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Abstract—Probe-based fault localization identifies potential
faulty nodes, which are manually inspected for confirmation.
This work explores efficient and accurate fault localization, which
is crucial for reducing manual effort without affecting network
functionality. Prior work suffers from either high bandwidth
overhead or false detection (i.e., incorrectly attributing good
nodes or missing faulty nodes), especially in the presence of mul-
tiple or inconsistent faults. We propose SDNProbe, a lightweight
SDN application that sends a provably minimized number of
probe packets to pinpoint malfunctioning switches. We extend
SDNProbe to randomize tested paths and packet headers to
further improve detection accuracy. Using realistic topologies
and flow rules, our evaluation results confirm that SDNProbe
can rapidly localize faulty switches while reducing the number
of required test packets by 30%, compared to prior approaches.
Even with 50% of switches being faulty, Randomized SDNProbe
can detect all faulty switches in 33 seconds, whereas prior
approaches have false negative rates of 15-40%.

I. INTRODUCTION

Active probing has been a widely adopted and effective
approach to analyze end-to-end network performance. The
most notable benefits of active probing (i.e., sending test
packets) include simplicity of its approach while accurately
depicting all available and cooperating nodes on a network at
the time of the probe, and the capability to determine testing
regions or time as the network administrators want.

However, since active probing has been mainly used for
Quality of Service (QoS) and troubleshooting, the nature of the
active probing mechanism hinders the identification of faulty
nodes. For example, probing can identify a faulty node that
persistently drops, modifies, or misdirects packets, since the
probe issuer never receives the probe packets back. On the
other hand, existing probe-based approaches are insufficient
for tightly localizing advanced faulty nodes in error-prone en-
vironments, due to limited tested paths and simple localization
mechanisms. For example, if two nodes are inseparable by any
tested paths, it would be impossible to attribute a fault to either
of them. In addition, faulty nodes can act non-persistently
such that they drop, modify, or misdirect packets selectively.
They can collude and deviate the normal traversing path such
that additional, unauthorized nodes eavesdrop on the packets
without being detected. Besides security limitations, another
shortcoming with active probing is its invasiveness with the
sheer volume of traffic. Straightforward approaches send one
test packet per flow rule [12], [31], and despite the recent

effort to minimize test packets [35] and to speed up test packet
generation [38], they still incur high bandwidth overhead.

Given the sophistication spectrum of faulty nodes, we
explore the extent to which simple active probing can reduce
false detection rates while minimizing communication over-
head. Our solution, SDNProbe, is a lightweight data-plane
troubleshooting tool that significantly increases the accuracy of
fault localization, more so than existing probe-based solutions,
while curtailing communication overhead. Our insights to
achieve these desired properties are:

• Prior work [35], [38] greedily solves the test packet
minimization problem, which is modeled as a known NP-
complete problem in general graphs, and thus obtains sub-
optimal results. However, we observe that this problem
is solvable in polynomial time when there is no loop
in the routing policy maintained by the controller, and
loop detection can be done in polynomial time. Based on
this insight, we enhance well-established graph algorithms
to construct test packets in a lightweight manner that
provably minimizes the number of test packets, such that
the controller wastes no bandwidth.
• Prior work fails to accurately detect multiple or non-

persistent faults in error-prone environments due to limited
tested paths and simple localization mechanisms. To tightly
localize such advanced faults, we propose applying SDN’s
programmability and randomization techniques such that
the set of possible tested paths can sufficiently distinguish
different failure patterns, eliminating the blind spots of the
detection algorithm. As a proof-of-concept, we propose a
randomized variant of SDNProbe.

We implement SDNProbe and its variant using realistic
topologies and flow rules. Our evaluation results confirm that
SDNProbe can rapidly localize faulty switches by sending the
minimum number of test packets. More specifically, SDN-
Probe reduces the number of test packets required to localize
all existing malicious switches by 30%, compared to existing
approaches. Even when a network consists of 50% advanced
faulty nodes, the randomized SDNProbe can detect all faulty
nodes in 33 seconds, whereas prior work suffers from high
false negative rates.

Contributions. We propose a probe-based fault localization
mechanism that utilizes logically centralized control and pro-
grammability in SDN. Our main insight is efficiently eliminat-



ing disconnected paths (i.e., finding legal paths on which test
packets can travel), and sending a minimum set of test packets
that cover all flow entries. We prove that our approach finds
a minimum set of test packets in O(n2.5). Unlike existing
work, we consider a strong, realistic switch failure model
and propose a modification that randomizes the path selection
to prevent faulty nodes from evading detection. We present
evaluation results that show the reduced performance overhead
while tightly localizing faulty switches.

II. BACKGROUND

Software-Defined Networking (SDN) is a network architec-
ture that decouples the control plane from the data plane [19].
This abstraction enables centralized control and programma-
bility to enhance the manageability of traditional networks.
A typical SDN comprises a controller, whose main task is to
control the flow of network packets, and one or more switches,
whose task is to forward packets based on rules built into
its firmware. In other words, switches require no additional
complexities such as maintaining routing tables as paths are
centrally and dynamically maintained by the controller.

OpenFlow [29] is a widely-adopted communication protocol
between the control plane and the data plane in SDN. In
OpenFlow, a virtually-centralized controller regulates how
packets are forwarded by installing and deleting flow entries
on switches. The controller can send an OpenFlow-defined
message to manage switches using a secure channel (i.e., TLS
protected) and install flow entries on the switch. Note that a
switch can have more than one flow table to store flow entries.

When a packet arrives at a switch, the switch checks the
first flow table to find a matching flow entry. Each flow
entry contains forwarding information, including a match field,
action, and priority. If a packet matches multiple flow entries,
the entry with the highest priority is selected. The switch then
processes the packet according to the corresponding action(s):
output to a specific port, drop, or set-field to modify the packet
header. For example, when an incoming packet header matches
a flow entry’s match field, the packet will be forwarded
to the specified output port. If a flow entry contains a set
field, the incoming packet’s header is overwritten with the
corresponding value in the set field.

III. PROBLEM DEFINITION

Probe-based fault localization detects faulty switches by
sending test packets, where a fault indicates a mismatch
between the data plane’s actual behavior and the control
plane’s network policies. The main technical challenges of
probe-based fault localization are (1) efficiently computing
a small set of test packets that exercise every possible fault
pattern, and (2) accurately locating faulty switches based on
the test packet results.

A. Desired Properties

1. Tight localization boundary: to reduce manual effort,
the mechanism should tightly localize suspicious switches
such that both false positives (i.e., labeling obedient

switches as faulty) and false negatives (i.e., letting faulty
switches evade detection) are low.

2. Low bandwidth overhead: the mechanism should locate
faulty switches by sending as few test packets as possible
to reduce bandwidth overhead.

3. Fast detection: the mechanism should quickly identify
faulty switches to minimize the impact on normal packets.

B. Switch Failure Model

A switch is faulty if it contains one or more faulty flow
entries that are executed incorrectly. Hence, a faulty switch
may misdirect a packet to a switch that differs from the in-
tended one (such that the packet may never reach the intended
destination), drop a packet, and modify the packet header or
content. Multiple faulty switches may exist simultaneously, but
the number of faulty switches is unknown beforehand.

We consider two types of non-persistent faults: an intermit-
tent fault selectively affects packets only during certain time
periods, and a targeting fault selectively affects only certain
IPs in a flow entry. For example, given a rule matching all
packets with a destination IP in the subnet 10.10.0.0/16, a
targeting fault may only affect the destination IP 10.10.1.1.

We further consider advanced failures that require colluding
faulty switches to detour a packet such that it deviates from the
testing path but eventually returns to the intended path [27].
Path detouring enables unintended nodes to eavesdrop, frame,
or launch denial of service on switches on the dedicated path
between the colluders. Furthermore, by detouring packets,
colluding switches can bypass firewalls or intrusion detection
systems that are hosted by benign switches between the
colluding switches.

C. Limitations of Previous Approaches

High bandwidth overhead. One type of probe-based mech-
anisms identifies faulty switches by sending one test packet
for each flow entry. Chi et al. [12] suggest periodically
sending a test packet to a randomly-selected rule. However,
sending one test packet per rule is inefficient and their simple
fault localization mechanism suffers from false positives and
false negatives. Monocle [31], [32] focuses on checking the
correctness of newly-installed flow entries by sending one
packet for each newly-installed rule on the monitored switch.
However, in addition to the increased overhead on the network,
this fails to consider the faults caused by unmonitored switches
and thus may experience high false positives.

Some researchers have focused on reducing the number of
test packets. For example, ATPG [35] and Pronto [38] generate
test packets by reducing the problem of finding a minimum
set of test packets to the problem of finding a minimum set
cover (MSC). Since MSC is a known NP-complete problem,
they both use the best-known greedy algorithm to approxi-
mately solve MSC. Pronto adopts a faster implementation than
ATPG’s. Chao et al. [11] propose minimizing the number of
test packets when localizing malicious switches, but due to the
omitted details, it is difficult to assess the effectiveness.



Inaccurate detection in error-prone environments. Run-
ning on traditional networks, ATPG [35] considers a switch
to be faulty if it is at the intersection of two faulty host-to-
host paths. However, ATPG fails to tighten the localization
boundary and is unable to identify advanced failures. In
general, narrowing down the suspected region is non-trivial,
especially when there is more than one faulty node. Suppose
the controller spots two suspected paths intersecting each
other. Without further information, it would be hard to tell
whether the switch at the intersection is faulty or there are
two (or more) faulty switches on the paths. Pronto [38] aims
to accelerate test packet generation by leveraging the concept
of Atomic Predicate [34], but does not address how to perform
fault localization.

IV. INTUITION AND OVERVIEW

SDNProbe efficiently and accurately detects faulty switches
under a realistic switch failure model because of provably
minimized test packet set and path randomization techniques.

Reducing packet count. Existing, per-rule approaches gen-
erate one test packet for each flow entry given a network
topology, which wastes bandwidth with redundant test packets.
Per-path approaches reduce the number of required test packets
by generating those that can traverse multiple flow entries.
Despite this improvement, one unsolved challenge of per-path
approaches is how to efficiently compute a minimal set of test
packets to traverse every flow entry. Prior approaches [35],
[38] reduce this minimization problem to a minimum set cover
problem and use greedy algorithms to approximately solve the
known NP-complete problem. Instead of using approximation,
SDNProbe’s core intuition to handle such intractability is to re-
strict the test packet minimization problem on directed acyclic
graphs (DAG). This is a reasonable assumption because a
well-formed policy (flow entries) should contain no loop, and
efficient polynomial-time algorithms and tools exist [24], [25]
to verify whether flow entries cause a loop in the network.
Specifically, SDNProbe minimizes the packet count by en-
hancing existing graph algorithms. We define Minimum Legal
Path Cover (MLPC) and reduce the test packet minimization
problem to the MLPC problem on a directed acyclic graph,
which is provably solved in O(n2.5) time using our algorithm.

Improving detection accuracy via randomization and SDN
programmability. Traversing every flow entry is insuffi-
cient to accurately localize faulty switches, especially in the
presence of advanced failures. For example, if two switches
appear together on tested paths all the time, it would be
impossible to attribute a fault when only one of them is
faulty. In other words, to tightly localize faulty switches, it is
important to ensure that the set of possible tested paths for each
switch is large enough such that different subsets of switches
can be effectively tested. Our core idea to enlarge the set of
possible tested paths (and thus improve detection accuracy)
is to leverage randomization and SDN’s programmability.
With programmability, a tested path can flexibly start and
terminate at any node. Moreover, by randomizing tested paths
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as well as test packet headers, SDNProbe ensures that every
possible tested path can be chosen with some probability.
Hence, SDNProbe can detect advanced failures with a certain
probability, which increases with the number of detection runs.
We propose Randomized SDNProbe based on a randomized
matching algorithm [16].

A. SDNProbe Overview

As shown in Figure 1, SDNProbe detects misbehaving
switches in two stages:

Test packet generation. To generate a minimum set of
test packets that are guaranteed to traverse all flow entries
on the network, SDNProbe defines a rule graph. This is a
directed acyclic graph (DAG) that identifies possible flow
directions among switches given the information of network
topology and forwarding states. To further distinguish valid
flows from invalid ones, SDNProbe analyzes which header
can traverse a path by applying transitive closure to identify
legal paths on which packets can traverse. Finally, SDNProbe
generates a bipartite graph and applies a modified Hopcroft-
Karp algorithm to construct a minimum set of test packets to
traverse every rule on the network. Figure 2 illustrates a step
by step construction of test packet generation.
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Fault localization. Once a minimum set of test packets is
determined, SDNProbe needs to insert a test flow entry at
the end of each tested path such that the test packets can be
returned to the controller. SDNProbe ensures that this is done
without affecting normal packets.

After receiving returned test packets, if the controller notices
suspicious activities on a path, including dropped, modified,
or misdirected return packets, the controller tries to localize
the misbehaving switch on the suspicious path by slicing it
into two and repeating the localization process.

V. TEST PACKET GENERATION

We explain in detail how SDNProbe computes the minimum
set of test packets using a rule graph, and how SDNProbe
can be extended to randomize tested paths and headers for
accuracy enhancement.

A. Rule Graph Construction

Given the switch topology and the flow entries on each
switch, the controller constructs a graph, which we call a
rule graph.1 Edges of a rule graph represent the possible
flow directions according to the routing policies in the control
plane. The foundational concept of a rule graph is based on a
plumbing graph [24], but since the plumbing graph is designed
to verify incremental updates of routing policies, it resolves
the dependency at a later time. Unlike the plumbing graph, we
design a rule graph to resolve the dependency at construction
to support efficient test packet generation.

Each vertex in the rule graph represents a flow entry in
a switch and is labeled with four pieces of information,
including match field, set field, output port, and priority field.
An edge exists between two vertices in the rule graph if there
are packets that can match the two flow entries. Figure 3 is
an example of the rule graph.

Notations and terminologies. The packet header is rep-
resented as a bitstream in a {0, 1, x}L space [25], where L
is the bit-length of the header and x represents a wildcard.

1The terms ”flow entry” and ”rule” are used interchangeably in this paper.

The kth bit of a given header space H is denoted by H[k],
where 0 ≤ k ≤ L−1. Given a vertex r on the rule graph, r.m,
r.s, and r.p represent the match field, set field, and the priority
field of r, respectively. The default set field is a bitstream with
all wildcards, which leaves the packet header unchanged.

Recall that among all the matched rules in a flow table, a
packet is processed by the one with the highest priority. We
say rule rj is an overlapping rule of ri (rj >o ri) if ri and
rj are in the same flow table, rj has a higher priority than
ri (rj .p > ri.p), and there is at least one header that satisfies
both of their match fields (ri.m ∩ rj .m 6= ∅).

The input of a rule r (r.in) is the set of headers that
can be processed by r. Hence, r.in can be represented by
its match field minus the overlapped header space: r.in =
r.m−

⋃
q>or

q.m. Although computing a rule’s input is proven
to be NP-complete [9], in practice, we can obtain a header
that satisfies the input using efficient SAT/SMT solvers, such
as MiniSat [17] and Z3 [14].

The output of a vertex r (r.out) is the resulting header space
after applying r’s set field (r.s) to the input (r.in). Let T (h, s)
be a bitwise set-field operation such that the kth bit of T (h, s)
is h[k] if s[k] is a wildcard, and s[k] otherwise; thus, r.out =
T (r.in, r.s). For example, in Figure 3, the input and output of
rule d1 are 000xxxxx and 0111xxxx, respectively.

There are two steps to constructing a rule graph:

Step 1: Building edges. Each directed edge (ri, rj) on the
rule graph indicates that there are some packets that can (1)
trigger ri, (2) be forwarded to the switch that maintains rule
rj , and (3) trigger rj . Formally, there exists an edge (ri, rj)
if and only if ri.port = rj .switch and ri.out∩rj .in 6= ∅. We
check whether such an edge exists for each pair of rules on
neighboring switches.

For example, edge (b2, c2) exists in Figure 3 because b2’s
output port is C, and 0011xxxx∩(001xxxxx−00100xxx) 6=
∅. However, there is no edge between rule c1 and rule e2 since
00100xxx ∩ (001xxxxx − 0010xxxx) = ∅. In this case, all
packets with the header 00100xxx will match e1, which has
higher priority than e2 in the flow table.

Step 2: Legal transitive closure. Before introducing the
second step to construct a rule graph, we define a legal path.

Definition 1: A path r1, r2, ..., rn on the rule graph is a legal
path if and only if there exists a packet that can traverse the
path. That is, On 6= ∅ where Oi+1 = T (Oi ∩ ri+1.in, ri+1.s)
and O0 = {x}L.
In Figure 3, a1 → b1 → c2 → e1 is a legal path since the
packets with the header 00101xxx can go through this path.

To construct the rule graph, we apply legal transitive
closure to the graph generated from Step 1, such that the
resulting rule graph represents the reachability for each vertex.
Specifically, given the graph G1 = (E1, V1) from Step 1, the
rule graph G = (E, V ) is constructed such that V = V1 and
E = E1 ∪ {(u, v)|∃ legal path from u to v in G1}. We can
conduct a breadth-first search on G1 to obtain this rule graph.

Figure 4 shows the legal transitive closure of Figure 3. Be-
cause the path b2 → c2 → e2 is a legal path (i.e., 0011xxxx∩
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Fig. 4: The extra edges after applying legal transitive closure are shown in
red on the rule graph in Figure 3.

(001xxxxx − 00100xxx) ∩ (001xxxxx − 0010xxxx) =
0011xxxx 6= ∅), an edge (b2, e2) exists in the legal transitive
closure (see Figure 4) to represent this legal path.

We assume that the controller’s routing policy avoids rout-
ing loops, as they are generally undesirable and can be
efficiently detected using static analysis [24], [25]. Hence, the
constructed rule graph is a directed acyclic graph (DAG).

B. Generating a Minimum Set of Test Packets

Constructing the rule graph enables a controller to traverse
every flow entry. To minimize the number of test packets,
under the condition that the rule graph is a directed acyclic
graph (DAG), we can reduce the problem to one of finding
a Minimum Legal Path Cover (MLPC), and we prove that
finding a MLPC on DAG can be efficiently solved. Our
MLPC problem and solution are inspired by the well-studied
Minimum Path Cover (MPC) problem [8], [15], [23] with
modifications to incorporate the concept of the header space.
In the rest of this section, we define the Minimum Legal Path
Cover (MLPC) problem, and then present an algorithm that
can efficiently solve MLPC in DAG.

Minimum Path Cover (MPC). A path cover of a directed
graph is a set of paths such that each vertex in the graph be-
longs to at least one path. Finding a minimum path cover of the
rule graph may fail to generate feasible test packets because
the edges in a rule graph only represent the pairwise relation-
ships between flow entries. Hence, no packet may match any
rule on a given path in the path cover. As depicted in Figure 3,
the MPC contains three directed paths: (1) a1 → b1 → c1 →
e1, (2) b2 → c2 → e2, and (3) b3 → d1 → e3. The match fields
of path (1) are 00101xxx, 0010xxxx, 00100xxx, 0010xxxx,
respectively. However, no packet can go through this path,
because 00101xxx∩0010xxxx∩00100xxx∩0010xxxx = ∅.

Minimum Legal Path Cover (MLPC). To address the
aforementioned limitation of MPC above, we define the Min-
imum Legal Path Cover (MLPC) problem.

Definition 2: A legal path cover of a directed graph is a
set of legal paths such that every vertex belongs to at least
one of the legal paths.

Given a directed graph, the Minimum Legal Path Cover
(MLPC) problem is to find the minimum size legal path
cover of the graph. With the above definition, generating the
minimum set of test packets (Pmin) is equivalent to solving
the MLPC problem in the rule graph.

Algorithm 1 presents the steps to generate Pmin by solving
the MLPC problem on a DAG. Our proposed algorithm

Algorithm 1: Test Packet Generation based on MLPC

Input : Rule graph G.
Output: Minimum set of test packets Pmin.

1 B ←− bipartite graph(G);
2 Cmin ←− Hopcroft-Karp(B) w/ legal augmenting paths;
3 Pmin ←− construct headers from Cmin;
4 return Pmin;
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Fig. 5: Bipartite graph B of G in Fig. 4. The solid and dotted edges in
M and M ′ represent matched and unmatched edges, respectively. (We omit
other unmatched edges in M and M ′.) A legal augmenting path is b2 →
c2′ → b1 → e1′, where (b2, c2′) and (b1, e1′) are unmatched and (b1, c2′)
is a matched edge in M .

extends existing MPC solutions [8], [15], [23]. The proposed
algorithm utilizes two graphs: (1) A rule graph G, as explained
in Section V-A, to identify flow directions and legal paths; (2)
A bipartite graph B of G to identify legal augmenting paths.
We explain the construction of each graph and how B and
G are used to find the minimum number of legal paths in
Figure 3. When the reachability in graphs is defined over legal
paths, the main technical challenges are: efficiently validating
a legal path without increasing time complexity and ensuring
the correctness of the algorithm.

Step 1: Bipartite graph. To identify legal augmenting
paths, we generate a bipartite graph B using G, as illustrated
in Figure 4. If G has vertices r1, r2, ..., rn, we generate two
disjoint sets of vertices, r1, r2, ..., rn and r1

′, r2
′, ..., rn

′, for
the bipartite graph B, where ri = ri

′, and convert a directed
edge (ri, rj) in G into an undirected edge (ri, rj

′) in B.
Then, we can apply a modified Hopcroft-Karp algorithm [23]
to find the maximum matching in B and transform it to MLPC
to generate Pmin.

Step 2: Modified Hopcroft-Karp algorithm. A matching
of a bipartite graph can be obtained by finding an augmenting
path, one that starts and ends with an unmatched vertex
and the edges belonging alternatively to the matched and
unmatched [13]. If there is an augmenting path p on a
matching M , we can obtain a new matching M ′ by finding
the symmetric difference of M and p (reversing the matched
and unmatched edges on p), and |M ′| = |M | + 1. Hopcroft-
Karp algorithm is based on Berge’s Theorem [8], which states
that a matching is maximum if and only if no augmenting
path exists on this matching. However, using this maximum
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matching algorithm directly may construct test packets that
cannot traverse every rule on the network. Therefore, we apply
the Hopcroft-Karp algorithm with a legal augmenting path on
MLPC.

Definition 3: Given a bipartite graph B transformed from a
rule graph G, an augmenting path p on B is legal augmenting
if and only if the unmatched edges on p can be connected with
current matched ones on G to form a legal path.

In Figure 5, edges (a1, b1
′) and (b1, c2

′) are matched,
shown as a solid line, and (b1, e1

′) and (b2, c2
′) are not

matched, shown as a dotted line in M . Then, b2 → c2
′ →

b1 → e1
′ is a legal augmenting path, because it is an

augmenting path on B and a1 → b1 → e1 and b2 → c2
are legal paths on G. We can check the validity of a legal
augmenting path on B in constant time by checking whether
it corresponds to an edge in G.

Theorem 4: Given the bipartite graph B, which is trans-
formed from a rule graph G, a legal path cover C is minimum
if and only if no legal augmenting path exists on the matching
M of B.

Theorem 5: Algorithm 1 can solve the minimum legal path
problem in O(n2.5) time.2

With Theorem 4, a legal path cover C is minimum if and
only if no legal augmenting path on the corresponding match-
ing of C can be extended.2 Therefore, the modified Hopcroft-
Karp algorithm with legal augmenting paths can find minimum
legal path cover as illustrated in Figure 6. The minimum legal
path cover Cmin on the rule graph is a1 → b1 → c2 → e1,
b2 → e2, b3 → d1 → e3, c1, respectively. b2 → e2 can be
further converted to b2 → c2 → e2 on the rule graph.

Step 3: Construct headers. After finding the minimum
legal path cover Cmin, we can compute a header space HS(`)
for each legal path ` in Cmin by intersecting the rule headers
on the path. Header intersection can be efficiently computed.
For example, the header space of the legal path a1 → b1 →
c2 → e1 in Figure 6 is 00101xxx∩0010xxxx∩(001xxxxx−
00100xxx)∩0010xxxx = 00101xxx. For each path in Cmin,
we select one packet from HS(`) to form the minimum set
of test packets, Pmin.

C. Randomized SDNProbe

To localize basic failures defined in §III-B, SDNProbe as
well as previous probe-based approaches [35], [38] generate
test packets to traverse all flow entries. However, traversing
all flow entries is inadequate to effectively localize advanced
failures for existing probe-based approaches. Specifically, in

2Due to space limitations, the proofs of Theorems 4 and 5 can be found in
the full report [7].

prior probe-based approaches including SDNProbe, packets
may be silently detoured when there is more than one faulty
switch on the same tested path. If two faulty switches send
packets to each other along a different path, such packet
detouring will remain unnoticed since the test packets will
still arrive at the same destination. Also, non-persistent failures
will stay undetected with high probability. Suppose in Figure 3
switch E is faulty and the detection algorithm generates four
tested paths a1 → b1 → c2 → e1, b2 → c2 → e2,
b3 → d1 → e3, c1. The faulty switch E is detected if the fault
only affects the packets with the header 00100xxx, because
the detection algorithm only selects test packets from the
header space 00101xxx (which covers a1 → b1 → c2 → e1).
Hence, the header 00100xxx on E is a blindspot of tested
paths.

Tested path randomization. The above advanced failures
may occur because the test packet generation algorithm is
static, and thus cannot test the two detouring switches sep-
arately if they happen to be on the same tested path at the
first place.

As a proof-of-concept, we propose a randomized algorithm
by substituting the modified Hopcroft-Karp Algorithm in Al-
gorithm 1 with randomized matching [16] to find legal aug-
menting paths. This randomized algorithm generates different
test packets and test paths every time, making it difficult for the
adversary to bypass detection because it can no longer know
the possible set of test packets and the location of switches is
not always at the end of a test path.

Note that tested path randomization can be efficiently per-
formed because it can reuse the same rule graph to compute
different randomized instances.

Test packet header randomization. Since every packet
with the header in HS(`) can traverse `, we sample one
header from the header space as the test packet for this
path. The sampling method can be flexibly chosen, either
uniformly at random or based on the past traffic distribution
(e.g., sFlow [6]). For each time period t, we collect the set of
headers ht(`) from the switches on each path `. As a result,
we can randomly select one packet whose header is in HS(`)
and ht(`) for each path ` and time period t to generate a
minimum set of test packets.

VI. FAULT LOCALIZATION

To verify the correctness of the data plane using the returned
test packets from switches, SDNProbe requires installing an
additional test flow entry at the terminal switch on each tested
route, and the match field of the test flow entry is the same as
the test packet. Note that this installation stage is performed
before the test packets are sent.

To ensure that the normal packets remain unaffected, test
packets and test flow entries should be unique enough such that
the test flow entries can be matched only by the test packets. To
achieve this requirement, for each tested path (i.e., a sequence
of flow entries to be tested), SDNProbe selects a unique header
u as follows: (1) u cannot match any flow entry on the on-path
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Fig. 7: Appending a test flow entry to verify the correctness of data plane.

switches except those to be tested. (2) u should differ from
the values chosen by other test packets. In practice, we can
use an SAT solver to find a unique header for a test packet
with these constraints.

As shown in Figure 7, the modification in each terminal
switch ensures that SDNProbe does not affect normal packets
and normal switch operations, based on the following proce-
dure: (1) duplicate the table and copy flow entry r; (2) insert
the test flow entry with higher priority in the following flow
table compared to the matched flow entry; (3) change the
action of the flow entry r in the original flow table to goto
next table action.

Duplicating the table entry (Step (1) above) is an important
procedure for SDNProbe to cover all flow entries in the
presence of failures. If we skip this procedure and directly
insert the test flow entry on the same table, the last flow entry
will remain untested because the test packet will match the
test flow entry and be returned immediately.

Algorithm 2 shows the fault localization procedure. When
the controller does not receive an expected test packet or
receives a modified test packet, it marks the path as suspected
and increases the suspicion level of all switches on this path.
To determine which switch is likely to be faulty, the controller
needs to narrow down the suspected path to one switch.
Hence, the controller slices the suspected path to two sub-
paths and recursively performs the same procedure. Once
the suspicion level of a switch exceeds a certain detection
threshold, the switch is considered faulty and requires further
manual inspection. In addition, by tracking the suspicion level
of each switch, a network administrator can make better
decisions in choosing which switch to manually inspect first.

The use of suspicion level is needed for detecting an inter-
mittent fault that reoccurs from time to time, each occurrence
lasting for less than one detection round, such that SDNProbe
may be unable to attribute the correct faulty switch in a round.
Although the idea seems straightforward, we note that it can
only work with fault localization schemes that have no or low
false positives against persistent failures (such as SDNProbe).

Algorithm 2: Localizing faulty switches using test packets.

Input : Set of test packets S.
Output: Faulty switch(es).

1 Test packet need to be sent P ←− S;
2 while detection scheme starts do
3 send test packets P ;
4 wait and receive the set of test packets P ′;
5 for each test packet p ∈ P and correspond p′ ∈ P ′

do
6 path←− the path traversed by p;
7 if p 6∈ P ′ or p 6= p′ then
8 increase suspicion level of rules on p;
9 if length of path > 1 then

10 slice path(path, p);
11 else if suspicion level of rule > threshold

then
12 identify this switch as faulty;
13 P ←− ∅ ;
14 P add all p where p 6∈ P ′ or p 6= p′;
15 if P = ∅ then
16 P ←− S;

TABLE I: Comparisons of detection accuracy between fault
localization techniques.

SDNProbe Randomized Per-rule Intersection
SDNProbe -based -based

1 faulty node X X X X

> 1 faulty nodes X X FP FP
Intermittent fault X X FN, FP FN, FP
Targeting fault FN X FN, FP FN, FP

Detour (colluding) FN X FN, FP FN, FP

X: Detectable, FN: False Negative, FP: False Positive

If a fault localization scheme is prone to high false positives
even against persistent failures (such as per-rule and per-
intersection techniques compared in Sections VII and VIII),
using suspicion level will be ineffective.

VII. DETECTION ACCURACY ANALYSIS

We compare SDNProbe and Randomized SDNProbe with
two common classes of fault localization (per-rule-based and
intersection-based) used in prior work, with respect to the
failure models defined in Section III-B. The analytical com-
parisons are aligned with the experiment results presented in
Section VIII.

SDNProbe. SDNProbe can always detect basic failures on
single or multiple faulty switches (i.e., no false negative)
because misdirection, dropping and modification will alter
the content or path of test packets, which is observable by
SDNProbe. That is, SDNProbe’s controller application can
identify the occurrence of a basic fault along a tested path
if the corresponding test packet returns unexpectedly or does
not return. SDNProbe will never attribute a basic fault to a
good node (i.e., a false positive) because SDNProbe effectively



reduces the set of suspected switches by slicing the tested
path, ensuring exact detection of a faulty switch. However,
SDNProbe may fail to detect colluding nodes that happen to be
on the same tested path and detour test packets between each
other. Because SDNProbe keeps track of the suspicion level
of each switch in fault localization, it can detect intermittent
faults after a sufficient number of detection rounds. However,
SDNProbe may fail to detect a targeting fault that does not
overlap with any test packets.

Randomized SDNProbe. Similar to SDNProbe, Random-
ized SDNProbe ensures exact detection of basic failures on
single or multiple switches. In addition, because Randomized
SDNProbe randomly constructs tested paths for each detection
round, the probability that two colluding nodes are on the same
tested path in every round decreases exponentially. Random-
ized SDNProbe also randomly selects a test packet within the
valid header space according to real-traffic distribution, and
thus can increase the probability of detecting targeting faults
over time.

Per-rule-based techniques. Per-rule-based fault localiza-
tion [12], [31] checks a switch’s flow rule by sending a
test packet from the switch’s previous hop to its next hop.
However, when the test packet terminates unexpectedly, it is
difficult for per-rule-based approaches to distinguish which
of these three switches should be held accountable when
there are multiple faulty switches in the network. Thus, false
positives may occur for all but the single faulty switch case.
Although per-rule approaches might also set a suspicion level
for detecting intermittent faults, the high number of false
positives will likely make every switch seem suspicious. Since
per-rule approaches have a shorter tested path length (i.e., three
hops), detouring is less likely but still possible. Targeting faults
are likely undetected without using randomized test packet
headers.

Intersection-based techniques. Intersection-based fault lo-
calization [35] considers a switch to be faulty if it is at the
intersection of two host-to-host faulty paths. This technique
can be applied to traditional networks where test packets can
only be sent and received at the edges of the network. How-
ever, since there might be no alternative path to intersect with
a suspicious switch, intersection-based approaches may fail to
narrow down the set of faulty switches (i.e., false positives).
In addition, if there is more than one faulty switch in the
network, a benign switch at the intersection of two faulty paths
might be wrongly blamed. Similar to per-rule approaches,
intersection-based ones do not have proper mechanisms to
detect intermittent and targeting faults.

VIII. IMPLEMENTATION AND EVALUATION

Implementation. We implemented SDNProbe and Ran-
domized SDNProbe using approximately 3K lines of code [5]
in Python and C++. Our implementation is based on the Ryu
framework [1] in accordance with OpenFlow 1.3 specifica-
tions, and can be easily ported to other OpenFlow controller
frameworks such as OpenDaylight [30].

In our implementation, the Ryu controller provides the
topology information and flow entries on switches to the test
packet generation component, which is implemented in C++
for optimized performance. Once obtaining the generated test
packets and the associated tested paths, the controller sends
them and perform fault localization.

To facilitate evaluation, our implementation can support the
emulation of the data plane using Mininet [2], which can
create multiple instances of Open vSwitch [3] as a virtual
network. The data-plane emulation is useful for testing the
functionalities of SDNProbe. SDNProbe comes with an easy-
to-use interface and is available on GitHub.

With this implementation, we show that SDNProbe and
Randomized SDNProbe achieve the desired properties defined
in Section III.

Evaluation methodology. To evaluate probe-based fault
localization schemes under a realistic network setting, we
used a randomly-generated topology and flow entries that were
synthesized based on real datasets. Specifically, we sampled
the router-level topology from the Rocketfuel dataset [4] and
incorporated flow entries obtained in a campus network. To
generate additional flow entries for comprehensive evaluation,
we also inserted flow entries to forward packets along paths
computed by an all-pairs K-th shortest path algorithm [18].

The controller sends test packets at a rate of 250 KBytes
per second, and the default threshold is set to be 3. In our
experiments, attacks are simulated by modifying the flow
entries. It is worth noting that SDNProbe is designed to
detect inconsistencies between expected and actual data-plane
behaviors, regardless of the cause of the inconsistencies.

Evaluation metrics. To examine the performance and feasi-
bility of SDNProbe, we consider three metrics for evaluation:
• Number of test packets reflects the communication over-

head caused by the detection scheme.
• Detection delay consists of the time to generate and send

test packets and to localize all faulty switches.
• False positive rate (FPR) and false negative rate (FNR)

quantify the fraction of incorrectly detected good switches
and the fraction of undetected faulty switches, respectively.

A. Real Dataset
To show that SDNProbe can be applied to a realistic setting,

we first examined a real dataset which is a part of the backbone
network topology in a campus network. SDNProbe correctly
generated 600 test packets to cover 550 and 579 forwarding
entries in two routing tables. The real dataset contained over-
lapping rules, and the maximum number of overlapping rules
was 65. For each overlapping rule, we applied an efficient SAT
solver (MiniSAT [17]) to find a matching header. The time it
took to generate one header was between 0.5ms–2.4ms, and
was consistent throughout our experiments.

B. Comparison with Other Schemes
We compared the performance and effectiveness of SDN-

Probe and Randomized SDNProbe with ATPG [35] and Per-
rule Tests [12], [31]. The experiments were performed on 100
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Fig. 8: Performance evaluation of number of generated test packets and detection delay for SDNProbe, Randomized SDNProbe, ATPG, and Per-rule Test.
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(b) Path detouring attack detection FNR.
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Fig. 9: False rate comparison for detecting basic and path detouring attacks. Each data point represents the average of 10 experiment runs.

topologies with varying number of flow entries. The results
confirm that our schemes outperform other probe-based fault
localization schemes as follows.

Number of test packets. As shown in Figure 8(a), SDN-
Probe generates the fewest test packets among the four
schemes. The number of test packets generated by ATPG is
relatively higher than SDNProbe because ATPG applies an
approximation algorithm. Since the Per-rule Test sends one test
packet for each flow entry, the number of test packets equals
the number of flow entries. The improvement in the number of
test packets depends on the size and structure of the topology.
On average, SDNProbe reduces the number of test packets by
30% compared with ATPG. Randomized SDNProbe increases
the number of test packets by 76% at most and 72% on average
compared to SDNProbe.

Delay to localize one faulty switch. To investigate the
detection delay in these four probe-based schemes, we ran-
domly selected one flow entry to be faulty in each topology
and measured the time it takes to identify the switch containing
this flow entry. As Figure 8(b) shows, SDNProbe’s detection
delay is significantly lower than ATPG’s and Per-rule Test’s
in every topology: SDNProbe’s detection delay is 1–2.5 sec-
onds, and Randomized SDNProbe’s detection delay is 1–3.5
seconds. Since ATPG needs to compute additional test packets
for fault localization, ATPG’s detection delay is higher than
SDNProbe’s, taking at most 13.4 seconds (i.e., 5 times higher
than the longest detection delay of SDNProbe). The detection

delay of Per-rule Test is significantly higher because it needs
to send a large number of test packets.

Our experimental results confirm that SDNProbe and Ran-
domized SDNProbe can rapidly localize faulty switches re-
gardless of the network scales.

Delay to localize multiple faulty switches. To examine
the effectiveness of localizing multiple faulty switches, we
randomly selected a fraction of flow entries to be faulty in a
large-scale topology. As Figure 8(c) shows, Per-rule Test has
the shortest detection delay when the rate is beyond 5%, since
it does not require additional fault localization. However, as
we show next, it suffers from high false positives. SDNProbe
and Randomized SDNProbe are the fastest to localize faulty
rules when the rate is 5% or lower, and remain competitively
low when the rate is beyond 5%. ATPG performs the worst
regardless of the percentage of faulty rules, since it must
perform additional computation to generate each tested path
during fault localization.

FPR and FNR. Figure 9(a) shows the FPR for detecting ba-
sic failures (i.e., packet misdirection, drop, and modification).
As analyzed in Section VII, ATPG has a high FPR because
it may incorrectly catch a benign switch that is located at
the intersection of two faulty paths. Per-rule Test3 also suffers

3To evaluate a target switch, Per-rule Test sends a packet to its previous-
hop switch and expects to receive a return packet from its next-hop switch.
However, it cannot distinguish which of the three switches is responsible for
the malicious action.



TABLE II: Results of test packet generation.

Topo.
Setting (count) Results

Rules Switches Links MLPS ALPS NLPS TPC PCT (sec)
1 4,764 10 15 6 4.99 14,844 954 2.9
2 33,637 30 54 9 8.00 155,646 4,203 87.7
3 82,740 30 54 6 5.48 273,128 15,098 178.5
4 205,713 79 147 9 8.41 983,245 24,456 970.2
5 358,675 79 147 9 8.42 1,713,258 42,590 2,549.2

• MLPS: Maximum legal path length
• ALPS: Average legal path length
• NLPS: Total number of legal paths

• TPC: Test packet count
• PCT: Pre-computation time

from high a FPR because a switch may be falsely blamed for
the misbehavior of its neighboring switches. Regarding FNR,
all four approaches can detect all faulty switches (i.e., FNR =
0). Figure 9(b) shows the FNR when faulty switches attempt
to detour packets. Randomized SDNProbe has a zero FNR
because the probability that two faulty switches show up on
the same tested path (and thus can remain undetected) in every
test round drops to zero as time goes on. Per-rule Test’s FNR
is lower than SDNProbe’s and ATPG’s due to shorter tested
paths, indicating a low chance for stealthy detours. Figure 9(c)
shows the changes in FNR (y-axis) vs. detection delay (x-axis)
against path detours. In this experiment, we assumed 50% of
rules are faulty. In this scenario, only Randomized SDNProbe
can detect all faulty switches (i.e., FNR = 0) in 33 seconds.

C. SDNProbe Sensitivity Test

To demonstrate its scalability, we applied SDNProbe in
topologies of different scales. Table II summarizes the number
of rules, switches, and links of each topology, and the results
of test packet generation.

The pre-computation time includes the time to construct
the rule graph, execute the MLPC algorithm, and construct
test packets. Although rule graph construction is the most
time-consuming step, it only needs to be computed once. In
addition, SDNProbe can update the rule graph incrementally to
reduce overhead. Due to space limitations, we provide details
in our full report [7].

IX. RELATED WORK

Most closely related work is reviewed in Section III-C.
This section discusses additional related work in automated
networking troubleshooting and path compliance enforcement.

Automated network troubleshooting. Systematically de-
tecting network failures and misconfigurations is an active
research field, given growing network scale and complex-
ity [10]–[12], [20], [21], [24]–[26], [28], [31], [32], [35].
Heller et al. [22] propose a workflow for troubleshooting in
the SDN. They show how to combine existing SDN diagnostic
tools to pinpoint the origin of faults to one SDN layer. Our
work can be classified as tools that check the consistency
between the high-level policy and the actual behavior of
forwarded packets.

NetSight [21] and its application ndb [20] modify every
flow entry such that a switch can report to the controller the
history of each received packet. However, they significantly

increase overhead on both switches and controllers because
a switch needs to return an extra packet to the controller for
each forwarded one.

While we focus on checking the actual behavior against
network policies, a complementary research area is to check
configurations against network policies. HSA [25] checks the
correctness of configurations in the data plane, and detects
failures such as blackholes, loops, etc. VeriFlow [26] is a
debugging tool which implements efficient algorithms and
checks the network-wide invariants with very low latency by
tracking rule updates. NetPlumber [24] is a network policy
verification tool based on HSA and is similar to VeriFlow.
NetPlumber checks policies and invariants when updating
rules. Anteater [28] also diagnoses the network configurations
and checks invariants on the data plane. It transforms the
information of the data plane to Boolean expressions and
models network invariants as Boolean satisfiability problems.
Anteater uses a SAT solver to check if network policies
are violated. NICE [10] uses model checking and symbolic
execution to check the OpenFlow controller program.

Path compliance enforcement. A number of path veri-
fication protocols [27], [33], [36], [37] aim to enforce path
compliance via cryptographic operations. For example, Short-
MAC [37] secures the data plane by adding a small authenti-
cator on each packet for each router on the forwarding path;
DynaFL [36] records a sketch of all packets on a router
and detects faulty routers by comparing the sketches within
a neighborhood. In OPT [27], nodes on a path establish
symmetric keys with the source and destination before sending
packets. The source then inserts a validation field for each node
on the path such that all nodes can authenticate the source and
validate the path. SDNsec [33] uses symmetric-key cryptogra-
phy to protect path integrity. It embeds forwarding information
in the packet header, which can be verified by every node on
the path. We leave it to future work to study whether and to
what extend we can localize strong adversaries using probe-
based techniques without cryptographic operations.

X. CONCLUSION

Probe-based fault localization is a practical and widely-
deployed technique for identifying faulty nodes in networks.
This paper explores the extent of fault complexity that can
be identified using probe-based fault localization. SDNProbe
and its randomized variant show that it is possible to achieve
tight and even exact localization of faulty nodes under a
wide range of advanced fault behaviors. Thus, SDNProbe can
drastically reduce manual effort for network troubleshooting,
with minimal bandwidth overhead.
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