
IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 6, DECEMBER 2018 5155

GROUPIT: Lightweight Group Key Management
for Dynamic IoT Environments

Yi-Hsuan Kung and Hsu-Chun Hsiao , Graduate Student Member, IEEE

Abstract—With the proliferation of Internet of Things (IoT)
devices that collect sensitive data, access control is more cru-
cial than ever to safeguard IoT data from unauthorized use.
To enforce access control policies without trusted online entity,
one promising approach is to maintain a group key shared
between a device and its current subscribers, such that the
device can encrypt its data and only the subscribers can decrypt
it. However, prior group key management (GKM) schemes fail
to efficiently address new challenges introduced by the mas-
sive scale of IoT devices, dynamic memberships of users, and
changes in the number of devices. This paper explores efficient
GKM to accommodate multiple devices (in addition to multiple
users) and to handle frequent membership and device number
changes. Inspired by the observation that devices with similar
functionalities often have similar access permissions, we propose
a two-tier GKM architecture called GROUPIT, in which each
device is assigned to one of many predefined groups, and key
management is performed within each group as well as between
groups to improve efficiency. Despite being conceptually simple,
GROUPIT addresses technical challenges including: 1) preventing
a malicious device from obtaining extra information about other
devices in the same group and 2) ensuring forward/backward
secrecy and preventing collusion attacks when gluing two existing
GKMs together. The probability of a successful collusion attack
quickly drops to 0.3% after five membership changes even in a
small device group (e.g., 8). This paper provides both theoretical
analysis and a proof-of-concept implementation based on Alljoyn,
an opensource IoT communication framework to demonstrate the
feasibility of GROUPIT.

Index Terms—Dynamic membership, group key management
(GKM), Internet of Things (IoT), multiple devices and owners.

I. INTRODUCTION

INTERNET-OF-THINGS (IoT) devices are gradually
becoming a large part of people’s daily lives. IoT devices

are network-connected physical devices with a variety of forms
and functionalities; one important functionality being data col-
lection. Devices such as motion sensors, heartbeat sensors and
IP cameras collect sensitive data with privacy concerns. Most
IoT devices have limited computational power, preventing
them from efficiently performing cryptographic operations.

Manuscript received March 2, 2018; revised May 16, 2018; accepted
May 17, 2018. Date of publication May 24, 2018; date of current version
January 16, 2019. This work was supported in part by the Taiwan Information
Security Center, Academia Sinica, and in part by the Ministry of Science
and Technology of Taiwan under Grant MOST 106-3114-E-011-003 and
Grant 107-2636-E-002-005. (Corresponding author: Hsu-Chun Hsiao.)

The authors are with the Department of Computer Science and
Information Engineering, National Taiwan University, Taipei 106, Taiwan
(e-mail: r04922019@ntu.edu.tw; hchsiao@csie.ntu.edu.tw).

Digital Object Identifier 10.1109/JIOT.2018.2840321

Moreover, users often fail to conduct proper setup (e.g., chang-
ing default passwords), thus making IoT devices vulnerable to
attacks.

Attacks targeting IoT devices are on the rise. Mirai mal-
ware [1], for example, compromised tens of thousands of IoT
devices using only 61 username–password pairs. These attacks
pose severe threats not only to cyber security but also human
safety, because data collected by IoT devices are often more
sensitive and private than traditional machines.

To safeguard IoT data from unauthorized access, one
promising approach is to maintain a group key shared between
a device and its current subscribers, such that the device can
encrypt its data and only the subscribers can decrypt them.
Such encryption-based access control is favorable in IoT, as
it requires no online trusted entity and can work with the
publish-subscribe messaging model, such as MQTT [5]. In
other words, the larger problem of enforcing access control is
reduced to the problem of group key management (GKM),
including key issuance, updates, and revocation. Although
GKM is well-studied in traditional settings [9], [15], efficient
GKM in dynamic IoT environments1 remains an unsolved
challenge. In this paper, the term dynamic refers to the
varying membership changes between users and devices. A
straightforward solution that runs one GKM instance for each
device suffers from linear overhead, which is unsatisfactory
considering the scale of IoT. Existing GKM schemes that
attempt to efficiently accommodate multiple devices cannot
be efficiently updated when the number of devices changes
dynamically [16]. In addition, since many IoT devices have
limited resources, existing schemes that heavily rely on
asymmetric cryptography (e.g., attribute-based encryption) are
unsuitable.

This paper explores lightweight GKM for dynamic IoT envi-
ronments. Consider the following scenario. A hotel uses key
cards to control guests’ access permissions in different rooms
and to control the usage of different facilities according to
room classes. Whenever a guest checks in or out, or new equip-
ment is installed in some facilities, the hotel control center
needs to update the shared keys among the users and devices.
When a guest checks out and the room becomes vacant, the
devices inside the room should stop sending the room’s infor-
mation and receiving information from other devices. One
naive solution here is that each device constructs its own GKM

1In a dynamic IoT environment, both users and devices can join or leave the
system at any moment, the number of users and devices can potentially be high
(namely, hundreds of users and devices in the region), and the memberships
(which user subscribes to which device) can vary over time.

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9592-6911

5156 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 6, DECEMBER 2018

structure and handles its subscribers, which is nevertheless
inefficient regarding storage and transmission costs.

To support a large number of IoT devices, as well as fre-
quent membership and device number changes at a minimum
cost, we propose GROUPIT, a two-tier GKM architecture in
which similar devices are grouped together for improved effi-
ciency. This architecture is inspired by the observation that
devices with similar functionalities often have similar access
permissions [13].2 Thus, users can subscribe to groups of
devices, rather than one at a time, without sacrificing much
flexibility. A major technical challenge of this architecture is to
ensure that devices in the same group own individual secrets,
such that a device cannot access other devices’ data in the same
group without authorization. In our construction, each device
in the same group can encrypt data by deriving its own device
key based on a shared traffic encryption key in the group, while
newly subscribed users can also generate the same device keys
after a secure update procedure. Note that the concept of this
two-tier GKM architecture can be flexibly applied to combine
other existing GKM schemes. In this paper, we describe in
detail the combination of logical key hierarchy (LKH) [9] and
a CRT-based scheme [16], because their combination is easy
to understand and yields good performance.

Our analysis shows that the proposed method can provide
data security in a dynamic environment with a decent update
overhead compared with existing methods. When there are
16 users subscribing to 50 devices, our method reduces a
user’s key storage overhead to 29% when all devices are
grouped together, 30.3% when they are divided into four
groups (according to security-based categorization proposed
by Kim et al. [13]), and 33% when divided into ten groups
compared with the traditional LKH scheme. Compared with
the master key encryption (MKE) GKM scheme, we also elim-
inate users’ large computational overhead induced when the
number of devices changes from O(m) to O(1), where m is
the total number of devices. Also, we demonstrate the feasi-
bility of our proposed method in our implementation based
on Alljoyn, an open source IoT framework designed for data
transmission.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the important back-
ground mechanics used in our method, including LKH for
efficient key management, and the Chinese remainder theorem
(CRT) for managing multiple groups.

A. Logical Key Hierarchy

Since an IoT device can be subscribed to by multiple
users, it would be more efficient if the device and all its
users shared a group key for encryption. The group key also
needs to be efficiently updated when new users join or old
users leave to ensure forward and backward secrecy [14].

2The devices can be partitioned based on device functionalities or user
habits, because devices with similar functionalities often have similar access
permissions [13]. GROUPIT can flexibly adapt to any grouping methods. For
example, devices’ accessibility can be grouped based on whether they requires
owner presence. Another way is to limit users’ accessibility level so that they
cannot gain access to critical devices related to security and privacy.

Rafaeli and Hutchison [18] provided a thorough survey of
GKM schemes. One of the most common is LKH [9], which
represents users as leaf nodes in a tree structure. The LKH
structure reduces communication costs by associating multiple
key-encryption keys with each user. The update communica-
tion requires O(logn) multicasts for n users.

1) LKH Structure: In LKH, users are located at the leaf
nodes of a tree. All users share a group key GK, located at
the root node of the tree. Each user has a unique secret key
shared with a central control center called a key distribution
center (KDC). Each internal node in the tree is associated with
a key encryption key (KEK), known by the users in the leaf
nodes of the subtree rooted at the internal node. KEKs are
used later to efficiently update group keys. In a complete tree
with n users, each user stores log2 n + 1 keys. For example,
consider a tree of seven users in Fig. 1(a); user 1 has its secret
key U1, group key GK, and KEKs K14 and K12.

2) User Join: When a new user joins the group, the
KDC first establishes a shared key with the user. To add
the user into the key tree, the KDC needs to update the
group key and KEKs along the path from the new user’s
node to the root. The KDC sends the updated keys encrypted
by the shared key to the new user, and sends the modified
KEKs encrypted using other keys to the rest of the users,
if necessary.

Consider the scenario in Fig. 1(b). When user eight joins
the group, KDC performs a key exchange procedure with the
new user, establishing a secret key U8. To ensure backward
secrecy, KDC needs to change the group key and KEKs that
reside on the path from the root to the node of user 8. KDC
then unicasts necessary KEKs and the new group key GK′ to
user 8, and unicasts the new k78 to user 7. To update the group
key for other existing members in the tree, KDC can multicast
the message to subgroups of the tree encrypted by their shared
KEKs. Specifically:

1) KDC multicasts K58 encrypted with K56 to U5 and U6;
2) KDC multicasts K58 encrypted with K78 to U7;
3) KDC multicasts GK′ encrypted with K14 to U1 to U4;
4) KDC multicasts GK′ encrypted with K58 to U5 to U7.
3) User Leave: When a user leaves the group, the KDC

needs to update the group key, as well as the KEKs related
to the leaving user, and send them to other existing users. In
Fig. 1(c), when user four leaves the group, the KDC needs
to change the group key to GK′′ and update the KEKs that
belonged to user 4.

B. Key Management Based on the Chinese
Remainder Theorem

Although each device can individually manage its group key
using LKH, the overhead grows linearly with the number of
devices. For example, when a user subscribes to m devices,
the user needs to store and maintain m sets of keys including
KEKs, secret keys, and group keys. If there are multiple users
subscribing to the same m devices, there will be m GKM trees
with identical users. When a user unsubscribes to all devices
and leaves the system, all devices need to update their tree
structures and remaining users need to update m sets of keys

KUNG AND HSIAO: GroupIt 5157

(a) (b) (c)

Fig. 1. LKH GKM. (a) LKH group with seven users. (b) LKH group when U8 joins. (c) LKH group when U4 leaves.

that have the same update procedure but with different key
values.

Here, we describe a key management scheme leveraging the
CRT. This allows multiple decryption keys to decrypt the same
message encrypted by an encryption key [16].

The main idea of a CRT-based GKM is to generate one mas-
ter key and several slave keys, such that the message encrypted
by the master key can be decrypted by all legitimate slave keys.
For example, consider there are n public/private slave key pairs
ei, di, i ≤ n with pi, qi being the ith prime number pair, and
one master key pair eM , dM . For simplicity, we now consider
the modulus of the prime pairs φ(piqi) = (p−1)× (q−1) are
mutually prime to each other. For a plaintext P and a ciphertext
C, the master key should satisfy

PeM ≡ Pei (mod piqi) CdM ≡ Cdi (mod piqi).

The sufficient condition for the equation above, according to
Euler’s theorem, is

eM ≡ ei (mod φ(piqi)) dM ≡ di (mod φ(piqi)).

Since we consider each modulus mutually prime to each other,
eM has a solution similar to finding the solution of the system
of congruences.

We first calculate Nj, which is the product of φ(pjqj), j ≤
n, j �= i. We can find integers Mj and mj such that

Mj × Nj + mj × φ(pjqj) = 1.

Then the key value should be

eM =
n∑

i=1

ei × Mi × Ni.

When eM is divided by φ(pjqj), only ejMjNj remains since all
other terms are multiples of φ(pjqj)

eM ≡ ejMjNj

≡ ej
(
MjNj + mjφ

(
pjqj

)) − ejmjφ
(
pjqj

)

≡ ej (mod φ
(
pjqj

)
).

An advantage of this CRT-based scheme is that if one of
the slave keys needs to be changed to e′

j, d′
j (e.g., the cor-

responding member has left the group), the master key can be
recalculated without needing to update other slave keys

e′
M = eM − ej × Mj × Nj + e′

j × Mj × Nj.

This changes one slave key while other unchanged slave
keys remain valid. However, to change the number of slave
keys, we need to generate a new prime pair pn+1, qn+1,
which φ(pn+1qn+1) needs to be mutually prime to all other

φ(piqi), i ≤ n. As for master key calculation, all Ni and Mi

need to be recalculated, which is a O(n) overhead. Hence, the
CRT-based scheme is extremely inefficient when the number
of devices changes frequently.

C. Key Derivation Function

A key derivation function derives one or more keys of
a given size from a secret value. In our proposed method,
we leverage a one-way cryptographic function such as SHA-
256 [8] to derive keys, such that it is infeasible to obtain secret
values from the derived keys.

D. Related Work

Extensive work has been done regarding secure and efficient
GKM in IoT and senor networks. Zhang and Varadharajan [25]
surveyed several key distribution schemes in wireless sen-
sor networks. Roman et al. [19] analyzed how existing key
management used in actual Internet scenarios can be applied
to IoT, and analyzed the applicability of link-layer oriented
key management systems. LKH [9] and one way function
tree [4] are two efficient GKM schemes. However, because
ill-implemented OFT suffers from collusion attacks [10] and
OFT increases devices’ computational overhead for obtaining
group keys, it is far from ideal in an IoT environment, where
the devices may have limited computational power. We lever-
age LKH as the skeleton of our proposed method and try to
accommodate multiple devices.

Tsai et al. [21] proposed a lightweight symmetric key estab-
lishment based on the Kronecker product. In our proposed
method, we further consider the key update when users or
devices join and leave the system to ensure forward and back-
ward secrecy. Abdmeziem et al. [3] developed a decentralized
batch-based GKM in which devices are divided into subgroups
to reduce key update overhead and to mitigate the single point
of failure issue. Veltri et al. [22] reduced membership change
overhead by partitioning time into fixed-length intervals, and
handles rekeying acts based on time intervals. Our proposed
method further considers that users may join multiple groups
at the same time.

Asymmetric encryption mechanisms are also used in key
management schemes [20], [23]. Porambage et al. [17]
provided group key establishment protocols for multicast
communication by leveraging elliptic curve cryptographic
(ECC) operations suitable for resource-constrained devices.
Our method takes advantage of the CRT-based construction
proposed by Park et al. [16] to accommodate multiple device
groups. However, Park et al. did not consider dynamic device

5158 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 6, DECEMBER 2018

Fig. 2. System model.

groups, and members of device groups also needing to update
their keys efficiently. In this paper, we propose an efficient
key management scheme on the device side as well. We also
propose an ID update method to mitigate possible collusion
attacks.

Attribute-based encryption [6], [7], [12] can be used to sup-
port fine-grained access control. However, because attribute-
based encryption heavily relies on asymmetric cryptography, it
is unsuitable to run on resource-constrained IoT devices [24].
In addition, its high revocation overhead makes it unsuitable
for dynamic IoT environments.

III. PROBLEM DEFINITION

This paper aims to develop a GKM scheme that can effi-
ciently accommodate dynamic membership and device number
changes. Before presenting our solution, we introduce the
system model and attacker model.

A. System Model

Fig. 2 illustrates a typical smart home or smart city environ-
ment consisting of IoT sensor devices publishing data, users
subscribing to data, a broker that stores and forwards data, and
a KDC managing keys that are used to control access to the
data. The broker is online and untrusted, whereas the KDC is
offline and trusted.

A sensor device, such as a door opening sensor or IP cam-
era, collects data and sends it to its subscribers. A user can
be a device owner with legitimate and permanent control of
the device or a guest user who has limited access to the
device. A user can also be a sensor or actuator, which receives
information from other devices. This last class of users usu-
ally possesses limited computational power and storage space.
To collect and distribute the information generated by sensor
devices, and to send commands or notifications to actuators
and users, a centralized controller called a broker or gateway
is often needed as a communication bridge between users and
devices.

Combined with the gateway or working as an independent
component, the KDC is designed to generate, manage, and
provide necessary encryption keys to users and devices. We
assume that the KDC can establish a one-time secure channel
between users and devices, which can be used to authenticate

and configure a newly joined user/device (e.g., by installing a
shared secret key).

1) Dynamic Membership and Device Changes: Both the
number of users and the number of devices can change over
time. That is, a user can join or leave and a device can be
installed in or removed from the system at any given time.
In addition, membership—the set of devices a user subscribes
to—can also change.

B. Attacker Model

The attacker’s goal is to access device data without proper
permission. The attacker can either be an outsider, who has no
access to any devices, or an insider attempting to expand the
access scope, such as trying to decrypt data generated before
or after the authorized time period. The attacker can also be
a compromised device that attempts to gain access to data
that are unknown to it. To do so, the attacker can either try
to derive encryption keys (e.g., exploiting a vulnerable key
generation procedure) or collude with devices in the system
so as to derive keys that they cannot obtain individually.

C. System’s Requirements

1) Accommodate Multiple Dynamic Users and Devices: To
support dynamic IoT environments, a GKM scheme should
be able to manage multiple devices as well as multiple users.
Moreover, devices can also join and leave the system at any
moment. To ensure data security, the system should achieve
forward and backward secrecy. Forward secrecy means that
future keys cannot be obtained by former group members, and
backward secrecy means a new user cannot obtain group keys
that were used before he or she joined.

2) Minimize Update Overhead: To achieve forward and
backward secrecy, the encryption keys and KEKs might need
to change when users and devices join or leave the system.
We want to minimize the length of update messages and the
message sending time.

IV. PROPOSED SCHEME: GROUPIT

In this section, we introduce our method and explain how
it handles membership and device number changes. Table I is
a summary of notations used in our construction.

A. Overview

GROUPIT is a two-tier GKM architecture, where the upper
and lower tiers are responsible for key management between
groups and within groups, respectively. Specifically, users and
devices are both partitioned into the following groups.

1) Device Groups: GROUPIT establishes a fixed number of
device groups based on different functionalities, security
levels, etc. When a new device joins the system, it is
assigned to exactly one of the device groups.

2) User Groups: Given M device groups, GROUPIT estab-
lishes 2M − 1 user groups. Each user is assigned to
exactly one of the user groups based on the device
groups he subscribes to.

Each device group and user group runs a GKM scheme (e.g.,
LKH) to efficiently handle key updates that take place when

KUNG AND HSIAO: GroupIt 5159

(a) (b) (c)

Fig. 3. Initial structure overview. (a) Three device groups and seven user groups. Structure inside (b) DG1, (c) SG2, and (d) SG5.

TABLE I
SUMMARY OF NOTATIONS USED IN OUR CONSTRUCTION

there are membership changes inside the group. The upper
tier of GROUPIT is used to avoid unnecessary communication
overhead when KDC needs to update multiple user groups.

After the system is constructed, KDC is in charge of man-
aging key updates when the membership or device number
changes. The GKM schemes used in two levels can be freely
chosen from existing GKM methods to meet different needs
as long as the whole structure guarantees forward/backward
secrecy of transmitted data and device keys; meaning, the
information can be obtained only by legitimate users. Different
GKM schemes also lead to different overhead tradeoffs. In our
proposed method described below, we adopt LKH (mentioned
in Section II) for GKM within user and device groups, and
using MKE GKM based on CRT for KDC to communicate
with multiple user groups.

B. Construction

1) Initialization: The GROUPIT architecture consists of
three components: 1) KDC; 2) device groups; and 3) user
groups. Multiple device groups are established and each
accommodates devices with similar attributes. Considering all
combinations to which device groups users may subscribe,
user groups are constructed and each user is assigned to one
of the user groups according to its membership status. KDC
generates secret keys for each user and device, group keys for
each user and device group, device ID for each device, traffic
encryption keys and KEKs to handle key updates.

Algorithm 1 Message Sending When User i Joins Group SGx

1: KDC
user i−−−−→ : Ui.

2: KDC
broadcast−−−−−−→ All : “devices to which new user subscribes and old users subscribing

to them should update TEK′ = h(TEK)”
3: KDC → {SGx − user i} : updated KEK′ encrypted by either secret keys or shared

KEK.
4: KDC → user i : (SK, TEK′, IDs)Ui

As shown in Fig. 3, devices are grouped into three dif-
ferent groups, and each user is assigned to one of the
seven user groups, according to the different device groups
they subscribed to. KDC calculates the master key MK and
slave keys SKx, for x < 2M = N for each user group,
which are LKH structures for users with SKx as the root
node. Also, for each device group, KDC constructs an LKH
tree management structure with a group key GKy as the
root.

As shown in Fig. 3(b), device group 1 contains three
devices. Each device has its own ID ID1j, unknown to other
devices, and encryption key DK1j = h(TEK1|ID1j), 1 ≤ j ≤ 3
which is used to encrypt the data they transmit. In addition,
to efficiently communicate with KDC and update encryption
keys, the devices also need to store the root group key GK1
and necessary KEKs (KEKd1 for devices 1 and 2).

As shown in Fig. 3(c) and (d), users 1 and 2 both subscribe
to device groups 1 and 2, and users 3–5 subscribe to device
group 1 and 3. All users establish a shared secret key Ui with
KDC, and they have TEK of the device groups they subscribe
to, which are TEK1 and TEK2 for users 1 and 2, and TEK1
and TEK3 for users 3–5. They can compute device keys of
each device in the group with the device IDs. Users also need
to store KEKs on the path from their node to the user group
root for updating purposes.

2) On User Joining Group x: Consider the update proce-
dure described in Algorithm 1.

KDC: The KDC first establishes a shared secret key Ui

with the newly joined user. Second, the KDC can broadcast a
notification to other existing users in the group, and other user
groups which subscribe to the same device groups, to update
their TEKs. The newly joined user cannot deduct the old TEK.
Then, the KDC updates the LKH structure of user group x and
send the necessary KEKs, new TEKs, and device IDs to the
new user through unicast.

Users: Existing users who subscribe to the same device
groups with the new user have to update their group keys,
which will be TEK′

y = h(TEKy). The newly joined user, upon

5160 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 6, DECEMBER 2018

(a) (b) (c) (d)

Fig. 4. Example of structure update for user join/leave events. (a) Structure when U6 joins. (b) Structure inside SG2 when U6 joins. (c) Structure when U4
leaves. (d) Structure inside SG5 when U4 leaves.

Algorithm 2 Key Update When User i Leaves Group SGx

1: KDC → SGx : SK′ encrypted by KEK or secret keys

2: KDC
broadcast−−−−−−→ All : ((TEK′

i |update methods)MK′)TEKi
3: KDC → device group : (TEK′)DK
4: KDC → devices : random numbers for updating IDs encrypted by KEK or secret

keys.

receiving Ui and encrypted information sent by KDC, can
calculate device keys.

Devices: The devices, upon receiving the notification,
update their own encryption key DK′

yj = h(TEK′
y|IDyj), where

TEK′
y = h(TEKy). In Fig. 4(a), when user six joins the system

and subscribes to device groups DG1 and DG2, KDC needs
to establish a secure transmission channel, give a secret key
U6 to the user, and assign the user to user group SG2. Then,
KDC needs to broadcast an update notification to devices and
existing users to change their TEK for device groups 1 and 2,
which are TEK′

1 = h(TEK1), TEK′
2 = h(TEK2). The structure

of user group SG2 needs to be reconstructed since a new user
has joined. New necessary KEK is sent to existing users. In
this case, KEK3 is sent to U1 and U2, encrypted by U1 and U2
separately. KDC then sends necessary KEKs encrypted by U6
to user 6, which is SK2 in this case, and unicasts new TEKs
along with IDs for all devices in the groups encrypted with
U6 to user 6.

3) On User Leaving: Consider the update procedure
described in Algorithm 2.

KDC: The KDC generates a new user group key SK′
x for

the group being left, and generates a new master key MK′
accordingly. KDC sends the updated SK′

x encrypted with KEKs
or users’ secret keys to the remaining users in SGx. The KDC
then broadcast the newly generated group key via encrypted
message ((TEK′

i |update methods)MK′)TEKi , which only users
with old TEKi and a valid SK can decrypt.

Remaining Users: The remaining users decrypt the message
and calculate new device keys DK′

yj = h(TEK′
y|ID′

yj).
Devices: Devices in the groups that are being left need to

change their device keys. To prevent a leaving user from lever-
aging the old ID and obtaining additional data, the ID needs
to be updated as well. The new TEK′

y and ID update method
is sent by KDC.

In Fig. 4(c) and (d), when user 4 leaves user group
5, the tree structure in the group reconstructs, and the
node representing user 3 moves up to the position of
its former parent node. Users 3 and 5 both receive
the broadcasted message ((TEK′′

1 |updatemethods)MK′)TEK′
1
,

Algorithm 3 Key Update When Device j Joins Group DGy

1: KDC → device j : (Dj) IDyj

2: KDC
∗−→ All : old devices need to update group key GK′

y = h(GKy)

3: KDC → devices : updated KEK′ encrypted by either secret keys or shared KEK
4: KDC → usergroups : ID of the new device encrypted by TEK.

((TEK′
3|updatemethods)MK′)TEK3 . They then can decrypt the

message and update the device keys, and so can the users in
user groups that subscribe to either DG1 and DG3. Before we
discuss the update method for device IDs, we briefly describe
a potential collusion attack that may be performed by a leav-
ing user and a malicious device controlled or compromised by
the leaving user.

a) Collusion attack: To compute every device key, the
user has every ID of each device in the group. If the ID does
not update when a user leaves the group, the user can try and
collude with a device which has new TEK but does not have
other devices’ IDs. Together, they can combine their knowl-
edge to obtain other devices’ new device keys. To prevent this
kind of attack, an ID update for every user leaving event is
necessary. However, it would cause a huge overhead if the IDs
are individually generated and sent to each device and user.
We would like to make users and devices update the IDs them-
selves by sending shorter messages, while retaining a certain
degree of diversity for the updates between devices.

The update method for device IDs is explained below. This
method is randomly generated by KDC and may vary between
each device; the KDC may choose log(my) random numbers
and choose one device as a pivot. Similar to the tree partition
when updating group keys, the KDC sends log(my) multicast,
each containing a unique random number, to the devices like
the pivot device is leaving the group. As shown in Fig. 5(a),
device 3 is chosen as the pivot, so KDC partitions the tree
the same way as when device 3 is leaving the group. This
means devices 1 and 2 are sharing the same update number
encrypted with KEKd1, and device 3 gets another update num-
ber encrypted by secret key D3. Fig. 5(b) shows another way
to partition, where device 2 is chosen as the pivot. Then, all
three devices receive different update numbers encrypted by
their secret keys Dj. The devices update their own IDs with
the number

ID′
yj = h

(
IDyj|number

)
. (1)

4) On Device Joining: Consider the update procedure
described in Algorithm 3.

KUNG AND HSIAO: GroupIt 5161

(a) (b)

Fig. 5. How KDC distributes update methods to devices. (a) Update method
in DG1 if D3 is chosen as the pivot. (b) Update method in DG1 if D2 is
chosen as the pivot.

(a) (b)

Fig. 6. Examples of structure update for device join/leave. (a) When D4
joins DG1. (b) When D2 leaves DG1.

Algorithm 4 Key Update When Device j Leaves Group DGy

1: KDC
broadcast−−−−−−→ All : “leaving device j is no longer available”

2: KDC → DGy : updated GK′ and KEK′s.

KDC: The KDC generates a unique device ID for the newly
joined device that joins device group DGy, and also shares a
secret key with it. The KDC updates the necessary part of the
LKH in which the device resides, notifies the existing devices
to update the group key, then sends the KEKs, newly updated
group key GK′

y, IDyj and TEKy to the device through unicast.
KDC also needs to notify the users that a new device is joining
the group and sends the ID to them.

Devices: Existing devices update the group key GK′
y =

h(GKy). The newly joined device calculates its own device
key DKyj = h(TEKy|IDyj).

Users: Users that subscribe to a device group get notified
by KDC that there is a new device joining the group, and they
can calculate the device key with the IDyj sent by the KDC
encrypted by the user group key SK.

In Fig. 6(a), when device 4 joins the system and is assigned
to device group 1, the KDC notifies existing users to update
GK1 to GK′

1. Next, KDC establishes a shared secret key D4
with device 4. KDC then sends necessary information TEK1,
GK′

1, KEK(d2) to device 4 encrypted with D4, and sends
KEK(d2) to device 3.

5) On Device Leaving: As Algorithm 4 describes, when a
device leaves the group, the KDC rearranges the tree struc-
ture in the group and sends an updated group key GK to the
remaining devices. Then, the KDC broadcasts a message to
notify the users that the leaving device is no longer available.
In Fig. 6(b), when D2 leaves the group, KDC generates a new
device group key GK′′

1 and sends it to D1, D3, and D4. Then,

KDC notifies the users who subscribe to device group 1 that
D2 is no longer a valid device.

V. IMPLEMENTATION

To demonstrate feasibility and applicability, we imple-
ment our proposed method based on Alljoyn, an open-source
framework for IoT devices and applications to discover and
communicate with each other. First, we briefly describe the
concept and how devices and users communicate in the
Alljoyn framework. Then we describe our implementation
layout and implemented components.

Alljoyn uses an event-and-action mechanism to support
communication between devices and applications. A device
can emit messages or receive information from other devices
or applications to trigger actions. To advertise a message, a
device can use either an announcement or a known ID to
announce and discover each other. For example, a server can
announce itself by sending a signal including a session port,
device name, supporting language, etc. A client then discov-
ers the signal, learns the information about the server, and
subscribes to its signal. Alljoyn’s framework is applicable
to a wide range of data collection and distribution scenar-
ios, including smart home appliances. In previous studies, it
has been shown that users tend to categorize devices into
a fixed number of groups based on devices’ security lev-
els [13], which is a suitable application scenario to put our
proposed architecture into practice. Our implementation uses
near field communication (NFC) [11] as a means of a one-time
secure channel, which is used to distribute a secret shared key
between a user and the KDC. Attackers cannot obtain a legit-
imate key if they cannot reach the NFC-range of the KDC.
To simulate the computational power of resource-constrained
devices, we execute our program on Linux virtual machines.
An AES-256 encryption on a 64-byte block takes 720 ns, while
a ECC-224 decryption takes about 84300 ns, and a SHA-256
function on a 64-byte block takes 600 ns. The ECC operation
is the most energy-consuming step in the proposed method,
and has been supported by other studies [17] that the overhead
is tolerable for resource-constrained devices.

In the implementation, we create device simulators to sim-
ulate different types of devices generating various messages.
We have a centralized server in charge of receiving messages
from message providers and sending messages to subscribers.
For example, the server first establishes a service name called
alljoyn.temperature. A user application can search for the
name and subscribe to it; a smart thermometer can also send
a message to the alljoyn.temperature object and change the
value. Once the value is changed, the server sends a message
to the subscribed clients. The implementation is to ensure the
sent message is encrypted and can only be decrypted by the
corresponding sender and the receiver. For easy demonstra-
tion, the KDC is built inside the server such that the updated
key can be sent from the server to the client and the device.
In practice, the KDC can be an individual entity apart from
the server, such that the server will be unable to obtain the
decrypted information.

5162 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 6, DECEMBER 2018

To implement the concept of device groups, devices in the
same group can subscribe to a common service name. For
instance, both a smart lock and a smart camera can send their
messages to alljoyn.security. They can append their device
name to the encrypted messages they generate. Once the mes-
sage is received by the clients, they can parse the messages
and decrypt them based on the appended device names.

VI. ANALYSIS

In this section, we discuss the overhead of our proposed
method in different aspects (storage, computation, and com-
munication) and compare with existing methods. We also
discuss the probability of collusion of the ID update method
we proposed above for devices in the same group.

Without losing generality, we assume that IoT devices and
users are equally distributed in each device group and sub-
group, and the LKH structures are all balanced binary trees. In
the next sections, we discuss the overhead of users in subgroup
SGx, and devices in DGy.

A. Storage Overhead

Users need to store gx ∗ my IDs, one secret key, gx TEKs,
and log(nx) KEKs including SK. Devices stores their own IDs
and the secret keys with the server, one TEK, one GK, and
log(my) KEKs.

B. Computation Overhead

1) When User Leaves Subgroup x: Devices need to do one
symmetric decryption, hash-update their own IDs and gain the
new device key. The remaining group users need to do one
symmetric and one asymmetric decryption to gain the update
information. and gx*my hash to gain new device keys.

2) When User Joins Subgroup x: Devices need to perform
one hash function to update their TEK and another hash func-
tion to derive their new device keys. The new user needs one
symmetric decryption to gain the subgroup key SK, new TEK,
KEK for the tree, and all IDs of the devices in the device
groups that are subscribed to. Existing users, on the other hand,
need to perform O log(nx) symmetric decryption to gain new
KEKs.

3) When Device Joins Device Group y: Old devices need
to perform one hash calculation to update the device group
key GKy. Since the LKH structure of the group might change,
some devices need to decrypt O(log(my)) KEK update mes-
sages. The new device decrypts the message sent from KDC
to obtain KEKs and calculate its own device key. Users sub-
scribed to the group which the new device is joining need to
decrypt the message sent by KDC. The users then perform
one hash calculation to gain the new device key.

4) When Device Leaves: The remaining devices perform
one symmetric decryption to gain the new group key. Users do
not need to perform extra computation. When they receive the
message sent from KDC, they simply stop accepting messages
from the leaving device.

C. Communication Overhead

When a user leaves group x, the KDC needs to send log(nx)
mulitcasts to the remaining users to update the subgroup slave
key, one broadcast to all the subgroups about the new TEK
and IDs, and log(my) multicasts to devices in order to update
the IDs. When a user joins, the KDC establishes one secret
key with the new user, sends one unicast to the new user,
and broadcasts key update messages to existing users. When
a device joins, the KDC establishes one secret key with the
device, sends one broadcast to the subscribed users of the new
ID of the device, and sends one unicast containing necessary
keys to the device. When a device leaves device group y, the
KDC broadcasts a message that the leaving device is no longer
available, and multicasts log(my) messages to update device
group keys for the remaining devices in group y.

D. Comparison With Existing Methods

In this section, we compare the update overhead between
our method and other existing key management methods.
In the comparison, we set the number of user groups to 16,
since the number of users only affects the scale of compar-
ison, and the number of devices users subscribe to is the
variable, ranging from 1 to 200 to analyze performance dif-
ference between each method with respect to device quantity.
We also assume the encryption key length is 32 bytes, so the
length of device IDs in our method is 32 bytes. On an Intel
i7-6700HQ CPU, an AES-256 encryption on a 64-byte block
takes roughly 800 ns, while a ECC-224 decryption takes about
114 000 ns, and a SHA-256 function on a 64-byte block takes
460 ns. It may take longer for devices with limited computa-
tional power to solve these operations, but the time difference
between operations should remain in a similar range.

1) LKH: In order to handle multiple devices individually,
the traditional LKH method needs to construct an LKH tree
for each user group of devices. Unlike the proposed method,
which only needs to handle the KEK of a single tree, the
user will have to store my encryption group keys as well as
my × log(nx) KEKs. Devices, however, do not need to store
much information in the traditional LKH scheme, because the
devices are not grouped and do not need to store group keys
and KEKs. When a new user joins the system and subscribes
to my devices, all my trees will have to reconstruct in order
to accommodate the new user. All other users in these groups
will have to update the group keys and receive O(log(nx))

new KEKs. If an old user subscribes to multiple devices, this
overhead will multiply by the number of devices subscribed
to by both the new and old users. On the other hand, in our
proposed method, users only need to store one set of KEKs
for one subgroup tree and one short ID per device, instead of
an encryption key with a complete length. In update scenarios,
the new user only needs to handle a KEK update in a single
tree as well. For existing users, only those who have the exact
same subscription case with the new user will need to update
the LKH KEKs in the subgroup.

Although users need to perform an asymmetric decryption,
which is a large overhead compared with symmetric compu-
tation, when there are users leaving the group, the overhead

KUNG AND HSIAO: GroupIt 5163

(a) (b) (c)

(d) (e)

Fig. 7. Computation overhead comparision. User join: (a) overhead of the new user, (b) overhead of existing users, and (c) overhead of remaining users.
(d) Device join: overhead of devices. (e) Device leave: overhead of users and devices.

will be surpassed by the need to update the group key of
each device when the number of devices grows. As shown in
Fig. 7(c), the computational overhead in our method can be
represented as log(nx)× tAES + tECC +(my)× tAES +my × tSHA,
where nx is the number of users in the subgroup, my is the
number of devices in the device group, tAES is the computation
time for an AES decryption for a 32-byte block of data, tECC
is the computation time to perform a ECC-224 decryption,
and tSHA is the computation time for a SHA-256 computa-
tion. The computational overhead for the traditional LKH can
be represented as log(nx) ∗ tAES ∗ my, which is smaller than
the overhead of our proposed method when the device num-
ber is small. However, its growth rate is much higher and the
overhead surpasses our method’s when the number of devices
in a group is around 180. This shows that our method is more
scalable to the growing IoT environment.

2) Master Key Encryption: Since our proposed method
also leverages a similar MKE structure, the existing method
proposed by Park et al. [16] has a similar storage overhead
and update overhead when user membership changes. The
overhead of our method will occasionally be larger since the
devices or users need to perform a hash function to gain new
keys. However, one of the main weakness of MKE is the
huge overhead when the number of slave keys needs to be
changed, as described in Section II. When a new device joins
the system, 2m new slave keys need to be generated in order
to accommodate all possible subgroups generated by the new
device, which is a huge overhead for the KDC. Furthermore,
the users still need to perform joining procedures to subscribe
to new devices, which is tAES × log(nx)+ tAES ×my. This also

means the user needs to leave the existing group first, and
the remaining users need to perform asymmetric decryption
to gain new TEKs for the subscribed-to devices. When a user
leaves the group to subscribe to new devices, the remaining
users need to compute as many asymmetric decryptions as the
number of devices they subscribe to, which is not comparable
to our method. The existing users in the new group where the
user joins, shown in Fig. 7(d), have to update their KEKs as
well as their TEKs. Our proposed method does not require
new slave keys to handle device joining. This is because new
devices are assigned to existing device groups, where the exist-
ing devices need to update their group keys. Only one new
device ID is needed to be acknowledged by users who do not
have to change their group, so the update overhead will be
constant. This will surely affect the flexibility of users’ sub-
scription preferences and induce overhead to the devices, since
they have to maintain a key management structure themselves.
However, it will greatly reduce update overhead on the user’s
side, since some of the users can be devices which do not have
much computational power. In addition, if devices with simi-
lar attributes are automatically formed into groups, users that
want to receive certain types of information can automatically
obtain information from new devices without having to sub-
scribe to them manually. When a device leaves, the remaining
devices in our method have to receive and decrypt a mes-
sage from KDC to obtain the new group key, while users
simply revoke the leaving device from their lists, requiring
no computational power. Users in Park’s method will have to
join another subgroup, which has the same overhead as other
user-join scenarios shown in Fig. 7(e).

5164 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 6, DECEMBER 2018

E. ID Update Method Collusion

In this section, we discuss the probability of a successful
collusion attack performed by an evil device and a leav-
ing client to gain device keys of other devices in the same
group. We calculate the probability by considering the rela-
tive position between a victim and an evil device in the LKH
structure.

For example, consider an evil device a and a target victim
device b. Both devices share the same update method as long
as neither of them are chosen as the pivot for update partition;
therefore, the probability is 1−2/n. If their shared parent level
is the second level of the tree, they will share the same update
method as long as none of the four nodes are chosen, as the
probability is 1 − 4/n.

Finally, we sum up the conditional probabilities as follows:

log2 n∑

i=1

2i − 1

n − 1
∗

(
1 − 2i

n

)
(2)

which is 9/28 when n = 8. The probability decreases every
time a leaving event occurs as the pivot is randomly chosen
and the tree structure may shuffle and the positions changes
among users.

VII. CONCLUSION

In this paper, we explored the GKM problem in dynamic
IoT environments, where user memberships and device num-
bers change frequently. To reduce overhead caused by said
events, we proposed GROUPIT, a two-tier GKM architec-
ture that combines two existing GKM methods by using a
device grouping technique. In GROUPIT, users can subscribe
to multiple devices at once, while each device can still encrypt
its data using a unique device key.

Future Work: One interesting research challenge is how to
handle collusion between devices (data senders) and users
(data consumers). In our system model, the sender and the
receiver of data are separated, meaning that a device is only
in charge of sending information and will not directly sub-
scribe to other devices. In practice, however, devices may be
subscribers as well. A device can receive information from
others and send its own data at the same time. In this case,
the IDs of other devices in the same group can be known by
the device if it subscribes to its own group, which will give it
an opportunity to forge messages of other devices since it can
obtain the device keys of others. This problem is challenging
in our current architecture and can be viewed as an interesting
future direction.

To put our proposed method into practice in the future, we
plan to leverage our proof-of-concept implementation and con-
struct an additional GKM module in Alljoyn. By adopting our
architecture, services and applications that require multiple
security-level access controls and handle dynamic member-
ship changes can increase scalability and reduce overhead for
resource-constrained devices. Such services and applications,
including smart home surveillance, are already supported in
Alljoyn and IoT-augmented hotels [2].

REFERENCES

[1] Breaking Down Mirai: An IoT DDoS Botnet Analysis. Accessed:
Oct. 30, 2017. [Online]. Available: https://www.incapsula.com/
blog/malware-analysis-mirai-ddos-botnet.html

[2] Marriott International Teams With Samsung and Legrand
to Unveil Hospitality Industry’s IoT Hotel Room of the
Future, Enabling the Company to Deepen Personalized Guest
Experience. Accessed: Feb. 16, 2018. [Online]. Available:
http://news.marriott.com/2017/11/marriott-international-teams-samsung-
legrand-unveil-hospitality-industrys-iot-hotel-room-future-enabling-com
pany-deepen-personalized-guest-experience/

[3] M. R. Abdmeziem, D. Tandjaoui, and I. Romdhani, “A decen-
tralized batch-based group key management protocol for mobile
Internet of Things (DBGK),” in Proc. IEEE Int. Conf. Comput.
Inf. Technol. Ubiquitous Comput. Commun. Depend. Auton. Secure
Comput. Pervasive Intell. Comput. (CIT/IUCC/DASC/PICOM), IEEE,
2015, pp. 1109–1117.

[4] D. Balenson, D. McGrew, and A. Sherman, “Key management for large
dynamic groups: One-way function trees and amortized initialization,”
Adv. Security Res. J., vol. 1, no. 1, pp. 28–42, 1998.

[5] A. Banks and R. Gupta, MQTT Version 3.1.1, ISO/IEC Standard
20922:2016, 2014.

[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Security Privacy (SP), IEEE,
2007, pp. 321–334.

[7] I. Damgård, H. Haagh, and C. Orlandi, “Access control encryp-
tion: Enforcing information flow with cryptography,” in Proc. Theory
Cryptography Conf., Springer, 2016, pp. 547–576.

[8] 180-3, Federal Information Processing Standards Publication, Secure
Hash Standard (SHS), Inf. Technol. Lab., Nat. Inst. Stand. Technol.,
Gaithersburg, MD, USA, 2008.

[9] H. Harney and E. Harder, “Logical key hierarchy protocol,” Internet
Eng. Task Force, Fremont, CA, USA, Internet Draft, Rep., Apr. 1999.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-harney-
sparta-lkhp-sec-00

[10] G. Horng, “Cryptanalysis of a key management scheme for secure
multicast communications,” IEICE Trans. Commun., vol. E85-B, no. 5,
pp. 1050–1051, 2002.

[11] International Organization for Standardization, Information
Technology—Telecommunications and Information Exchange Between
Systems—Near Field Communication—Interface and Protocol
(NFCIP-1), ISO/IEC Standard 18092:2013, Mar. 2013.

[12] S. Jahid, P. Mittal, and N. Borisov, “Easier: Encryption-based access
control in social networks with efficient revocation,” in Proc. 6th ACM
Symp. Inf. Comput. Commun. Security, ACM, 2011, pp. 411–415.

[13] T. H.-J. Kim, L. Bauer, J. Newsome, A. Perrig, and J. Walker,
“Challenges in access right assignment for secure home networks,” in
Proc. HotSec, 2010, Art. no. 1.

[14] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” in Proc. 7th ACM Conf.
Comput. Commun. Security, ACM, 2000, pp. 235–244.

[15] M. Y. Malik, “Efficient group key management schemes for multicast
dynamic communication systems,” IACR Cryptol. ePrint Archive,
vol. 2012, p. 628, 2012.

[16] M.-H. Park, Y.-H. Park, H.-Y. Jeong, and S.-W. Seo, “Key management
for multiple multicast groups in wireless networks,” IEEE Trans. Mobile
Comput., vol. 12, no. 9, pp. 1712–1723, Sep. 2013.

[17] P. Porambage et al., “Group key establishment for enabling secure
multicast communication in wireless sensor networks deployed for IoT
applications,” IEEE Access, vol. 3, pp. 1503–1511, 2015.

[18] S. Rafaeli and D. Hutchison, “A survey of key management for
secure group communication,” ACM Comput. Surveys, vol. 35, no. 3,
pp. 309–329, 2003.

[19] R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key management
systems for sensor networks in the context of the Internet of Things,”
Comput. Elect. Eng., vol. 37, no. 2, pp. 147–159, 2011.

[20] S. Sciancalepore, A. Capossele, G. Piro, G. Boggia, and G. Bianchi,
“Key management protocol with implicit certificates for IoT systems,”
in Proc. Workshop IoT Challenges Mobile Ind. Syst., ACM, 2015,
pp. 37–42.

[21] I.-C. Tsai, C.-M. Yu, H. Yokota, and S.-Y. Kuo, “Key management in
Internet of Things via Kronecker product,” in Proc. IEEE 22nd Pac. Rim
Int. Symp. Depend. Comput. (PRDC), IEEE, 2017, pp. 118–124.

[22] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, “A novel batch-based
group key management protocol applied to the Internet of Things,” Ad
Hoc Netw., vol. 11, no. 8, pp. 2724–2737, 2013.

KUNG AND HSIAO: GroupIt 5165

[23] P. Vijayakumar, S. Bose, and A. Kannan, “Chinese remainder theorem
based centralised group key management for secure multicast commu-
nication,” IET Inf. Security, vol. 8, no. 3, pp. 179–187, May 2014.

[24] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance evaluation
of attribute-based encryption: Toward data privacy in the IoT,” in Proc.
IEEE ICC, 2014, pp. 725–730.

[25] J. Zhang and V. Varadharajan, “Wireless sensor network key manage-
ment survey and taxonomy,” J. Netw. Comput. Appl., vol. 33, no. 2,
pp. 63–75, 2010.

Yi-Hsuan Kung received the B.S. and M.S. degrees
in computer science and information engineering
from National Taiwan University, Taipei, Taiwan, in
2015 and 2017, respectively.

His current research interests include network
security, IoT security, and cryptography.

Hsu-Chun Hsiao (GS’10) received the B.S. and
M.S. degrees from National Taiwan University,
Taipei, Taiwan, in 2006 and 2008, respectively, and
the Ph.D. degree from Carnegie Mellon University,
Pittsburgh, PA, USA, in 2014.

She is an Assistant Professor with the Department
of Computer Science and Information Engineering,
and the Graduate Institute of Networking and
Multimedia, National Taiwan University. She also
holds an Adjunct Assistant Researcher position
with the Center of Information Technology and

Innovation, Academia Sinica, Taipei. Her current research interests include
network security, anonymity and privacy, and applied cryptography.

Dr. Hsiao was a recipient of the MOST Young Scholar Fellowship.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

