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Abstract—To alleviate path explosion in symbolic execution,
path pruning removes unsatisfiable paths at an early stage before
they multiply. Although existing symbolic execution platforms
have implemented several path pruning strategies to determine
whether and when to check a path’s satisfiability, it remains
unclear how effective these strategies are because the time to
check a path’s satisfiability is non-negligible and may vary
drastically. This work proposes dynamic path pruning (DPP), a
strategy that aims to minimize the overall exploration time by
dynamically adjusting the path checking rate. DPP assigns a
higher checking rate to paths that are more likely to be unsat-
isfiable, and the likelihood is estimated based on the observed
program’s characteristics, such as the observed percentage of
satisfiable paths. DPP is implemented on top of an open source
symbolic execution platform in only a few hundred lines. Our
evaluation confirms that DPP consistently achieves near-optimal
exploration time for a wide spectrum of programs, whereas exist-
ing static path pruning strategies suffer from unacceptable worst-
case performance due to their program-independent behaviors:
Compared with static strategies, DPP performs best in 84% (110
out of 131) of CGC binaries, and the exploration time is within
100–124% of the best static strategy in 95% of the tested hand-
crafted and coreutils binaries.

I. INTRODUCTION

With the rapid growth of software applications, manual
program analysis has become inadequate. Automated program
analysis is required to keep up with growth and to find vulner-
abilities in a timely manner. One promising automatic analysis
technique is symbolic execution, which can systematically
explore all execution paths1 in a program, and therefore can
automatically discover inputs that trigger bugs or specific in-
structions. Symbolic execution uses symbolic variables rather
than concrete values to simulate a program’s execution, such
that the program can be represented as a logical formula
and explored systematically. Symbolic execution can then
find concrete input values that execute a path by solving the
corresponding path constraint using a SAT/SMT solver.

Although symbolic execution is a powerful automated anal-
ysis technique, it suffers from scalability problems and re-
quires further improvement for practical use. One critical chal-
lenge is path explosion. When symbolic execution explores
paths, it keeps track of all possible execution paths. Since
the number of possible execution paths grows exponentially
with branches, symbolic execution often consumes excessive
computing resources after checking only a small portion of
code. Path explosion gets worse when symbolic execution
attempts to analyze shared libraries, which tend to be too

1A path is a sequence of basic blocks.

complex for it to explore. To mitigate path explosion and
improve code coverage, a line of research studies path explo-
ration heuristics (such as breadth-first search, depth-first search
and concolic) [20] so as to maximize code coverage within
the given amount of time and computing resources. Another
line of work studies path pruning, a technique that reduces
search space by removing uninteresting paths before further
exploration [19] [24]. Since path exploration heuristics are
relatively well-studied, this work will focus on path pruning,
particularly, pruning unsatisfiable paths.

Existing symbolic execution tools have implemented several
path pruning strategies. Because all of the derived paths of an
unsatisfiable path will remain unsatisfiable, at first thought it
seems that symbolic execution could conserve resources by
checking paths frequently and removing unsatisfiable paths
as early as possible. On the other hand, checking a path’s
satisfiability takes non-negligible time; therefore, sometimes
it might be more efficient to defer path checking and assume
unchecked paths are currently satisfiable. It is unclear which
strategy is optimal.

This paper formulates the path pruning problem (PPP),
demonstrates that static path pruning is a suboptimal solu-
tion to PPP, and proposes dynamic path pruning (DPP) to
consistently achieve near-optimal exploration time. At a high
level, the path pruning problem aims to minimize the execution
time of symbolic execution by deciding whether and when
to check a path’s satisfiability. Static path pruning (i.e., each
path is checked with a pre-defined probability regardless of the
program) has unacceptable worst-case performance in solving
PPP because the ratio of unsatisfiable paths differs from
program to program. Moreover, the ratio also varies within
a program and can also be influenced by the pruning process.

For this reason, we propose dynamic path pruning (DPP),
a path pruning strategy that consistently achieves near-optimal
exploration time for a wide spectrum of programs. The in-
tuition behind DPP is to assign a higher checking rate to
paths that are more likely to be unsatisfiable; this likelihood
is calculated based on observed information, such as the
percentage of unsatisfiable paths among checked paths at
each exploration layer. We model PPP as an optimization
problem and derive the optimal checking rate. Specifically,
we define the exploration penalty of four types of paths—(1)
unsatisfiable and unchecked, (2) satisfiable and unchecked, (3)
unsatisfiable and checked, and (4) satisfiable and checked—
and try to minimize the total penalty during path exploration
in symbolic execution. In addition, we also analyze the distri-
bution of the time it takes to solve path constraints so as to



set a proper solver timeout that reduces the overall penalty.
As a proof of concept, we extend angr [1] [2] [3] [6], an

open source symbolic execution platform, to support DPP.
We compare DPP with different static checking rates using
a diverse set of programs. The experiment results confirm that
our dynamic path pruning strategy can significantly reduce ex-
ploration time and memory usage when compared with static
path pruning strategies, whereas existing static path pruning
strategies suffer from unacceptable worst-case performance
due to their program-independent behaviors: Compared with
static strategies, DPP performs best in 84% (110 out of 131)
of CGC binaries, and the exploration time is within 100–124%
of the best static strategy in 95% of the tested hand-crafted an
coreutils binaries.

II. BACKGROUND AND MOTIVATING EXAMPLE

This paper proposes a dynamic path pruning technique to
improve code coverage in symbolic execution. In this section,
we provide relevant background information on symbolic
execution and path pruning.

A. Symbolic Execution

Overview. Symbolic execution is an automated analysis tech-
nique that uses symbolic values to simulate program execution.
In contrast to using concrete values to execute a program
directly, symbolic execution systematically explores every
execution path to a certain target (which can be the end of
a program or a particular memory address).

In symbolic execution, inputs are represented as symbolic
values, and an execution path is represented as a logical
formula (i.e., first-order logic constraints over symbolic values)
called path predicate. Since symbolic execution does not
directly execute a program with concrete values, given a path
predicate, we need to know if there is an assignment of con-
crete values to the symbolic variables such that the predicate is
evaluated as true. If such an assignment exists, we say the path
is satisfiable; otherwise, the path is unsatisfiable. Symbolic
execution typically uses a SMT (satisfiability modulo theories)
solver (e.g., Z3 [14]) to search for concrete values that satisfy
the path predicate.
Path exploration. To explore possible paths, a symbolic
executor maintains a worklist that contains 1) satisfiable and 2)
unchecked paths. Unchecked paths are explored but have not
checked for their satisfiability, and thus can be either satisfiable
or unsatisfiable.

During exploration, the symbolic executor takes out a path
from the worklist based on a certain exploration strategy (e.g.,
BFS or DFS). The path will be extended by one basic block
to generate its successor(s). Specifically, when encountering
a condition during exploration, symbolic executor branches
it into two paths: one in which the condition is satisfied,
and the other in which the condition is violated (i.e., the
negated condition is satisfied). The path may branch into more
paths if it encounters an indirect jump. For example, when
encountering a condition x > 10, symbolic execution replaces
the current path with two new paths, where one corresponds
to x > 10 and the other corresponds to the negated condition,

x ≤ 10. These conditions and negated conditions are called
path constraints (or constraints for short).

For each newly discovered path, the symbolic executor can
choose to check its satisfiability immediately or skip the check.
Unsatisfiable paths are discarded, and satisfiable or unchecked
paths are added to the worklist.2 At the end of path exploration,
the symbolic executor validates all paths remaining in the
worklist using a SMT solver.

B. Path Pruning in Symbolic Execution

Due to the path explosion problem, symbolic execution
needs to allocate an excessive amount of memory to main-
tain the worklist. To reduce memory overhead, one common
approach, which we refer to as CheckAll, is to immediately
check the satisfiability of newly discovered path using the
SMT solver, such that every unsatisfiable path is pruned as
early as possible.

However, solving a path predicate is time-consuming, and
the solver may timeout when encountering a complex predi-
cate. The symbolic executor can sometimes gain by skipping a
complex path predicate, as the subsequent paths spawn from
it might be easier to solve. For example, angr supports the
CheckNothing strategy, where all paths remain unchecked until
the end of path exploration.

CheckAll and CheckNothing are two cmmon static path
pruning strategies, whose decision of choosing to check a path
is independent of the path predicate in the runtime. We observe
that such static path pruning is suboptimal for the following
two reasons:
• Static path pruning cannot consistently minimize path

exploration time for all programs. While CheckAll
performs better for programs with more unsatisfiable
paths, CheckNothing performs better for programs with
more satisfiable paths. However, without analyzing the
program, it would be challenging to determine the per-
centage of unsatisfiable paths in each program. Moreover,
neither CheckAll nor CheckNothing will perform well for
a program that has many unsatisfiable paths at the begin-
ning and many satisfiable paths with comlex predicates
at the end.

• The unsatisfiable path rate changes as symbolic exe-
cution proceeds. It is difficult to accurately predict the
percentage of unsatisfiable paths in the worklist without
solving them. Moreover, because symbolic execution
removes known unsatisfiable paths during exploration, the
unsatisfiable path rate in the worklist will change over
time and become even harder to predict.

III. PROPOSED SOLUTION: DYNAMIC PATH PRUNING

This section presents dynamic path pruning (DPP), a path
pruning strategy that automatically adjusts the checking rate
according to a program’s characteristics in order to minimize
the expected exploration time and thus improve code coverage.
We formulate the dynamic path prunning problem as an

2A path is considered unchecked if the solver times out.
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Fig. 1: Data Flow Diagram of Path Pruning

optimization problem, and find an optimal checking rate such
that overall exploration time is minimized.

We first describe the high-level interface of DPP, and then
describe the optimization objective and solution.

A. Path Pruning Interface

Figure 1 shows the location of the path pruning component
in symbolic execution. When symbolic execution explores
paths, the path pruning component is responsible of deciding
whether to check a path at each step. The explorer uses a
worklist to store paths and uses an exploration strategy which
can be BFS, DFS, etc. When a path is explored to the next
step (i.e., extended by one basic block), it will be passed to
the path pruning engine.

If the path pruning engine decides to check a path according
to its strategy, the path will be passed to a SMT solver. If
the result of the SMT solver is satisfiable (SAT) or unknown
(UNKNOWN), the path pruning engine will return True to the
explorer. If the path is unsatisfiable, it will return False to the
explorer. The path pruning engine directly returns True to the
explorer if it decides not to pass a path to the SMT solver.

The explorer adds the path to the worklist if it receives True
from the path pruning engine; otherwise, the explorer prunes
the path. After the explorer finishes exploring every path or
reaches the target addresses, all of these remaining paths in
the worklist will be checked by the SMT solver. In the final
check, if the path is satisfiable, the SMT solver can generate
an input that may trigger the execution of the path. Otherwise,
the unsatisfiable or unknown paths will be pruned because the
SMT solver cannot generate any input that will trigger the
execution of the path.

B. DPP Overview

Given an explored path, DPP aims to compute a probability
of checking the path so that the expected total exploration
time is minimized. This probability is called the checking rate
of the path. DPP determines this checking rate based on the
observation of previously checked paths, and the checking rate
can be dynamically adjusted. More specifically, the rate can
be adjusted per binary, per layer, and per path.

This work focuses on per-layer optimization, which is nicely
coupled with the BFS path exploration strategy. We observe
that the unsatisfiable path rate of one layer is related to the
unsatisfiable path rate of the previous layer. Based on the
observed unsatisfiable path rate of one layer, we calculate the
optimal checking rate for the next layer such that exploration
time is minimized.

We acknowledge that per-path checking rate optimization
may offer better performance than per-layer adjustment, be-
cause per-path is a generalized case of the other. We leave it
as future work to study such finer-grained optimization.

C. DPP Pseudocode

Algorithm 1 presents our dynamic path pruning strategy.

Algorithm 1: Dynamic path pruning
Input: each path which is explored

1 if next depth then
2 upr =

estimate_unsat_path_rate(totalResults);
3 checkingRate =

generate_new_checking_rate(upr);
4 clear totalResults;

5 if should_check(checkingRate) then
6 result = SMT_solve(path);
7 add result to totalResults;
8 if result is unsat then
9 prune(path);

In Lines 2 and 3, we can see that the path pruning engine
calculates a new checking rate for this layer by using the
previously observed unsatisfiable path rate. Then the path
pruning engine applies the new checking rate for every path
in this layer. For a given path, the should_check in
Line 5 will determine whether the path should be checked
uniformly at random based on the current per-layer checking



rate. If the path should be checked, the path will be passed to
SMT_solve in Line 6 and be pruned if it is unsatisfiable.

D. Estimate Unsatisfiable Path Rate

Because the checking rate is not always 100%, some paths
on this layer are left unchecked. After all the paths of this
layer are explored, some unsatisfiable paths remain in the
worklist. To estimate the ratio of unsatisfiable paths in the
remaining paths, we can extrapolate based on the result of
the checked paths (i.e., the ratio of unsatisfiable paths in the
checked paths), and predict the unsatisfiable path rate on the
next layer. Once we obtain an estimated unsatisfiable path rate
for the next layer, we calculate the optimal checking rate that
will minimize the exploration time of that next layer.

Because the checking rate is not always 100%, the total
number of checked paths is always fewer than the total number
of paths on this layer. Therefore, we use the ratio of observed
unsatisfiable paths to estimate the unsatisfiable path rate on
the next layer after checking all the paths on this layer:

Uk+1 = (
Ûk

NkĈk

Nk(1− Ĉk))θk (1)

Sk+1 = (
Ŝk

NkĈk

Nk(1− Ĉk) + Ŝk)θk (2)

Ûk represents the total number of observed unsatisfiable paths
on a layer k, and Ŝk represents the total number of observed
satisfiable paths on a layer k. To estimate the total number
of unsatisfiable paths on k after checking all paths on this
layer, the total number of estimated unsatisfiable paths is the
observed unsatisfiable path rate Ûk

nkĈk
times the total number

of unobserved paths Nk(1−Ĉk), where Nk is the total number
of paths on this layer and Ĉk is the checking rate. Similar to
the estimated of total number of unsatisfiable paths, the total
number of estimated satisfiable paths is the observed satisfiable
path rate Ŝk

nkĈk
times the total number of unobserved paths

Nk(1 − Ĉk). However, the number of estimated satisfiable
paths should include the number of observed satisfiable paths
Ŝk because the observed satisfiable paths are not pruned.
Finally, to estimate the total number of unsatisfiable paths
on the next layer, we calculate the number of estimated
unsatisfiable paths times the growing degree θk, which is
obtained by averaging the observed degree of every checked
paths. Note that we assume the growing degree of the next
layer is the same in this layer, and both the satisfiable and
unsatisfiable path rates are the same in two consecutive layers.
Bias & Confidence Level There are two potential biases in
our estimation:

1) θk is estimated by averaging the observed paths rather
than all paths. Also, the growing degrees of satisfiable
and unsatisfiable paths might differ, because satisfiable
paths can be extended into unsatisfiable paths.

2) If the checking rate is too low, we lack a sufficient
confidence level to estimate the unsatisfiable path rate
on this layer.

The first bias is unavoidable since we are unaware how
many satisfiable paths will later change into unsatisfiable
paths.

The second bias comes from the fact that a lower confidence
level on one layer will result in a larger bias in the estimated
number of unsatisfiable paths on the next layer. We argue
that although such a bias may happen, its effect will not
last indefinitely; we will be able to restore the confidence
level after several layers. Given a low confidence level, there
are two possibilities. First, the unsatisfiable path rate on the
next layer is low but the estimated unsatisfiable path rate is
high. In this case, the checking rate will be high for the next
layer, and thus the confidence level. The second possibility is
that the unsatisfiable path rate on the next layer is high but
the estimated unsatisfiable path rate is low. In this case, the
checking rate for the next layer will be low, and so does the
confidence level. However, because the probability that this
case occurs for consecutive layers decreases exponentially, the
confidence level will be restored after a few layers. Moreover,
we can set a lower bound on the unsatisfiable path rate to
avoid a low confidence level. The (upper and lower) bounds
of the unsatisfiable path rate are parameters that can be tuned
in our system.

E. Minimizing Penalty

As mentioned before, DPP is an optimization problem that
aims to minimize path exploration time. Here we formulate the
optimization objective by defining the penalty—the additional
time taken by path exploration compared to the ideal scenario.

What would be the ideal scenario? To simplify the problem,
we assume the SMT solver can check every path at a constant
rate of time and that the SMT solving time dominates the time
of path exploration. We leave it to future work to optimize the
solver and take other processing times into account.

Thus, the minimum checking cost at layer k+1 is Uk+1Ec,
where Uk+1 is the number of unsatisfiable paths on layer k+
1 and Ec is the cost of checking a path. Ec represents the
average solving time per path by using the SMT solver, and
Eu represents the cost of removing all unsatisfiable paths that
are derived from an unpruned unsatisfiable path on layer k.
The minimum checking cost is Uk+1Ec.

Given this ideal scenario, we can define the penalty on layer
k as the cost to check the sampled paths plus the implicit cost
of unpruned unsatisfiable paths (that is, the expected cost of
pruning all the derived unsatisfiable paths in the future) minus
the ideal checking cost. Formally,

Pred(Ûk, Ŝk) = Ck+1

find Ck+1 s.t. the penalty in layer k (pek) is minimized:

pek =Ck+1(Uk+1 + Sk+1)Ec

+ (1− Ck+1)Uk+1Eu − Uk+1Ec (3)

In this calculation, we want to evaluate the checking rate
on the next layer by using the total number of observed
unsatisfiable and satisfiable paths on this layer. To minimize
the penalty, we should find a checking rate on the next layer



TABLE I: Binary Unsatisfiable Path Rate

Binary (Depth) Unsatisfiable Path Rate (%)
binary1 (80) 0
binary2 (50) 99.88
binary3 (100) 95.93
grep (70) 54.05
readelf (65) 1.30
mkdir (75) 0
echo (65) 85.72
ls (75) 30.80
touch (65) 4.83
cp (90) 12.5

Ck+1 that minimizes the total checking cost on the next layer
Ck+1(Uk+1 + Sk+1)Ec and the implicit cost of unpruned
unsatisfiable paths (1− Ck+1)Uk+1Eu.

The relationship between Eu and Ec is

Eu =Ck+1Ec

∞∑
i=1

θi(1− Ck+1)
i−1

=
Ck+1Ec

1− θ(1− Ck+1)
(4)

To expand Eu (the cost) when a path grows into the
next layer by a degree θ then some of them are pruned
by using the checking rate Ck+1, is θCk+1Ec. The cost,
which the remaining unsatisfiable paths on the next layer
θ(1−Ck+1) are pruned by using the same checking rate Ck+1,
is θ2(1− Ck+1)Ck+1Ec, and so on.

Finally, to find the optimal Ck+1, we differentiate pek with
respect to Ck+1, and find Ck+1 such that the differentiation
of the penalty equals 0. Note that to ensure pek converges and
is differentiable, θ(1− Ck+1) < 1 should hold.

IV. EVALUATION

Test cases. To conduct a comprehensive evaluation, we use
three sets of test cases in the performance comparison:

1) Three hand-crafted binaries: These three binaries are
designed to test extreme cases. binary1 has many un-
satisfiable paths, binary2 has no unsatisfiable paths but
every path contains a large set of constraints (and the
SMT solver will spend more than 0.01 seconds solving
each of them), and binary3 has many unsatisfiable
paths at the beginning and generates a large number of
constraints for each path at the end of the binary.

2) Seven coreutils: Coreutils are used to test our dynamic
path pruning strategy in general cases. These seven bi-
naries are grep, readelf, mkdir, echo, ls,
touch, and cp.

3) 131 CGC binaries: For large-scale evaluation, we use
the 131 binaries released from the DARPA Cyber Grand
Challenge (CGC).

Before starting the experiments, we use CheckNothing to
run every program for a fixed amount of time and obtain the
unsatisfiable path rate. As Table I shows, different programs
have different unsatisfiable path rates and each program has a
different unsatisfiable path rate on a different layer.

Experiment setup & implementation. Our experiments run
in a Linux environment, using an AMD64 processor E5-2620
and 64 GB memory. To ensure fair comparison, each test
uses one thread on one server. We use angr, an open source
binary analysis tool, as our symbolic execution engine. Note
that angr’s default setting uses CheckAll, and can switch to
CheckNothing by setting the LAZY SOLVES option. In order
to perform a fair comparison among various strategies, we
implement dynamic path pruning as a class that will be called
whenever a new path is explored.
Evaluation metrics. We consider two evaluation metrics:
coverage and memory usage. Code coverage is defined as the
total number of explored basic blocks over time. A strategy
with higher code coverage is better. However, code coverage
does not capture the progress made within a loop because
a strategy which explores the loop one time and a strategy
which explores the loop 100 times cover the same number
of basic blocks. Hence, we propose using depth coverage as
an alternative measure when applying BFS for exploration.
Specifically, we instruct symbolic execution to stop exploring
when it reaches a certain depth, and compare the time each
strategy takes to reach the same depth, with shorter time
being better. Another metric is memory usage, which evaluates
memory usage over time. To compare across various programs,
we also define the performance ratio to be

resource consumption
minimum resource consumption of strategies

× 100%

, which captures the closeness to optimality.
The default timeout value of the SMT solver is 0.3 seconds

and we will analyze different timeout values in Section IV-C.

A. Depth Coverage

In this experiment, DPP’s checking rate is empirically
bounded within 5 ˜90% to ensure timely adjustment. CheckX
is a static path pruning strategy with an X% checking rate.
CheckAll and CheckNothing have 100% and 0% checking
rates, respectively.

1) Three hand-crafted binaries: Figure 2a shows the time
consumption of different strategies with three programs. Fig-
ure 2b shows the performance ratio of different strategies with
three binaries.

In this figure, CheckNothing is better than CheckAll in the
first binary because the first binary has a higher unsatisfiable
path rate. However, CheckAll is better than CheckNothing in
the second binary because it has a 99% unsatisfiable path rate.
DPP is not the best strategy in the first and second binaries,
but it comes close to the execution time of the best strategy.

In the third binary, DPP is the best strategy, while Chec-
kNothing and CheckAll suffer from high exploration time.

Recall that the unsatisfiable path rate of binary2 is 99.87 %,
as shown in Table I, but the best static strategy for binary2
is Check70 rather than Check100 (the closest rate to the
unsatisfiable path rate). The reason for this is that, as we
prune the unsatisfiable paths, the unsatisfiable path rate of the
remaining paths will change. Thus, the best strategy among
all the static strategies may change over time. Dynamic path
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Fig. 2: Experiment results

pruning avoids this problem because the checking rate can be
adjusted dynamically based on the current unsatisfiable path
rate on every layer.

2) Coreutils: Figure 2c shows the time consumption of
different strategies with coreutils. Figure 2d shows the per-
formance ratio of different strategies with coreutils.

The results confirm that DPP can ensure low exploration
time in a diverse set of programs and can avoid the worst-
case exploration time.

Table II summarizes the normalized time for each strategy.
We can see that although Check0 (CheckNothing) is the
best for many programs, Check0 occasionally performs the
worst (e.g., for binary2 and echo). Check100 (CheckAll) also
performs the worst for many programs. On the other hand,
DPP always approximates the best time and does not have
any worst-case performance. As for the average and standard
deviation, we can see that DPP’s average is 108.43 and
the standard deviation is 8.13, which means that when we
analyze a new program, there is a 95% probability that the
exploration time will be within 100–124.69% compared to the
best strategy.

3) CGC Binaries: Figure 3 shows the performance ratio
of three path pruning strategies (DPP, CheckAll, and Chec-
kNothing) over CGC binaries. DPP outperforms CheckAll
and CheckNothing in 110 out of the 131 CGC binaries.
Although DPP is 5-8x slower in 23 out of 133 binaries (e.g.,
CROMU 00004), manual inspection reveals that such binaries
have uncommon characteristics (e.g., having no branch at all),
such that DPP’s computational overhead dominates the overall
cost. We can address these uncommon cases by avoiding
frequent update of the checking rate.

Fig. 3: CGC binaries

B. Memory Usage

Figures 2e, and 2f are the results of a memory usage ex-
periment with same configuration of depth coverage. Table III
shows all the memory usage of each strategy. Table II shows
that CheckNothing is the most efficient for many programs.
However, for some programs such as echo, CheckNothing
uses twice as much memory than the other strategies. This
is because CheckNothing kept too many unsatisfiable paths.
On the other hand, DPP’s memory usage is slightly higher
than CheckAll, but it is more efficient than CheckAll as shown
previously.

C. Timeout

To evaluate the impact of solver timeout value, we compare
the time an SMT solver, Z3, takes to solve a path, and
compare the total execution time when symbolic execution
uses a different timeout.



TABLE II: Normalized Time of Depth Coverage

Binary
(Depth) Best Time (s)

Normalized Time (%)
Static Path Pruning Strategies DPP0 10 20 30 40 50 60 70 80 90 100

binary1 (80) 14.97 100 118 147 170 187 231 248 279 318 337 360 109
binary2 (50) 129.93 494 234 204 173 158 103 111 100 100 103 105 124
binary3 (100) 291.96 171 114 107 113 128 140 159 176 190 208 229 100
grep (70) 471.03 100 103 108 112 124 125 131 140 139 137 145 112
readelf (65) 144.65 100 116 132 148 164 180 196 210 228 244 260 109
mkdir (75) 248.20 100 118 138 156 177 196 216 233 252 264 264 106
echo (65) 83.09 228 141 116 107 100 101 104 105 109 113 116 103
ls (75) 97.36 100 102 103 105 107 110 113 116 119 122 125 101
touch (65) 277.44 100 113 126 142 153 168 181 197 211 224 239 120
cp (90) 22.93 102 100 102 100 101 104 101 103 101 102 102 100
average percent 159.49 126.08 128.35 132.60 139.90 145.76 156.01 165.84 176.62 185.39 194.53 108.43
standard deviation 125.36 39.88 30.93 28.31 32.21 45.61 52.19 62.80 74.89 81.70 88.03 8.13

TABLE III: Normalized Memory Usage

Binary
(Depth)

Best Memory
Usage (MB)

Normalized Memory Usage (%)
Static Path Pruning Strategies DPP0 10 20 30 40 50 60 70 80 90 100

binary1 (80) 14.94 103 100 105 103 103 103 100 105 103 103 103 106
binary2 (50) 37.38 5826 1301 400 274 191 146 127 112 113 104 100 252
binary3 (100) 142.70 281 224 182 153 125 119 108 103 100 101 102 165
grep (70) 1910.28 112 109 107 105 103 102 101 101 100 100 100 102
readelf (65) 706.67 100 100 100 100 100 100 100 101 101 101 100 100
mkdir (75) 1088.21 100 100 100 100 100 100 100 100 100 100 100 100
echo (65) 319.97 381 212 157 129 110 106 103 101 100 101 100 121
ls (75) 203.27 103 103 102 103 102 102 103 101 101 101 100 103
touch (65) 1182.31 104 103 101 102 101 101 100 100 100 100 100 103
cp (90) 20.51 100 101 100 101 102 104 104 102 102 104 104 100
average percent 721.14 245.40 145.57 126.96 113.75 108.32 104.64 102.60 102.05 101.37 100.93 125.25
standard deviation 1,796.15 373.97 93.76 54.32 28.04 14.33 8.25 3.50 4.07 1.59 1.35 48.81

An ideal timeout should be long enough to find most
unsatisfiable paths, while short enough to avoid checking
satisfiable paths. If the timeout is too long, few complex
queries can dominate the overall exploration time. If the
timeout is too short, the SMT solver may timeout and return
UNKNOWN before being able to draw any conclusion, and
thus many unsatisfiable paths will be left unpruned. In other
words, checking time is wasted.

Our experiment shows that, for many programs and layer
depth, 80% of unsatisfiable paths can be identified in less
than 0.01 seconds. Also, the majority of satisfiable paths take
longer to be solved. Hence, we set the Ec value (discussed in
Section III) to 0.01–0.02 seconds, sufficient for checking and
pruning unsatisfiable paths.

Z3 can solve unsatisfiable paths in 0.01 seconds for almost
every program, but it takes between 0.01–1 second for the
solver to solve a satisfiable path. In Figures 4a, 4b, 4c, and
4d, we can see that by setting the timeout to 0.02 seconds, we
can solve most of the unsatisfiable paths without wasting too
much time on satisfiable paths.

We use CheckAll with different timeouts to analyze total
execution time. The timeouts are 20, 300, and 10000 millisec-
onds. A long timeout allows symbolic execution to find more
unsatisfiable paths, but will also increase the execution time.

V. RELATED WORK

Reducing program state. Path explosion is one of the main
obstacles to efficient symbolic exeuction. Some research pro-
poses techniques to reduce the amount of symbolic state.
Veritesting [7] is a technique that combines static symbolic

execution (SSE) and dynamic symbolic execution (DSE). It
uses DSE to explore paths and SSE to merge path predicates in
order to mitigate path explosion. In DASE [24], the uninterest-
ing path is pruned by adding constraints to the input according
to documents. Pre-added constraints allow symbolic execution
to focus on exploring interesting paths. Another technique re-
garding uninteresting paths is the under-constrained symoblic
exeuction [19]. Under-constrained symbolic execution com-
pares and identifies different paths between patched and non-
patched binaries so as to find new bugs in the patched binary,
rather than the non-patched one. Another technique is heuristic
path pruning [11], which tries to find non-fatal error handling
branch (NFEHB) patterns and only forks a path which is not
NFEHB, because they observe that few vulnerabilities are
in non-fatal error handling in Common Vulnerabilities and
Exposures (CVE). In other words, it tries to prune paths that
are NFEHB. Our work can be easily integrated with these
techniques.

Automated analysis. Manual code or binary analysis is time
consuming. To improve performance, automated techniques
such as symoblic execution and fuzzing [25] have received
increasing attention lately. Symbolic execution was introduced
in 1975 [17] [18] and have decades of history [10]. DART [15]
proposes concolic testing to significantly improve the effi-
ciency of symbolic execution.

Open source tools. Several open-source symbolic execution
tools are widely used in practice. Cristan et al. developed
EXE [9], an effective bug-finding symbolic executor. It fea-
tures modeling of memory and optimization for constraint
solving. Inheriting advantages from EXE, KLEE [5] proves
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(a) Satisfiable path in grep
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(b) Unsatisfiable path in grep
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(c) Satisfiable path in readelf
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(d) Unsatisfiable path in readelf

Fig. 4: Distribution of per-path solving time

that symbolic execution can find bugs in real-world programs.
To scale to large systems, Chipounov et al. presented selective
symbolic execution (S2E) [12], [13]. S2E can reduce the
amount of code being executed symbolically, and can combine
with virtualization. TRITON and angr are dynamic binary
analysis tools. Although binary based tools lose some infor-
mation, they can use dynamic techniques like CFG recovery
or backward slicing [22] to obtain binary information. The
differences between TRITON and angr are that TRITON uses
pin [4] (which can analyze x86 and x86-64 instructions set)
to trace the execution of a binary. angr, on the other hand, can
analyze any binary on any platform. There are some extensions
of angr such as firmalice [21] and Driller [23]. Another notable
symoblic execution tool is SAGE [16], which found critical
bugs during the development of Windows 7 [8].

VI. CONCLUSION

Automated program analysis has attracted significant atten-
tion over the past decades as software applications advance
in scale and complexity. Symbolic execution is a powerful
automated analysis technique that systematically explores a
program to find crashing inputs and reproduce bugs. How-
ever, because the number of possible execution paths grows
exponentially with branches, symbolic execution suffers from
path explosion and often fails to find bugs further away from
the entry point.

This paper investigates the path pruning problem, which
aims to minimize path exploration time in symbolic execution
by deciding whether and when to check a path’s satisfiability.
To overcome the limitations of static path pruning strate-
gies, we propose dynamic path pruning (DPP), in which the
checking rate is dynamically adjusted based on the program’s
characteristics. Our evaluation shows that DPP’s exploration
time and memory usage are close to the best static path pruning
strategies in a diverse set of programs.
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