’s lighting, sound, or speaker system. We consider them
as chained recipes since the second trigger fires only after the
camera is turned on. Though the attack might not cause any real
damage, it can still be annoying.

The last two examples illustrate privacy leakage attacks, and
we assume that knowing whether one is home is sensitive, and that
lightbulbs can be easily observed or compromised [40]. With C3,
an attacker can learn that the owner returns home if the observable
light blinks. Similarly, in C4, the light indicates whether the water
heater is in vacation mode or not, and the water heater’s mode is
determined by a nest thermostat. Thus, the thermostat mode (away
or home) is leaked by the light in C4.

3.2 A Working Example
Figure 1 illustrates a simplified smart home scenario consisting
of ten devices and 12 rules. Smart home in reality can be even
more complex (and thus harder to analyze), as the number of
connected IoT devices per household are anticipated to rise to 50
by 2020 [9], and a real dataset provided by a smart home owner
(see Appendix B for details) contains 85 IoT devices connected
through nearly 70 automation rules. The table at the bottom of
Figure 1 summarizes the devices and their possible statuses, and
Table 2 lists the automation rules used in this example. Note that
rules may be created by multiple users to accommodate individual
needs. A small user study (see Appendix C for details) showed
that a household of three will have a high chance to adopt all rules
used in this example.

These rules are specified in the format of trigger-action pro-
gramming and can work in an automation service like IFTTT.

3. Because there is no indication whether a rule is actively used by a user,
we assume a user may sign up for any subset of rules.

1

2

3

4

5

6

7

8

9

10

# Device Attribute Possible
statuses

1 Light bulb light2 ON, OFF

2 Air
ac ON, OFFconditioner

3 Thermometer temperature 0,1,...,100
4 Fan fan ON, OFF
5 Smart TV tv ON, OFF

6 Occupancy
occupancy

TRUE
sensor FALSE

7 Surveillance
camera ON, OFFcamera

8 Smart lock lock
LOCKED

UNLOCKED
9 Light bulb light1 ON, OFF
10 Smart car location 0,1,...,127

Fig. 1: A Smart Home Scenario

TABLE 2: Example Rules

Rule Trigger Action

R1 User is near home Turn on the outside lightbulb
Turn on the surveillance camera

location = 0 light1← ON, camera← ON

R2 The surveillance camera is turned on Unlock the smart lock
camera = ON lock← UNLOCKED

R3 User has been driven out Lock the smart lock
location 6= 0 lock← LOCKED

R4 The smart lock is locked Turn off the outside lightbulb
lock = LOCKED light1← OFF

R5 The outside lightbulb is off Turn off the surveillance camera
light1 = OFF camera← OFF

R6 Occupancy sensor detects someone Switch on the smart TV
occupancy = TRUE tv← ON

R7 Occupancy sensor detects nobody Switch off the smart TV
occupancy = FALSE tv← OFF

R8 The smart TV is on Turn on the inside lightbulb
tv = ON light2← ON

R9 The smart TV is off Turn off the inside lightbulb
tv = OFF light2← OFF

R10 Temperature is a little high Turn on the fan
temperature ≥ 28 fan← ON

R11 Temperature is high Turn on the air conditioner
temperature ≥ 32 ac← ON

R12 Temperature is low Turn off the fan
Turn off the air conditioner

temperature ≤ 25 fan← OFF, ac← OFF

In this example, the homeowner’s intention is to record people
entering or leaving the house. Thus, the surveillance camera will
be turned on before the door is unlocked (R1-R2) and off after the
door is locked (R3-R5). The rules from R6 to R12 are designed
for energy efficiency, so the appliances in the living room will be
switched on and off with respect to different conditions of weather
and human presence.

Unfortunately, not every IoT device is equally secure; some
might have vulnerabilities that have not been patched. By com-
promising a vulnerable device, an attacker may be able to control
or observe other devices due to inter-device dependencies. In
the example in Table 2, suppose the GPS sensor in the smart
car [7] and the lightbulb [13] are compromised, and their states are
controlled by an attacker. The attacker can infer whether the owner
is home (i.e., by knowing the status of the occupancy sensor), and
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stealthily break in the house (i.e., by unlocking the smart lock
while the surveillance camera is off) by leveraging one or a chain
of automation rules as we will explain in §4.1.

From the above examples, most of the recipes may look seem-
ingly harmless if observed individually, but can become harmful
when chained together. As the number of devices and recipes
are likely to increase in the near future, it is harder for humans
to debug unsafe chains, especially when recipes are created at
different times or by different people.

4 PROBLEM DEFINITION

The goal of this work is to create an automated system that can
efficiently detect trigger-action attack chains and suggest fixes to
users. Here, we define an attack chain as a set of rules such that
the action of one rule in the set satisfies the trigger condition of
another rule in the set.

Consider a smart space4 consisting of IoT devices, user-defined
trigger-action rules, and a service provider. These devices can
interact with each other explicitly through automation rules. Such
automation is implemented using a trusted service provider that
executes rules whose trigger conditions are satisfied by the current
device state.

In the rest of this section, we define the threat model, system
model, and desired properties in detail.

4.1 Threat Model
We consider a realistic attacker who has compromised a set of vul-
nerable devices at the beginning; for example, via malicious apps,
known exploits, or proximity-based attacks [46]. The attacker can
read and write attributes of the compromised devices at any time.

Because we are developing a defense system, we consider
a strong adversary that knows all the rules created by users5.
By successfully mitigating such a strong adversary, we can also
mitigate weaker adversaries who know partial information, as
discussed in §7.

The attacker’s goal is to exploit IoT automation and perform
unauthorized actions (privilege escalation) or unauthorized reads
(privacy leakage).

Privilege escalation. In a privilege escalation attack, the attacker
attempts to make the IoT system transition into an insecure state
(e.g., the door is unlocked when cameras are off), which can
never be reached if the devices are operating as expected. To
do this, the attacker actively manipulates the attributes of the
compromised devices, thereby triggering changes of other devices
via automation rules. Sometimes the attacker may also need to
manipulate the device attributes in a specific sequence and at a
specific time.

In the example in §3.2, the attacker can manipulate the state
of the smart lock and surveillance camera, thus break in stealthily
without being recorded, even though the attacker has no direct
control of the two devices. To achieve this, the adversary forces
the GPS sensor to incorrectly report (e.g., by generating a stronger,
fake GPS signal or hacking the backend service [15]) that the car
is home. The service provider is then misled to apply rules R1

4. Such a smart space can be a home, building, office, factory, etc. For
ease of demonstration, we will use smart homes (as illustrated in §3.2) in our
examples throughout the paper.

5. Many IFTTT users publish their rules online, and most service providers
(e.g., IFTTT, Zapier, or Samsung SmartThings) provide a public dataset of
automation rules so that users can quickly create customized automation.

Service Provider

Rules

Devices

Fig. 2: System Model

and R2 to turn on the outside lightbulb and surveillance camera
and unlock the smart lock, respectively. After that, the adversary
forges the status of the lightbulb to trigger rule R5, which turns
off the surveillance camera.

Privacy leakage. In a privacy leakage attack, the attacker attempts
to deduce private information from publicly observable data and
the attributes of compromised devices. In addition to passive ob-
servation, the attacker can also actively manipulate compromised
devices and observe the resulting changes.

In the example in §3.2, the attacker can infer whether the
owner is home by monitoring the state of the vulnerable lightbulb
inside. This is because when the occupancy sensor detects a human
presence, rules R6 and R8 will be triggered, thus turning on the
smart TV and the inside lightbulb. On the other hand, if the
occupancy sensor detects no one, rules R7 and R9 will be applied,
and both the smart TV and inside lightbulb will both be off. Thus,
the adversary can infer the state of the occupancy sensor through
monitoring the state of the inside lightbulb.

4.2 System Model

Figure 2 shows our system model. More details are described as
follows.

Devices. A device’s state can be represented using a set of
attributes, which can be accessed via APIs. For example, a
thermometer can have a temperature attribute, which is set
to the value perceived by its temperature sensor; a lightbulb or
surveillance camera can have a switch attribute that represents
whether its functionality is enabled or disabled.

Note that these attributes may be affected by the time-varying
environment via the devices’ sensors. They may also affect the
environment via the devices’ actuators.

Trigger-action rules. Users can enable automation between de-
vices by adding customized trigger-action rules. Users need to
specify a trigger and the corresponding action when creating a
customized rule.

A service provider. We consider IoT automation implemented
using a trusted service provider6 (e.g., IFTTT, Zapier, or Samsung
SmartThings). The service provider offers an interface for users
to add or remove customized rules and can interact with devices

6. Securing the service provider is an orthogonal problem to our work, but
we emphasize that the service provider has incentives and resources to employ
better security measures than individual IoT devices. Many IoT vendors focus
on providing novel functionalities rather than security, and IoT devices rarely
adopt strong security measures due to limited resources. On the other hand,
once the service provider is compromised, the attacker can directly control
all devices to launch powerful attacks, which will ruin the service provider’s
reputation.
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through their APIs. We assume that the service provider polls
devices periodically; that is, queries every device’s status to check
for satisfying rules and to apply corresponding actions. We also
assume that the service provider can resolve conflicting rules and
avoid ambiguities, e.g., by enforcing an order of precedence on
rules [34], [39].

4.3 Desired Properties

Low false rates. The system should be able to accurately identify
privilege escalation and privacy leakage attacks. A false positive
occurs when the system falsely reports an attack, which may
annoy users or affect normal functionality of IoT devices. A
false negative occurs when the system fails to identify an attack,
providing users with a false sense of security.

Timely detection. The system should be able to scale to hundreds
or even thousands of devices and rules, and detect potential attacks
in a timely manner. Timely detection ensures that users have
sufficient time to fix problematic rules before they are exploited.
Designing a scalable algorithm is challenging because the number
of possible state combinations grows exponentially with devices
and rules.

Low interference with intended functionalities. One simple way
to prevent attackers from exploiting automation rules is to ask
users for permission before executing every rule. However, this
simple fix contradicts the purpose of IoT automation, which is
to make users’ lives easier. Hence, the mitigation method should
avoid interfering with users’ intended functionalities and should
not place a burden on users.

5 SAFECHAIN

The core idea of SAFECHAIN is to model the IoT ecosystem as
a Finite State Machine (FSM), such that finding an attack can
be reduced to a property-checking problem on the FSM, which
can be solved using existing model checkers. To improve its
practicability, SAFECHAIN deploys novel techniques to overcome
the research challenges described in §1.

After highlighting the core insights and the system overview
(§5.1), we explain how SAFECHAIN models the problem of iden-
tifying automation rule exploitation as a reachability problem on a
finite state machine (§5.2), such that we can adopt model-checking
techniques to ensure accurate detection of privilege escalation and
privacy leakage (§5.3). As model checking tends to be a slow
process, we propose several rule-aware optimization techniques
to achieve timely detection (§5.4). Finally, we explore how to
mitigate the identified attacks with low interference (§5.5).

5.1 High-Level System Overview

As shown in Figure 3, SAFECHAIN takes in rules, devices, vul-
nerability databases, and security policies, and reports identified
attacks to users. Users can interact with SAFECHAIN using an
application interface to check detailed attack traces and apply
fixes.

We envision that SAFECHAIN can work as an extension to
an existing IoT automation service provider or as a standalone
system, and the inputs can be supplied by the service provider, IoT
vendors, crowdsourcing sites, users, etc. Experts can help provide
default security policies, and users can revise them according to
their needs.

Because the adversary’s goal is to control an uncompromised
device or leak data from an uncompromised device via automation
rules, it is reasonable to consider cases where some devices are
vulnerable and some are not. (The attacker succeeds immedi-
ately if all devices are compromised.) Several approaches exist
to determine the vulnerable devices. For example, vulnerability
databases provide lists of vulnerable devices7. Alternatively, users
can manually select devices that require high level of protection,
in which case our system assumes that all the other devices are
vulnerable and evaluates whether the manually-selected devices
are attackable.

SAFECHAIN consists of four major components:

1) Modeling. To model the interaction between devices and
rules, we build a FSM in which the device statuses and
automation rules correspond to the states and transitions,
respectively. In addition, to model a volatile environment
(Challenge 1), we use a short-lived window to predict the
changes of each sensor variable and renew the prediction
after the previous one expires.

2) Verification. To verify the system, it is crucial to define
the attacker model in the FSM. Given the security poli-
cies, the verification component translates these policies
into the FSM properties, which can be checked using a
model checker. Once the short-lived windows are due, our
system re-verifies the model again with the new windows.

3) Optimization. To scale to a large number of devices and
rules (Challenge 2), we propose two rule-aware optimiza-
tion techniques to shrink the size of the FSM by pruning
redundant states and grouping equivalent states. Since the
optimization is done before actually transforming into
FSM, with high-level semantics preserved, our approach
incurs less overhead compared to general optimization
techniques implemented in common model checkers.

4) Mitigation. The mitigation component greedily selects a
small set of rules whose removal can disable the identified
attacks. To avoid violating intended functionalities, this
component also shows the identified attack traces and
suggests fixes to the users.

As we will show in §6, SAFECHAIN can verify hundreds
of rules in just a few seconds, and thus is capable of frequent
rechecks based on the latest rule set and sensor-attribute values.
Note that frequent rechecks are needed to accommodate the short-
lived window for the modeling environment.

5.2 Modeling
We will first describe how we encode each concept separately, and
then explain in detail how SAFECHAIN models the whole smart
space to simulate the possible interactions. The same modeling is
used for detecting both privilege escalation and privacy leak.

Devices. Each device is symbolized by using a set of attributes
to represent its equipped sensors, actuators or internal states.
We use A to denote this attribute set of all devices, which are
classified into two disjoint groups: read-only attributes AR and
read-write attributes ARW . The former corresponds to sensors,
which provide APIs only for obtaining values, and the latter

7. Several public datasets have been established to consider the consumer
device vulnerabilities. For instance, National Vulnerability Database [14] and
AndroidVulnerabilities [2] have accumulated a variety of vulnerabilities with
respect to different devices and smart phones.
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Fig. 3: System overview. “S” stands for states.

corresponds to actuators, which provide APIs for obtaining and
setting values. Possible values of each attribute ai ∈ A are
specified in its API specifications and we use possible(ai) to
denote this set.
Automation rules. A rule, represented by ri ≡ (booli, assigni),
can be specified by users or generated by machines. booli is a
Boolean-valued function defined over the device attribute space,
and ri is triggered when booli is evaluated to be TRUE. assigni

defines the action of the rule. This function maps device attributes
to values.

For simplicity, we assume that all the satisfied rules (i.e.,
booli(s) = TRUE) are executed concurrently. We also assume
that if there is a conflict between rules, some resolution techniques
are applied, such as user preferences, to ensure that the service
provider knows which rules to execute. Two rules ri and rj are
said to be conflicting if they assign different values to the same
variable (i.e., assigni(ak) 6= assignj(ak)).
Environment. The values of sensor attributes will change as the
environment changes and corresponding sensors perceive the dif-
ferences. At one extreme, we could try to model the environment
accurately using knowledge and formula in physics. However,
since the smart space can be a home, office or factory, they
may differ greatly in their environments. It is hard to use one
or few formulas to cover all conditions. At the other extreme,
we could set every sensor attribute to be constraint-free and
check every combination of their values at any time, but this
may cause excessive false alarms that annoy users because some
combinations may never happen in the real world.

To strike a middle ground between the two extremes, we
propose a practical approach to handle environmental changes in
SAFECHAIN by focusing on possible changes in the near future.
Specifically, for each sensor attribute ai ∈ AR of a secure device,
we try to predict a window window(ai) ⊆ possible(ai) in which
this attribute will reside during a period of time, and after the
period has elapsed, we repeat the prediction process and verify the
rules again. For example, the temperature is expected to be be-
tween 23 and 33 Celsius degrees tomorrow, based on the weather
forecast. To ensure that no attacks will occur tomorrow, there is no
need to check values outside this window (unless the thermometer
is assumed to be hacked). A similar assumption can be made for
the GPS sensor in a smart car, because the car movement obeys the
laws of physics and cannot move faster than a certain speed. For
sensors without known constraints on their attribute values (e.g.,
an occupancy sensor), we enumerate all possible conditions in

the future, i.e. window(ai) = possible(ai).
In addition, to alleviate the impact of inaccurate prediction,

SAFECHAIN will monitor the sensing data and immediately
recheck and re-predict if the prediction is violated. In our imple-
mentation, the prediction window is derived from a fixed width
for each sensor attribute and can be adjusted with respect to
users’ tolerance to false alarms. It can also be improved by using
techniques such as machine learning.
Adversary. Given the vulnerability databases, SAFECHAIN uses
AV UL ⊆ A to denote the attribute set of vulnerable devices. Any
attribute in AV UL can be monitored or modified by an attacker at
any time.

An attacker can be either active or passive. A passive attacker
gathers information about compromised devices over time and
tries to infer information about secure devices, while an active
attacker reports bogus information to trigger automation rules. We
use a special attribute attack, which can be either ACTIVE or
PASSIVE at a time, to represent the chosen strategy.

The whole smart space is then modeled as a finite state
machine, which is a tuple FSM ≡ (S,−→, I) where S is a
set of states, −→⊆ S × S is a transition relation, and I ⊆ S is a
set of initial states.

A state s ∈ S is an N -tuple (a1, a2, . . . aN ), where ai ∈
A are the attributes of all installed devices. We use the notation
s(ai) to represent the value of ai in s. Set S consists of all the
possible states in the smart space while set I contains only one
state representing the current status. The next possible state s′

from state s can be affected by automation rules, environment, and
the adversary simultaneously. Formally for state s, the transition
relation (s, s′) ∈−→ exists if for any ai ∈ A,

s′(ai)

 ∈ possible(ai) if ai ∈ AV UL and s′(attack) = ACTIVE
∈ window(ai) if ai ∈ AR

= assignk(ai) if boolk(s) = TRUE for some rule rk
= s(ai) otherwise.

 .

The first condition corresponds to the case when the attacker
actively controls the devices so that the vulnerable attributes can
be set to any possible value. The second condition limits the
environment attributes to remain in our predicted values, and the
third defines the effects of automation rules. In addition to what is
discussed, the status of devices will remain unchanged.

5.3 Verification
In this subsection, we explain the formats of security policies for
privilege escalation and privacy leakage, and how such policies are
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Fig. 4: Example of privacy leakage. Different PRIVATE values
(green) lead to different PUBLIC values (red) after some transi-
tions.

translated into FSM’s properties that can be verified using model
checking tools. We envision that (1) our system has a set of pre-
installed general security policies written by experts, and (2) users
can modify or create their own policies, and share their policies to
a public dataset. We note that even if sophisticated users can write
their own security policies, it may still be challenging for them to
manually check all possible interactions between devices.

Privilege escalation. A security policy defines the expected be-
haviors of devices, and can be represented by conditions that either
must be or must not be satisfied. They are stated in the form of
“device1 is (not) state1 and/or device2 is (not) state2 and/or
...”. To improve usability, users only need to select the values of
devicei, statei as well as the logical connective (and, or, not), and
SAFECHAIN will then convert it into LTL or CTL. For example,
AG(lock = LOCKED ∨ camera = ON) = AG¬(lock =
UNLOCKED ∧ camera = OFF) in CTL expresses that the
policy “smart lock is unlocked but surveillance camera is off”
should not happen.

Privacy leakage. The privacy policy defines the level of confi-
dentiality for each device, which can be expressed by assigning a
label (PRIVATE, PUBLIC, or OTHER) to each attribute.

A device attribute labeled as PRIVATE indicates that the
attribute contains confidential information and should be protected
from an attacker’s observation, while the PUBLIC label indicates
that an attacker may end up observing the attribute through hack-
ing or some local observations (e.g., lights can be observed from
outside at night). We propose the OTHER label for those attributes
that are neither confidential (PRIVATE) nor vulnerable (PUBLIC)
from the user’s perspectives (i.e., user does not care about the
information leakage). Although the OTHER class complicates the
analysis process and cannot be handled by prior methods [25],

occupancy: FALSE
temperature: 25

occupancy: TRUE
temperature: 25

(a) Original FSM

occupancy’: FALSE
temperature’: 25

occupancy’: TRUE
temperature’: 25

(b) Cloned FSM

occupancy: FALSE
temperature: 25

occupancy’: FALSE
temperature’: 25

occupancy: FALSE
temperature: 25
occupancy’: TRUE
temperature’: 25

occupancy: TRUE
temperature: 25

occupancy’: FALSE
temperature’: 25

occupancy: TRUE
temperature: 25
occupancy’: TRUE
temperature’: 25

(c) Product FSM

Fig. 5: Example of a product machine. The initial states are
shaded. On the product FSM, two parallel traces of the original
FSM can be viewed as a single trace, which makes our privacy
policy expressible in LTL/CTL.

[27], [42], it allows us to accurately model real-world settings.
In the motivating example, the attribute occupancy, which

indicates whether someone is home, is considered private. How-
ever, as shown in Figure 4, attackers can infer the actual value of
this PRIVATE attribute (colored in green) at time T by observing
the PUBLIC attributes (colored in red) at time T + 2, because
different values of the PRIVATE attribute trigger different automa-
tion rules and eventually lead to different values of the PUBLIC
attributes. That is, if the value of light2 is ON, the value of
occupancy should be TRUE. Otherwise, it should be FALSE.

Inspired by this observation, we want to ensure that any two
states that are only different in PRIVATE attributes in the same
environmental changes should stay indistinguishable from the
adversary’s perspective at any future time. That is, the values of the
PUBLIC attributes should stay the same between these two traces
at any moment. If not, the adversary can tell the two traces apart
and infer the values of PRIVATE attributes. The environmental
changes should be equivalent in both traces because attackers can
only observe the change in real life.

Formally, SAFECHAIN defines security against privacy leak-
age as follows:

∀s0, s′0 ∈ S, t > 0{
s0 =PUBLIC,OTHER s′0
st(ai) = s′t(ai) ∀ai ∈ AR

=⇒ st =PUBLIC s′t,

where =PUBLIC and =PUBLIC,OTHER stand for the equiv-
alence over PUBLIC only and PUBLIC and OTHER attributes,
respectively.

Hence, to check whether a PRIVATE attribute can be leaked,
we can modify the PRIVATE attribute and see if the trace is
altered from the attacker’s perspective. Nonetheless, these kinds of
properties cannot be expressed in ordinary LTL or CTL because
it requires pairwise comparison between two traces of the finite
state machine.

To overcome this challenge, we construct a product machine
as follows. We first build an almost equivalent copy of the original
FSM, and their differences reside in the PRIVATE values of the
initial states. For example, suppose the original FSM is Figure 5a,
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then the copy one named CLONE would be Figure 5b. (Shaded
states are the initial states.) Formally, CLONE ≡ (S,−→, I ′),
and I ′ = {s′|s′ =L,O s,∀s′ ∈ S, s ∈ I}. Then, the states
of product machine PM are Cartesian products of the states of
the two state machines, as in Figure 5c. The initial state is the
state that consists of the initial states of original and cloned FSM.
The transitions can be seen as the union of the transitions from
both machines. That is, PM ≡ (S × S,−→′, I × I ′), where
−→′= {((si, sj), (s′i, s′j))|(si, sj) ∈−→ ∧(s′i, s′j) ∈−→}.

We also add constraints to ensure that the original and cloned
machines undergo the same environmental changes. To this end,
the problem is reduced to whether the product machine can
arrive at a state where its two internal states are different in the
PUBLIC attributes, which is a reachability problem and can be
expressed in ordinary LTL or CTL. Although building a product
machine increases the state space8, our evaluation shows that the
verification can still be efficiently performed with our optimization
techniques.

Our product FSM construction is similar to the self-
composition approach proposed by Gilles et al. [27]. However, it is
unclear whether their program-execution-based non-interference
definition can model the event-driven scenarios in trigger-action
programming. In addition, SAFECHAIN avoids the additional cost
of transforming a program to a state machine because the security
properties of trigger-action programming can be directly defined
over a transition system instead of a program.

5.4 Optimization
To enable timely verification, SAFECHAIN’s optimization com-
ponent aims to simplify the input (a model of a smart space) by
removing redundant attribute values, rules, and devices. As the
input to the model checker is reduced, the verification process can
be accelerated.

We explain in detail how SAFECHAIN reduces the size of the
problem by grouping attribute values that always cause the same
effects, and by pruning devices and rules irrelevant to the security
policy.

Generally speaking, our practice shares the same spirit with
common techniques to address state explosion (e.g. grouping
equivalences). However, thanks to the simple structure of trigger-
action programs, we can effectively address the state explosion
problem in model checking using static code analysis. We first
obtain high-level program semantics using static analysis, and then
efficiently construct an abstraction of the state-transition system
without spurious counterexamples; thus, no further refinement is
needed [23]. In addition, as our application scenarios consider
non-technical users who specify their own rules and security
policies, we further consider optimizations for simple security
polices (in contrast to complex ones with temporal qualifiers).
Grouping. In trigger-action programming, two attribute values can
be considered equivalent if they always trigger the same actions,
regardless of the other attributes. Hence, we can reduce the number
of states needed to be considered by grouping equivalent values
into subgroups (or meta-values) and then rewrite the automation
rules using the new meta-values. Algorithm 1 shows the pseudo-
code. First, we collect all constraints from the rules (Lines 2-
9) and the policy (Lines 10-13). Then, the acquired constraints
are sorted for each attribute, which is used to classify possible

8. If the original state machine is O(2N ), then the product machine will
become O(2N ) ∗O(2N ) = O(4N ), where N is the number of attributes.

TABLE 3: Grouping of variables. Given a set of rules, values
of variables are grouped together if they trigger same actions,
reducing the number of states to be considered in FSM.

Attributes Possible values Constraints Grouped values

light1 ON, OFF light1 = OFF ON, OFF
light1← OFF

camera ON, OFF camera = ON ON, OFF

location 0, ..., 10* location = 0 0,OTHERS
location 6= 0

lock
LOCKED

lock = LOCKED LOCKED
UNLOCKED UNLOCKED

occupancy TRUE, FALSE occupancy = TRUE TRUE, FALSE
occupancy = FALSE

tv ON, OFF tv = ON ON, OFF
tv = OFF

light2 ON, OFF light2← ON ON, OFF
light2← OFF

fan ON, OFF ALL
ac ON, OFF ALL

temperature 23, ..., 33*
temperature ≥ 28 26..27,28..31
temperature ≥ 32 32..33
temperature ≤ 25 23..25

* Short-lived windows for location and temperature are [0, 10] and [23, 33]
respectively.

TABLE 4: Rule rewriting. Rules in Table 2 are rewritten w.r.t. the
grouped values in Table 3.

Rule Trigger Action

R10
Temperature is a little high Turn on the fan
temperature = 28..31

fan← ALL∨temperature = 32..33

R11 Temperature is high Turn on the air conditioner
temperature = 32..33 ac← ALL

R12 Temperature is low Turn off the fan
Turn off the air conditioner

temperature = 23..25 fan← ALL, ac← ALL

values into meta-values (Lines 14-18). Here, we build a map
to convert between meta-values and original values. Finally, we
translate rules to equivalencies by looking up the map (Lines 19-
24). Overall, sorting the acquired constraints for each attribute
takes most of the time, and the number of possible constraints
is proportional to the number of rules. For a single attribute,
the maximum number of constraints is O(kM), where k is the
maximum number of constraints in a rule and M is the number
of rules. Hence, the time complexity is O(kMN log kM), where
N is the number of attributes.

Table 3 and Table 4 show the meta-values and rewritten
rules after the grouping method is applied to the example in
§3.2, respectively. The temperature values ≤ 25 are considered
equivalent because they all trigger rule R12. The possible values
of the attribute temperature are divided into four subgroups,
thereby the number of states is reduced to four. In rule R10, the
trigger temperature ≥ 28 is converted to temperature =
28..31 ∨ temperature = 32..33 and action fan ← ON is
the same as fan ← ALL because its value does not affect the
execution of any rules.

Note that constraints in policies should also be taken into
consideration as they will also affect the grouping results.

Pruning. While grouping reduces the number of possible values
of an attribute, pruning aims to reduce the number of attributes
needed to be considered because not every device can influence
the state of another device. For instance, to check this CTL
specification AG¬(lock = UNLOCKED ∧ camera = OFF)
in the example in §3.2, we only need to consider devices in the
front door because all the devices inside the house have no impact
(via the automation rule) on the smart lock and the surveillance
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Algorithm 1: Grouping
Data:
A is a list of attributes
R is a list of rules
P is the policy to be verified
Result: AGrouped, RGrouped

1 begin
2 constraints = Dictionary(List);
3 for ri ∈ R do
4 trigger ← GetTrigger(ri);
5 for constraint ∈ trigger do
6 ai ← GetTarget(constraint);
7 constraints[ai].append(constraint);
8 end for
9 end for

10 for constraint ∈ P do
11 ai ← GetTarget(constraint);
12 constraints[ai].append(constraint);
13 end for
14 for ai ∈ A do
15 values← Sorted(constraints[ai]);
16 aGrouped

i ← GroupAttribute(ai, values);
17 AGrouped.append(aGrouped

i );
18 end for
19 for ri ∈ R do
20 booli ← GetEqualTrigger(AGrouped, ri);
21 assigni ← GetEqualAction(AGrouped, ri);
22 rGrouped

i ←MakeRule(booli, assigni);
23 RGrouped.append(rGrouped

i );
24 end for
25 end

camera.
Algorithm 2 shows the pseudo-code for pruning. To prune

irrelevant devices, we represent the relationship between devices
by building a dependency graph (Lines 2-14), in which each vertex
represents an attribute, and a directed edge from one vertex to
another represents one attribute being able to affect the other.
After building a dependency graph, we back-trace from interesting
attributes (that are involved in the security policy) to find relevant
devices (Lines 15-26). Building the dependency graph takes most
of the time and requires adding edges between trigger attributes
and action attributes. The worst-case scenario is that both the
trigger and action contain all attributes for each rule. Thus, the
time complexity is O(MN2), where M and N are the number of
rules and attributes, respectively.

Figure 6 illustrates the dependency graph of the example
in §3.2. For each rule, we check the dependency between the
involved devices. For example, in rule R1, the attributes light1
and camera are affected by the attribute location. Thus,
on the dependency graph, we add two directed edges from
location to light1 and camera respectively, and label
these two edges with rule R1 to track their relationship. During
backtracking, we start from the interesting attributes (e.g., lock
and camera in the policy AG¬(lock = UNLOCKED ∧
camera = OFF)) and find all connected vertices (i.e., relevant
attributes) and connected edges (i.e., relevant rules).

In privacy leakage, the vulnerable devices observable by at-
tackers are interesting attributes, such as light1, light2 and
location in the example in §3.2. We further accelerate the veri-
fication of privacy leakage by filtering out PUBLIC attributes that
are unreachable from any PRIVATE attribute on the dependency
graph, because there is no leak if the PRIVATE attributes have no
impact on the PUBLIC attributes. If any PUBLIC attribute can
be reached, we back-trace from those reachable PUBLIC vertices.
Hence, we can perform the verification with only three attributes
after back-tracing from light2 in the example in §3.2.

light1 camera

loc
ation

lock

occup
ancy

tv

fan
tempe
rature

ac light2

R1
R1

R2

R3
R4

R5

R6 R7

R8 R9

R10
R12

R11
R12

Fig. 6: Dependency graph for privilege escalation. The vertices
represent attributes and the edges represent rules. Only attributes
which involved in the security policy (in black) and their depen-
dencies (in grey) need to be considered in the verification process.

Algorithm 2: Pruning
Data:
A is a list of attributes
R is a list of rules
P is the policy to be verified
Result: ARelated, RRelated

1 begin
2 graph← Graph();
3 for ai ∈ A do
4 graph.addNode(ai);
5 end for
6 for ri ∈ R do
7 bool attributes← GetTriggerAttributes(ri);
8 assign attributes← GetActionAttributes(ri);
9 for aj ∈ bool attributes do

10 for ak ∈ assign attributes do
11 graph.addEdge(aj , ak, ri);
12 end for
13 end for
14 end for
15 unexplored nodes← GetAssociatedAttributes(Policy);
16 while unexplored nodes 6= ∅ do
17 a← unexplored nodes.pop();
18 ARelated.add(a);
19 for neighbor ∈ graph.neighbors(a) do
20 if neighbor /∈ ARelated then
21 unexplored nodes.add(neighbor);
22 end if
23 r ← graph.getEdgeMark(a, neighbor);
24 RRelated.add(r);
25 end for
26 end while
27 end

5.5 Mitigation
Ideally, if one could fix every vulnerable device immediately,
the attacker would be unable to increase the attack surface by
exploiting automation rules. However, patching in a timely manner
is challenging, and devices may also have zero-day vulnerabilities.
Hence, in this work, we discuss mitigations that can be achieved
by updating automation rules, which include removing or mod-
ifying exploitable ones with users’ consent. The question then
becomes which to remove or how to modify them.

A straightforward approach is to put every rule involved in
the identified attacks into a watchlist, and request confirmation
from the user whenever a watchlisted rule is about to be executed.
Although this can indeed prevent attacks, it undermines the con-
venience of this system.

To reduce the level of inconvenience, we would like to add
as few rules to the watchlist as possible. For each attack chain,
it is sufficient to stop the attack by blocking at least one rule in
the chain. Also, one rule can appear in multiple attack chains.
Therefore, one possible approach is to first determine all the



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2899758, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X 2018 10

TABLE 5: Comparison between SAFECHAIN and related work. O:
supported; X: not supported; 4: inaccurate; ♦: can be extended.

Properties SAFECHAIN
Milijana
et al. [42] SIFT [31] Salus [30]

Consider attacks O O X* X*

Detect privacy leakage O 4 X X
Detect privilege escalation O X ♦ ♦
Detect integrity attack ♦ 4 X X
Consider device states O X O O

Analysis technique Model
checking

Information
flow

Symbolic
execution

Model
checking

Verification Speed Fast Very fast Slow Slow
* focuses on the reliability problem (i.e. policy validation or conflict detection) in trigger-

action programming.

attack chains, then apply some optimization techniques or greedy
strategies to minimize the blocked rules.

Nonetheless, the question remains of how to effectively fig-
ure out all the attack traces, because model-checking tools like
NuSMV report only one counterexample at a time. It is also
unclear what the selection algorithm would be like. We will leave
these problems for future research. On the other hand, Salus [30]
proposed a solution that first parameterizes trigger conditions,
and then finds a feasible configuration using model checking.
However, such an approach also suffers from usability problems,
because Salus needs user permission to accept or reject each set
of feasible parameters one by one, and there may be multiple sets
of feasible parameters.

6 EVALUATION AND IMPLEMENTATION

We evaluate SAFECHAIN’s security and performance using analyt-
ical comparisons (§6.1) and experiments (§6.3-6.4) on a prototype
implementation described in §6.2.

6.1 Security comparison

We compare SAFECHAIN with closely related work [30], [31],
[42] and the results are summarized in Table 5. The integrity
attack is the opposite of the privacy leakage attack; devices with
attributes labeled PRIVATE should not be affected by vulnerable
devices.

To identify potential integrity and privacy violations in au-
tomation rules, Milijana et al. [42] define information flow lattices
and check if information can flow from a more restricted trigger
to a less restricted action. However, as their work focuses on static
analysis on automation rules and does not consider the actual
attribute values, their method cannot detect whether the system
will enter an unauthorized state in the future (privilege escalation).
Also, static analysis may produce false positives when detecting
privacy leakage, since the actual values of devices are omitted.

As shown in Table 6, R3 will raise a false alarm because
the information is propagated from restricted to public, when in
reality, it will never be triggered since the volume will always
be higher than 0. Another example is R4. Whether it will leak
information depends on the parameters. If the second condition
is set to volume ≤ 100, then the attacker cannot derive in-
formation about the volume value by monitoring the status of
the LED. Hence, the location of this user will not be disclosed.
We label both actions as public, because information can be
leaked not only from publicly-observable devices but also from
vulnerable devices, whose information can be directly accessed by
the attacker. For example, some smart bands have been reported

TABLE 6: Rules for case study. R3 will raise a false alarm in static
analysis because the volume is always greater than or equal to 50
at runtime and will never trigger R3.

Rule Trigger Action

R1 User is at home (private) Set the volume (restricted)
location = HOME volume← 50

R2 User is outside (private) Set the volume (restricted)
location 6= HOME volume← 100

R3 Any phone call missed with low volume (restricted) Set band to vibrate (public)
missed_call = TRUE ∧ volume ≤ 0 band_vibration← TRUE

R4 Any phone call missed with low volume (restricted) Blink the band LED (public)
missed_call = TRUE ∧ volume ≤ 50 band_led← BLINK

with vulnerabilities [24]. Once attackers break into a device, its
information is considered public.

SIFT [31] and Salus [30] are designed to help users debug
trigger-action rules by verifying whether the devices’ interaction
(through automation rules) meets users’ expectations. Since they
focus on reliability rather than security, their techniques cannot
be directly applied to detect attacks exploiting automation, but
may be extended to check privilege escalation to some extent.
Using symbolic execution for automated analysis, SIFT [31] starts
by transforming automation rules into IF statements in C#, and
wrap all the rules in a while loop. Each policy specified by the
users is then encoded as an assertion and will be checked by Pex,
an automated whitebox testing tool for .NET. However, they only
unroll the while loop for a fixed number of steps (k), and thus may
have false negatives for violations occurring after k steps. The
subsequent work, Salus [30], adopts model-checking techniques
as we do. However, it is unclear whether Salus can handle the
growing complexity in IoT, since their experiments show that the
time needed for verification increases exponentially after irrelevant
devices are installed. Thus, with respect to performance, Salus can
be seen as a baseline approach without optimizations.

On the contrary, SAFECHAIN is designed to detect privilege
escalation and privacy leakage. It can be easily extended to detect
integrity attacks by observing whether the values of the PRIVATE
attributes change when the values of the PUBLIC attributes are
altered. In addition, SAFECHAIN takes advantage of formal model
checking, which provides stronger guarantees of reducing false
negatives, and supports rule-aware optimizations to accelerate
verification.

6.2 Implementation
To demonstrate the practicality of our lightweight system, we built
a smart home testbed and an Android application as shown in Fig-
ure 7. The major components, an IoT gateway and SAFECHAIN,
reside in a Raspberry Pi 2B board.

We implement an IoT gateway to provide similar function-
alities as existing service providers. Our system is built on top
of the Kura framework [4], which is a Java/OSGi-based platform
for building IoT gateways. We add several customized control
messages to enable communication between devices and protocols
like MQTT and CoAP. To simulate a smart space, we implement
several IoT devices, such as fan, camera, temperature sensor and
smart door using Arduino Yun, Raspberry Pi and Banana Pi
boards. After devices are connected to the IoT gateway, they can
share messages with each other.

Users can utilize our Android application to monitor, control
and manage these devices. Similar to existing home automation
services, trigger-action rules can also be added using Boolean
function and assignments to enable automation. Our system will
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Fig. 7: Proof-of-concept implementation

query devices’ status regularly, apply satisfied automation rules
and update their status in the application. To check which automa-
tion rules should be applied, we use the Javaluator library [10],
which is a powerful infix expression evaluator for Java.

As discussed in §6.3, the security policies shown in Figure 7b
can be set up by experts, modified by users, or selected from a
public database, and SAFECHAIN will convert them into LTL or
CTL for verification. The results are shown in our application and
alarms will be popped out to request user confirmations when
vulnerable automation rules are going to be executed, as shown in
Figures 7c and 7d.
User interaction model. We describe how users interact with our
system in a step-by-step manner. We assume a standalone app
that pulls information about devices and automation rules from an
existing automation platform (e.g., IFTTT). A similar procedure
can be described when our system is integrated with an existing
automation platform.

1) A user installs our app, which comes with default security
policies maintained by experts. The user can also modify
or write customized policies, as shown in Fig. 7b.

2) Our app runs in the background and periodically retrieves
the most recent set of automation rules from the linked
automation platform, and performs security checks ac-
cording the specified security policies.

3) When the app detects a violated security policy, a pop-up
warning is displayed, recommending the user to review
the rule set. When the user clicks the warning or opens
our app, the user can see detailed information about the
attack trace of the violation, as shown in Fig. 7c.

4) If the vulnerable rule is triggered before the user fixes it,
an alert will be displayed to request the user’s explicit
consent to execute the corresponding action, as shown
in Fig. 7d. This feature may require permissions to
modify the data stored in the automation platform, such
as temporarily disabling the action of the vulnerable rule.

6.3 Performance Evaluation
Based on the implementation, we conducted a large-scale per-
formance evaluation using a real dataset as described below. In

each run of the experiment, we randomly sampled N out of
the 4,161 rules we encoded and generate security polices with
respect to these sampled rules to simulate different use scenarios.
SAFECHAIN can work with most model checkers; to compare
with previous work [30], we use the open-sourced model checker,
NuSMV, as our backend tool.

Dataset. We selected 42 IoT-related channels from a real dataset
containing 313 channels and 295,155 IFTTT rules [44]. We man-
ually modeled these selected channels and obtained 190 attributes
and 4,161 rules. The selected channels are listed in Appendix A
and the encoded data are available online [1]. The total state space
is roughly 2650.

Privilege escalation. Recall that security concerns will be trans-
formed into LTL or CTL to check whether the automation
rules will be exploited. To test the worst-case performance of
SAFECHAIN, we randomly build an always-TRUE specification,
such that every reachable state should be visited for verification:
G(ai = v ∨ ai 6= v), where ai ∈ A and v ∈ possible(ai) are
both randomly chosen. We randomly select a vulnerable attribute
to simulate attacks, and each data point on the figure represents the
average of 200 experiment runs. We set a timeout of 30 minutes
(1,800 seconds) for each run.

Figure 8a shows the verification time (in a logarithmic scale)
with and without our optimization techniques. Without optimiza-
tion, the time needed for verification increases exponentially with
the number of rules. With optimization, SAFECHAIN can verify
300 rules in less than one second. Due to space limitations, we
omit similar results of using CTL specifications.

Figure 8b shows the processing time breakdown of optimiza-
tion. Pruning and grouping are the time needed to perform respec-
tive optimizations. Checking time represents how long NuSMV
takes to return its results. Parsing time represents the time needed
to generate input files for NuSMV and analyze its outputs. The
time needed for grouping and pruning only slightly increases as
the number of rules increases.

We now evaluate the effects of different numbers of security
policy attributes and vulnerable attributes, and the result is shown
in the heatmap in Figure 8c. In the heatmap, the execution
time is represented by colors; a darker color represents a shorter
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Fig. 8: Performance evaluation for privilege escalation in LTL

execution time. We fix the number of automation rules to 500 and
randomly select one attribute as vulnerable. As shown, increasing
vulnerable attributes does not greatly affect SAFECHAIN’s perfor-
mance, because vulnerable attributes irrelevant to policy attributes
are pruned. Also, as the number of policy attributes increases,
the verification time increases slightly. The results suggest that
SAFECHAIN is fast enough to support complex security policies.

Privacy leakage. Recall that users can specify what kinds of
information are deemed confidential and check whether they will
be leaked to any vulnerable attributes. To evaluate the worst-case
performance, our evaluation uses INV AR(aFSM

i = aCLONE
i )

specification for verification, where aFSM
i and aCLONE

i repre-
sent the PUBLIC attributes ai ∈ A in the original and cloned
machines, respectively. The keyword INV AR is a specialized
keyword provided by NuSMV to check invariance conditions.
Each time the experiment is repeated, we randomly mark an
attribute as PRIVATE and another attribute as PUBLIC.

Figure 9a shows the results with and without our optimization.
Figure 9b shows the comparison between our optimization and
Bounded Model Checking [21] implemented by NuSMV, and
Figure 9c summarizes how much time is spent during each step.
As shown in these figures, time needed for verifying privacy
leakage grows much faster than privilege escalation because we
use two finite state machines to achieve pairwise comparisons.
Nonetheless, these results prove that SAFECHAIN is still efficient
enough to detect attacks in time.

Figure 9d shows SAFECHAIN’s performance with respect to
different numbers of marked attributes. The execution time is visu-
alized by colors, and a darker color represents a shorter execution
time. The experiment setup is the same as privilege escalation.
We fix the number of automation rules to 500, randomly choose
different numbers of PRIVATE and PUBLIC attributes, and take
the average over 1,000 experiments.

The figure shows that the increase of only PUBLIC or
PRIVATE attributes has little impact on the performance of
SAFECHAIN, because those irrelevant attributes are pruned
through optimizations. On the other hand, as the number of both
PRIVATE and PUBLIC attributes increases, the probability of
dependency between attributes boosts, and thus fewer attributes
can be pruned. Further, since we built a product machine for
pairwise comparisons of traces, the more attributes left, the longer
time needed for verification. In this case, SAFECHAIN can still

verify 500 automation rules within five seconds and outperform
the baseline without optimizations.

6.4 Accuracy Evaluation

We evaluate attack detection accuracy of the verification part only.
That is, we assume the devices considered vulnerable are indeed
compromised, and the environment models are accurate. Also, for
simplicity, we let window(ai) = possible(ai).

Dataset. Our synthetic dataset shares the same channels and
attributes with those used in §6.3. In the dataset, the original
triggers and actions are removed, and one trigger and one action
are added for each attribute. The trigger is in the form of ai = X
and the action is ai ← Y . Both X and Y are configurable
parameters.

For each attack class, we conduct two experiments. These
two experiments are designed to ensure that the ground truth is
known, such that we can correctly identify false positives and
false negatives.

The first one is to evaluate the false negative rate of our
system. We first construct an attack chain R1, R2, . . . Rl of length
l randomly, where l is an integer chosen between 2 and 8. If the
action of Ri is “ai ← X”, then the trigger of Ri+1 will be
“ai = X”. We also add another 50 rules, of which the triggers
and actions are randomly chosen.

The second experiment compares SAFECHAIN with previous
work [42] that uses static analysis to show that our system can
avoid false positives in static analysis. The attack chain is similar
to that of the one in the first experiment. The only difference
is that, if action of Ri is “ai ← X”, then the trigger of Ri+1

will be “ai = Y ” and “X 6= Y .” We expect previous work to
consider such a chain to be exploitable, since they statically label
triggers and actions without considering user-supplied arguments
or attribute values. Note that in this experiment we did not add
additional rules to avoid accidentally forming another attack chain.

We run each experiment 1,000 times, and the results and detail
configurations (e.g., security policies) are described below.

Privilege Escalation We mark the attributes associated with the
trigger of R1 as vulnerable, and the security policy is the negation
of Rl’s action. Rules that are not on the chain are added with care,
so that the last action can only be triggered through the chain.
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Fig. 9: Performance evaluation for privacy leakage

The results are as expected. SAFECHAIN reported the attack
traces for all the test cases in the first experiment and verified all
test cases as secure in the second experiment.

Privacy Leakage. We label the attribute associated with the
trigger of R1 as PRIVATE, and the attribute associated with the
action of Rl as PUBLIC. Other attributes are all labeled OTHER.

For the first experiment, SAFECHAIN detects the attack chain
in all 1,000 test cases, which implies that there is no false negative
in our system. For every test case in the second experiment, our
system also reported no attack chain.

The experimental result demonstrates that SAFECHAIN has no
false negative as long as we have an accurate model. It also shows
that our approach outperforms static analysis in specific cases, as
we take runtime values into account.

7 DISCUSSION AND LIMITATIONS

In this section, we discuss several research directions to further
improve SAFECHAIN.

Adversary with partial information. To achieve a high level
of security, SAFECHAIN assumes a strong attacker who knows
all of the automation rules specified by users, and thus can also
defend against a weaker attacker who knows only a subset of the
rules. An interesting future direction is to gauge an automation
system’s level of security based on how much information the
attacker needs to launch a successful attack; it can be considered
secure if the attacker is required to know more than a threshold
number (e.g., 100) of automation rules.

Relaxing privacy notions. In this paper, we consider a relatively
strict definition of privacy leakage: any two states which are
indistinguishable by attackers should stay indistinguishable in the
future. By satisfying this definition, one can prevent high-valued
attributes from leaking any information to low-valued variables.
This definition is relatively strict because it does not quantify the
amount of information leakage and thus cannot differentiate a 1-
bit leak from a 100-bit leak, despite the fact that the latter is worse
than the former. One interesting research direction is to consider
an analogy of an anonymity set, and quantify the level of privacy
based on the number of indistinguishable traces on the finite state
machine. We leave it as future work to develop and evaluate such
relaxed definitions of privacy.

Environment modeling. In addition to explicit dependencies
introduced by automation rules, there are implicit dependencies

enabled by proximity and environmental changes, which can
also chain automation rules together. For example, the rule “if
the temperature is too low, turn on the heater” seems to be
unrelated to the rule “if the temperature is high enough, open the
window”. However, there might be a hidden relation, “turning on
the heater will increase the temperature”, which is not explicitly
specified in the automation rules, but links the above two rules
together. Another example is that switching on bulbs can trigger
light sensors in the same room but not in other rooms. Lacking
information about such implicit dependencies may cause false
alarms and undetected attacks due to missing transitions in the
finite state machine.

Building an accurate environment model is challenging even
with extensive domain knowledge. SAFECHAIN tries to mitigate
this by focusing on the most likely scenarios in the near future and
frequently re-calibrating based on the current environment state.
Moreover, while it is impossible to fully model an environment,
SAFECHAIN can benefit from additional information that helps
reconstruct missing transitions. For example, additional informa-
tion (e.g., the location of each device, and implicit relationships
between attributes) can be provided by the users or automatically
discovered by machine learning.

False positives and false negatives. Because each counterex-
ample reported by the model checker is indeed a feasible attack
trace with respect to the model, our scheme should have no false
positives in the ideal case. However, whether the attack can really
be conducted in the real world depends on how accurately we
model the environment. For example, if an attack can only happen
when the temperature is 100 degrees Celsius, then it is very likely
to be a false positive in the real world.

Inaccurate modeling can also cause false negatives. One ex-
ample is when a possible state does not show up in the model,
and the other is missing transitions, such as the case of implicit
dependencies discussed in the previous paragraph.

Another explanation for false negatives is when the model
checker runs out of time. This rarely happens after optimization is
performed, as our experiment results show.

Tuning the re-checking interval. Because an environment is non-
trivial to model, we decided to re-verify the automation rules as
the environment changes: We first predict how the environment
will evolve during a short period of time, and then verify the
automation rules with respect to this prediction to make sure
attacks cannot be successful momentarily. After the prediction
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expires, we make another round of prediction and verification
again. Because a shorter interval indicates a more accurate en-
vironment model, a rule of thumb is setting the interval to be the
maximum time required to perform verification, which is about 1s
in our implementation. This interval can be dynamically adjusted
according to the verification speed.

Selecting vulnerable devices. Using the vulnerability database
is one approach to determine the devices that are likely to be
vulnerable, which is one of the inputs to our system. There are
other approaches to achieve this as well. For example, users
can manually select devices that require high level of protection,
and our system can evaluate whether they may be attacked by
assuming that the other devices are vulnerable.

Because the adversary’s goal is to control an uncompromised
device or leak data from an uncompromised device using automa-
tion rules, it is reasonable to consider cases where some devices
are vulnerable and some are not. It is outside the scope of this
work to consider an attacker that controls all devices, because this
attacker succeeds immediately even without trigger-action rules.

Limitations. The security of our system largely depends on ex-
ternal sources such as the environment modeling, security policies
and the list of vulnerable devices. The reported 100% accuracy
in the evaluation sections means the system will never violate the
given security policies. However, whether these policies cover all
the security aspects are outside the scope of our system.

8 RELATED WORK

The most closely related studies are discussed in §6.1. This section
reviews other related work.

End-user programming. Ur et al. [43], [44] investigated the prac-
ticality of end-user programming in the trigger-action paradigm
(“if trigger, then action”) and collected 224,590 rules shared
publicly on IFTTT. We borrowed their dataset for our large-scale
evaluation. Mi et al. [36] conducted an empirical characterization
of IFTTT, including its ecosystem, usage and performance. They
ran a self-implemented IFTTT service in order to demystify the
interaction between a partner service and IFTTT engine. Their
results show that the current implementation of IFTTT uses a
polling method for triggering, which justifies our assumption in
§4.2.

Securing service provider. DTAP [26] explored the over-privilege
problem in the IFTTT platform and found that 83% of examined
channels lack the support of fine-grained scoping, and 75% of the
tokens are granted more access than required to support triggers
and actions. DTAP then proposed a decentralized trigger-action
platform that prevents over-privileged service providers by using
transfer tokens. DTAP addresses an orthogonal problem, and thus
can be directly combined with our system to further enhance the
overall security of automation platforms.

Intention mismatching. Huang and Cakmak [28] investigated
common inconsistencies human users exhibit when interpreting
and creating trigger-action rules. Their results confirm the need to
verify whether the actual behaviors of user-generated rules match
their high-level intentions. By analyzing corresponding actions,
TrigGen [37] automatically suggests missing triggers in trigger-
action rules that are composed incorrectly by users. Instead of
fixing incorrect rules due to mismatched user intention, our work
focuses on identifying rules that might be exploited when devices
are compromised.

Conflict resolution. Ma et al. [33] proposed a watchdog archi-
tecture for detecting and resolving rule conflicts in the context
of smart cities based on simulation. In addition to achieving
conflict detection and resolution, CityGuard [32] further allows
one to specify safety requirements for a city. These work focus
on improving reliability and thus do not consider the presence of
adversaries.

SCADA and IoT. Cárdenas et al. [22] studied the security
issues in process control and SCADA systems and proposed to
detect stealthy attacks by incorporating the knowledge of physical
systems. They built a linear model that captures the nature of
the physical system and detect attacks using change detection
algorithms. However, building a precise model for every physi-
cal system is impractical. Hence, our work aims to model and
verify the environment as it changes. To compare different attack
detection approaches under different experiment settings, Urbina
et al. [45] proposed a new metric to quantify attack detection
algorithms and found that stateful detection methods outperform
stateless ones.

ContexIoT [29] enhances IoT applications with context-
dependent access control capabilities. ContexIoT checks whether
an action can be executed based on the current context and asks
the user to decide if the context is unclear. ContexIoT focuses
on runtime enforcement; our work is a prevention system that
eliminates potential threats before they are executed.

ProvThings [46] provides data provenance to diagnose the
trace and root cause of behavior. However, data provenance is
useful only in forensic analysis after an attack. While ProvThings
can be extended to support dynamic policy enforcement based on
the provenance of system events, which will notify a user when a
possible attack occurs, SAFECHAIN can detect an attack before it
actually happens and prevent it by removing vulnerable rules.

Temporal logics. Dimitrova et al. [25] proposed SecLTL and
SecCTL to incorporate information flow properties into tempo-
ral logics. These proposed logics suppose a new hide operator,
which can be applied to define privacy on a finite state machine.
SAFECHAIN adopts a similar definition but also incorporates
temporal constraints in the context of smart spaces. Since our
definition can be viewed as a special case of the previous one,
we can express our problem using ordinary LTL and CTL logics
by building a product machine.

9 CONCLUSION

Finding the right balance between convenience and security has
been a longstanding battle, and SAFECHAIN is the first attempt
to ease this tension in IoT trigger-action programming. By trans-
forming this programming into a model-checking problem and
formulating the security vulnerabilities into finite state machines,
SAFECHAIN identifies vulnerabilities among automation rules.
To overcome the growing complexity between IoT devices and
automation rules, SAFECHAIN adopts pruning and grouping to
ignore irrelevant devices and combine equivalent states. We an-
ticipate that SAFECHAIN takes a step towards securing custom
automation rules in IoT for its further advancement.
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APPENDIX A
SUMMARY OF IOT CHANNELS USED

Table 7 summarizes the IoT channels used in our experiment.

APPENDIX B
DATASET COLLECTED FROM A REAL HOUSEHOLD

We analyzed a real dataset provided by a smart home owner.
The house contains 85 connected devices, including one car, three
alarms, one camera, one energy meter, 24 light bulbs, nine motion
sensors, nine contact sensors, two smartphones, two presence
sensors, 18 switches, four thermostats, six water sensors and five
weather stations. These devices are inter-connected through about
70 automation rules. Some rules are designed for security, such
as “if a guest arrives, turn on camera” and “if nobody is at home
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TABLE 7: 42 IoT Channels Used in the Experiment

Smart phone Android Battery, Android Device, Android Loca-
tion, Android Phone Call, Android Photos, An-
droid Wear, AppZapp, Boxcar 2, Phone Call, Qual-
ityTime

Wearable device Lifelog, Nike+
Smart car Automatic, Dash, Mojio

Security Camera Camio, Manything
Door Garageio, HomeControl Flex

Appliances

Smart button Bttn, Flic, Qblinks Qmote
Oven GE Appliances Cooking
Water heater GE Appliances GeoSpring
Gardening GreenIQ, Parrot Flower Power
Printer HP Printing
Light bulb LIFX, Lutron Caseta Wireless, ORBneXt, Philips

Hue
Sensors Nest Protect, Netatmo Weather Station
Air conditioner Nest Thermostat
Switch WeMo Insight Switch
Virtual assistant Amazon Alexa

Embedded system Adafruit
Web services Boxoh Package Tracking, ESPN, Instapush, Is It

Christmas?, Printhug

and any motion has been detected in the room, make siren sound.”
Some are designed for convenience and power saving, such as
“turn off the power strip when someone is not at home.” The
interaction between devices can be too complex to be reasoned
manually.

This dataset demonstrated that the devices used in our ex-
periments are similar to those being used in a real smart home.
For example, one of the most important categories are the safety
and security related devices, such as cameras, door locks, home
controls and smoke sensors. We also covered the most common
sensors and actuators such as thermostats, weather stations, light
bulbs and switches.

Upon analyzing the rules in the dataset, we found some poten-
tial attack chains that can be exploited for privilege escalation. For
instance, there is one rule “if any family member arrives home,
switch to HOME mode,” and another rule “if mode transition to
HOME, disarm security cameras.” By compromising the presence
sensor, which might be less secure, the attacker can create an
illusion of someone arrives home and finally disarm the cameras.
Furthermore, when the mode is switched to HOME, many alarms
are also disabled, for example, the rule “if a door is open, make
siren sound and send me a message” is executed only when current
mode is not HOME. This concludes that it is easy to form attack
chains, especially when the number of rules is large, and attack
chains pose threats to real-world smart home owners.

APPENDIX C
FEASIBILITY OF EXAMPLE RULES USED IN THIS
WORK

To verify the feasibility of the example rules used in this work,
we ran a user study. We first extracted rules in Table 1 and
Table 2, and removed highly similar rules (n = 17, hereafter:
Group SAFECHAIN). To mix them with an equal number of rules
sampled from the IFTTT website (Group Reference), we then used
the devices shown in Figure 1 (e.g., smart lock) as keywords to
collect the first 15 rules displayed on the returned page for each
device. After eliminating duplicates and highly similar rules (e.g.,
same rules for different brands) from the obtained 90 rules, we
randomly sampled 17 rules and created a survey with 34 rules in
total (n = 17 for Group SAFECHAIN and Group Reference each).
There were no overlapping rules in these two groups.

We created a question for each rule, and the question asked a
participant to rate his/her willingness to use the rule in a Likert
scale from 1 (totally disagree) to 5 (totally agree). The rules were
displayed in a randomized order to avoid the sequential effect.

We recruited 108 participants who have prior experience with
IFTTT rules using Amazon Mechanical Turk. The survey took
approximately 10 minutes and we paid $2.00 for all participants.
After eliminating those who did not have sufficient background
knowledge on IFTTT rules, we eventually obtained 79 valid
responses. Most participants (66, 83.5%) reported to own 1-
5 smart home devices, 9 (11.4%) reported to own 6-10 smart
home devices, and 4 (4.7%) participants reported to own 11-20
devices. Among the 79 valid responses, the top three popular
devices are smart TV (n=36, 45.6%), smart thermostat (n=16,
20.3%), and smart speaker (n=11, 13.92%). The most popular
hubs are Amazon Alexa (47 out of 79) Google assistant (25
out of 79), and Samsung SmartThings (22 out of 79). 19% of
the participants reported themselves to be extremely experienced
and 53.2% report somewhat experienced with IFTTT. In terms of
participant demographics, 36.7% of the participants are females,
and the majority of the participants are between ages 25 and
34 (54.4%, n=43) and between ages 35 and 44 (24.1%, n=19).
38%, 22.8% and 15.2% of the 79 participants reported to hold
a highest degree in bachelor degree, master degree, and some
college, respectively.

Based on their responses, we examined the willingness level of
individual users as well as combinations of users. We used a T-test
to check if these two groups of rules have significant mean differ-
ence, and we found some significant difference (t(78) = −6.04,
p < .0001). This result suggests that users are more willing to
use the rules in Group Reference than Group SAFECHAIN, which
is reasonable because Group SAFECHAIN intentionally includes
potential attack chains for demonstration purposes. Based on this
result, we are unable to show that people may adopt the rules
in Group SAFECHAIN in practice. Hence, we performed further
analysis and found that 78.5%, 45.6%, 67.7% and 70.9% of
participants are willing (with a Likert score of 3 or higher) to
use the four chained rules in Table 1, respectively. This result
shows that a large percentage of users may adopt rules that lead to
unintentional chained effects in practice.

In addition, IFTTT rules may be created by multiple users that
share the same living/working space. To check the willingness to
use with multiple users (say a 3-person family), we enumerated
all possible combinations of three participants and examined their
aggregated willingness by taking the maximum (out of the three)
of the Likert scale values. We found that 78% of the combinations
of the 3 participants would be willing (with a Likert score of 3 or
higher) to use all the rules in Group SAFECHAIN, while 91% of
the combinations of the three participants will be willing to use
all the rules in Group Reference. In short, this user study results
imply that while the rules in Group SAFECHAIN are less appealing
than Group Reference to individual users, the likelihood of three
or more users in a group to use all the rules in Group SAFECHAIN

remains high, implying the practicality of these rules for the real-
world scenarios.


