
DAMUP: Practical and Privacy-aware Cloud-based
DDoS Mitigation

Su-Chin Lin∗, Po-Wei Huang∗, Hsin-Yi Wang∗ and Hsu-Chun Hsiao∗†
∗Department of Computer Science and Information Engineering, National Taiwan University, Taiwan

†Research Center for IT Innovation, Academia Sinica, Taiwan

Abstract—Cloud-based DDoS mitigation techniques have been
widely deployed. However, existing approaches severely violate
user privacy as they intercept HTTPS to uncover non-volumetric
attacks. This paper presents DAMUP, DDoS Attack Mitigation
Upholding Privacy. DAMUP is a practical and privacy-aware
solution that empowers the cloud to blindly filter encrypted traffic
while remaining deployable on the current Internet. The main
idea underlying DAMUP is to encode the server’s filtering policy,
e.g., client’s priority level or rate limit, into cryptographic tokens
that can be stapled to an encrypted connection and be efficiently
verified by the cloud. DAMUP is designed to be deployable on
the current Internet because it requires no modification to the
Internet architecture. For example, DAMUP leverages the Server
Name Indication field in the TLS handshake to exchange tokens,
and uses SOCKS proxy to override DNS. Our evaluation shows
that DAMUP can significantly improve the connection success
rate from 11.4% to 99.8% under HTTP(S) floods.

I. INTRODUCTION

Distributed denial of service (DDoS) attacks are an esca-
lating threat to web service availability due to their ease of
weaponization and monetization. A DDoS attack can cost an
enterprise at least $2.5 million [8], and increasingly more
DDoS extortion scams thrive on web owners’ fear of finan-
cial and reputation loss. Cloud-based DDoS mitigation has
emerged as a mainstream technique that has been widely
deployed in recent years because cloud (which lies between
clients and servers) can naturally absorb attack traffic, remove
attack traffic before it closes on the victim server, and require
little modification on the server side. In cloud-based schemes,
all traffic to the victim server is first redirected to the cloud
(e.g., via DNS or BGP update) after which the attack traffic
is filtered by the cloud based on its size and/or content.

Unfortunately, with the rise of low-rate (e.g., application-
layer) DDoS attacks that leverage encrypted communication
such as HTTPS [1], existing cloud-based schemes are either
ineffective or they severely degrade user privacy. In particular,
unlike volumetric DDoS attacks, low-rate DDoS attacks cannot
be easily detected by simply monitoring the flow size, and
thus the cloud needs to decrypt HTTPS for further inspection
(e.g., by injecting a CAPTCHAs challenge to the client) [7].
However, the cloud acts as a man-in-the-middle that breaks the
end-to-end security guarantee. An untrusted or compromised
cloud could expose users’ sensitive data (e.g., passwords and
cookies) as demonstrated by the Cloudbleed vulnerability [2]
against Cloudflare, one of the biggest DDoS defense providers.

To this end, an interesting research topic is to investigate
whether cloud-based DDoS mitigation can guarantee user
privacy while remaining effective and practically deployable.
Herein, we propose DAMUP, a lightweight mechanism that
enables private filtering by passing cryptographic tokens that
encode the server’s filtering policies. The main observation
is that the victim server can often better differentiate benign
and attack flows than the cloud because the server has ad-
ditional knowledge about legitimate users (e.g., users who
have registered before) and application-specific bottlenecks.
In DAMUP, the server issues tokens to each authorized client
and the client embeds tokens in flows that desire prioritized
treatment in the case of DDoS. Consequently, the cloud can
effectively block traffic based on the embedded tokens without
inspecting the actual traffic content, thereby minimizing the
trust on the cloud service. Prior work with similar observations
has focused on empowering the server to control incoming
packets [20], [15], whereas our work aims at preserving user
privacy in a practical manner.

To be deployable on the Internet, the DAMUP solution
must address several technical challenges. The first is how
to efficiently construct tokens while preventing token misuse.
DAMUP constructs the cryptographic token using a 256-bit
MAC of the timestamps and client IDs (e.g., source IPs).
In addition, the tokens are hierarchically derived to ensure
efficient management without having to keep per client states.
The second challenge is where to embed the token such that
the cloud can retrieve the token without breaking end-to-end
encryption.1 DAMUP addresses this by embedding the token
in the Server Name Indication (SNI) field supported by an
TLS extension.2 Finally, existing cloud-based defense can be
circumvented when the server’s IP is exposed [18]. To enforce
DDoS filtering in DAMUP, the cloud tags valid packets,
and only packets with tags can pass through the server’s
gateway. Because the number of protected servers (and thus
their gateways) is much smaller than the number of clients,
DAMUP efficiently implements such tagging by establishing
an IPSec tunnel between the cloud and the server’s gateway.

1One might attempt to embed the token in the unused TCP header fields
but unused bits are considerably limited. Embedding the token in the HTTP
header (e.g., adding a cookie) does not work because either the HTTP header
is encrypted or it cannot be accessed by the cloud in our privacy-preserving
setting.

2HTTPS means running HTTP over the Transport Layer Security (TLS)
protocol. By design, the SNI field is left unencrypted to support multiple
virtual hosts over HTTPS using the same IP and can be up to 216 − 1 bytes.978-1-5386-3416-5/18/$31.00 c© 2018 IEEE

Fig. 1: Cloud-based DDoS protection.

In addition, DAMUP meticulously makes several design
choices to minimize modifications on both client and server
sides, as highlighted in Sections IV and V. Our evaluation
shows that DAMUP can significantly improve the connection
success rate from 11.4% to 99.8% under HTTP(S) floods.

II. BACKGROUND AND RELATED WORK

Cloud-based DDoS protection involves three roles: clients,
a victim server, and a Cloud-based Security Provider (CBSP),
which operates proxies on clouds. To enable DDoS protection,
the victim server redirects traffic to the CBSP via DNS or BGP
update. The CBSP then tries to identify and remove the attack
traffic based on certain characteristics (e.g., size and content).

One vital advantage of cloud-based DDoS protection is
deployability as it requires little modification to the Internet
architecture and endpoints. However, existing CBSPs suffer
from three critical limitations:

1) Privacy violation: A CBSP often requires access to the
plaintext content in order to detect low-rate DDoS lever-
aging encrypted connections. For example, Radware
decrypts HTTPS and injects a CAPTCHAs challenge
to the client [7]. However, an untrusted or compromised
CBSP could expose users’ sensitive data [2].

2) CBSP circumvention: Because most CBSPs use DNS
to redirect traffic, attackers can easily bypass the proxies
if the victim’s IP is exposed [18], [4].

3) No destination control: As pointed out by Liu et
al. [15], CBSPs have full control over the scheduling
and filtering decisions, and thus the destination cannot
adopt per-destination, customized policies.

MiddlePolice [15] resolves the third limitation by enhancing
cloud-based mitigation with network capabilities. However,
MiddlePolice focuses on mitigating volumetric DDoS and
requires cooperation with ISP to configure ACL. CDN-on-
Demand [13] uses HTTP authentication cookie to identify
privileged clients. For HTTPS websites, however, there may
be a need to share the TLS key with the proxy, thus violating
privacy.

Network-capability-based solutions, such as NetFence [14],
do not meet the deployability requirements because they often
require router upgrades and make it difficult for different
ASes or ISPs to cooperate. Phalanx [11] uses an overlay to
prevent DoS, which also requires router and ISP modifications.
TVA [19] adds an additional field to the packet header, thus
requiring router upgrades as well. Mirage [16] reaches per

computation fairness by using crypto-puzzles to hide a victim’s
IP address. However, it needs IPv6 or upstream ISP support.

In an attempt to lessen privacy violation, Cloudflare supports
a keyless SSL option [6], which allows the server to keep its
long-term private key (instead of sharing it with the cloud);
however, the server needs to maintain an on-demand decryp-
tion oracle to return the plaintext to the cloud. This approach
remains unsatisfactory as the cloud can still access users’
sensitive data. Therefore, this work focuses on addressing the
first and second limitations. Since our scheme is inspired by
network capabilities, it naturally supports destination control.

III. PROBLEM DEFINITION

A. System Model

Network and bottleneck. As shown in Figure 1, an end-
to-end connection can be divided into three segments, which
are client-proxy, proxy-gateway, and gateway-server. Similar
to other cloud-based approaches, we focus on bottlenecks
residing on the gateway-server or the server itself. Proxies
usually have a relatively large network link capacity and com-
putational resources, as they can be hosted on multiple data
centers; gateways are edge routers of an organization, and most
enterprise gateways have gigabit-level network link capacity.
Thus, the server’s capacity is bounded by its computational
efficacy and the gateway-server link capacity.

Server and client. Clients can be benign or malicious.
We assume the victim server3 is able to differentiate whether
a client is benign or not when the client makes its initial
connection, and establish a shared secret with the benign one.
For example, the server may require login and ask the client to
provide identity proof during registration, such as a verifiable
email or ID. The client is regarded as benign to the server
after successful registration and verification. Note that the
initial connection can be protected using existing heavyweight
schemes [17], and we focus on providing lightweight DDoS
protection for the subsequent connections.

B. Threat Model

The goal of the attacker is to disrupt the service using
DDoS. The attacker controls a large number of bots that can
send traffic to flood the gateway-server link or paralyze the
server. We focus on attacks that target the gateway-server link
or the server because a previous study [3] showed that 80%
of DDoS attacks sent 1 Gbps traffic and only 1% of them
sent 10 Gbps traffic. In other words, even if the attacker can
successfully bypass the cloud, only a small number of attackers
would be capable of DDoS attacks on the gateway directly.

We consider flash crowds (i.e., benign human users flooding
the server) outside the scope of this paper because the cost
of controlling a large number of human users with verified
identities is too high for the attacker.

3More precisely, we would like to protect the service or application on the
victim server. For ease of description, we will simply use “server” throughout
this paper.

C. Desired Properties

To overcome the limitations stated in Section II while
remaining deployable, a cloud-based DDoS mitigation scheme
should satisfy the following desired properties.

Filter traffic while preserving privacy and transparency.
Usually, the client traffic is filtered at the proxy. Traditional
solutions require the inspection of packet contents, and for
HTTPs packets, the proxy requires the server’s private key.
Several CDN hijacked events have shown that it is not secure
to put private keys on proxies. If the proxy is compromised,
sharing private keys would cause a leakage of packet contents.
Besides privacy issues, filtering packets on proxies means that
the server cannot decide which kind of packets should be
filtered, since the total control is held by the proxy. A cloud-
based DDoS mitigation scheme should support filtering polices
without requiring the server’s private keys or the ability to
analyze packet payloads and thus let the server control the
filtering process to a greater extent.

Protect public address servers. Cloud-based DDoS protec-
tion often requires hiding server’s origin IP address. However,
once the IP address is leaked, the attacker can easily bypass
the proxy and connect to the server directly. Besides, it is
inconvenient for some organizations to change all their servers’
IPs to private. Hence, a cloud-based DDoS mitigation scheme
should be able to protect servers with public IP addresses.
Even if clients intend to bypass the proxy, the attack traffic
should be intercepted before it reaches the server.

Affordable and feasible. A feasible protection should be
deployable on the current Internet. It would be ideal to utilize
upstream ASes such as ISPs, but such an option may be
impractical sometimes. Some network equipment supports
advanced functionality for DDoS protection, but most of such
equipment is expensive or difficult to deploy. A cloud-based
DDoS mitigation scheme should be deployable on common
network systems with minimal modification and requirements
demand on the original structures, including the server and
client sides.

IV. DAMUP DESIGN

We propose a token-based DDoS defense mechanism called
DAMUP. At a high level, DAMUP utilizes a shared secret
(between a benign client and server) established during the
initial connection to derive tokens. The client marks its traffic
as benign by embedding tokens. Every connection to the
server is redirected through the DAMUP proxy, and those
without valid tokens will be blocked by the proxy. The benign
ones (with valid tokens) are then passed to the server via a
secure tunnel, further protecting the server from attacks that
somehow bypass the proxy. As a results, the DAMUP proxy
successfully filter malicious traffic while remaining oblivious
about the traffic content.

This section describes the major components in DAMUP,
the step-by-step protocol flow, and a hierarchical key deriva-
tion method to reduce token management cost.

Fig. 2: DAMUP system architecture

A. Major Components

DAMUP contains four major components — token man-
ager, proxy, gateway, and server, as shown in Figure 2.

Token manager. To simplify the token management task on
the client side, each benign client connected to the DAMUP
installs a lightweight token manager program, which stores the
client’s secret key in advance and automatically derives tokens
based on the secret key. Whenever the client makes a request
to a DAMUP-protected server, the token manager will embed
the corresponding token into the request.

The DAMUP proxy. Deployed in clouds, proxies can
usually resist higher intensity attacks as explained in Sec-
tion II. Each DAMUP proxy will establish a secure tunnel
to the server’s gateway. When the server is not under attack,
the DAMUP proxy allows every packet pass through the
secure tunnel. In contrast, when the server is under attack,
the DAMUP proxy will block connections without valid
tokens and let those with legal tokens to pass through the
secure tunnel. Additionally, the DAMUP proxy monitors the
sending rate associated with each token to prevent overuse.
Once the rate of a token exceeds a certain threshold, all
subsequent traffic associated with the token will by dropped
by the DAMUP proxy. A client’s secret key will be revoked
if the client overuses its tokens multiple times. Thereby, the
DAMUP solution ensures content privacy since the DAMUP
proxy does not have to know the server’s TLS private key.

The Gateway. To reduce the damage when the server’s
public address is exposed, DAMUP constructs a secure tunnel
between each DAMUP proxy and the gateway. The gateway
router will only forward packets that come from the secure
tunnel to the server. Hence, if the attacker attempts to directly
access the server via the server’s IP address, even if the
attacker can pretend to be a DAMUP proxy via IP spoofing,
the packets will be dropped by the gateway.

The server. There are only two modifications on the server.
First, it needs to redirect all traffic to our DAMUP proxy in
cloud via a DNS override. Second, a new web page is needed
for identity verification and key distribution. The server can
also maintain a whitelist of clients who are authorized to get
valid tokens. Hence, DAMUP also enhances transparency of
filtering policies because it allows a server to define per-client
policies, whereas most commercial cloud-based solutions con-
sider filtering policies as their business secret.

Fig. 3: DAMUP protocol flow

B. Protocol Flow

Figure 3 describes each step of the process by which a
registered client obtains a valid key from the server.

1) When a new client makes the initial request to a
DAMUP-protected server, the client will be redirected
to the DAMUP proxy in cloud. At this time, the client
has no shared secret with the server or token manager.

2) If the server is under attack, the DAMUP proxy will
block any connection without a valid token. When the
server is not under attack, the DAMUP proxy will allow
every connection to pass, and therefore this client can
connect to the server.

3) During the client’s first access to the server, the client
will be verified and a client-side token manager will be
installed to manage the secret key and tokens.

4) If the client’s identity is checked out, the server will
return a shared key to the client. The keying service can
be maintained by the server or delegated to the proxy.

5) The token manager stores the client’s key in local
storage.

6) When the client makes a subsequent request, the token
manager derives a token using the secret key and embed
it into the request, such that the client can pass thorough
the DAMUP proxy and reach the server.

DAMUP uses a long enough cryptographic token (e.g.,
256- bit) to ensure security. To prevent attackers from abusing
tokens, each token has a specific lifespan T and a limited
throughput. When a token expires, the token manager will
automatically calculate the next token using the secret key.
Even if the attacker can somehow guess or steal a valid token,
the attacker can send at most a threshold amount of attack
traffic before the token expires.

C. Hierarchical Key and Token Management

DAMUP maintains keys in a hierarchical manner (Figure 4)
to reduce key management cost. DAMUP assigns the server
a long-term key Ks which should be appropriately protected.
For simplicity, we assume there is only one DAMUP proxy
in cloud. With this long-term key Ks, the server can derive a
series of short-term proxy keys Kpi

for the proxy based on
a key derivative function (KDF) such as HMAC(key = Ks,
msg = timestamp). The timestamp described above is a
UNIX timestamp divided by the refresh time interval (e.g.,
one month). Therefore even if the proxy is compromised,
the compromised key will be invalidated after one refresh
interval. As shown in the lower part of Figure 4, the proxy

Fig. 4: Hierarchical key and token management

with the proxy key can derive a series of secret keys for
authorized clients based on KDF(Kpi, client_id). With
this secret key, the token manager of an authorized client
can generate valid tokens and automatically pass through the
DAMUP proxies’ filtering mechanism. To validate a token,
the DAMUP proxy simply checks whether the token has come
from the secret key derived by KDF(Kpi

, client_id).
The attacker might steal the client secret keys and generate

numerous valid tokens to attack the server. Hence, DAMUP
should be able to revoke a client’s secret key. The DAMUP
proxy will record the revoked secret key in a Revoke Key List.

V. DAMUP IMPLEMENTATION

A. Token Derivation and Validation

1) Server Name Indication: To filter TLS connections
without breaking end-to-end encryption, DAMUP embeds
the token in the Server Name Indication (SNI) [9] field in
the TLS handshake protocol. SNI is a TLS extension that
is widely implemented and supported in modern browsers
nowadays. The extension is used to indicate the hostname the
client connects to and thus allows the server with multiple
TLS certificates to present the corresponding certificate when
processing the incoming TLS handshake. Specifically, the SNI
will be included in plaintext in the Client Hello message (the
first handshake message), such that the server can identify the
hostname before the encrypted session starts.

To modify SNI, we override the hostname in the URL
address. Neither root permission nor intercepting a HTTPS
request is required. This approach is particularly advantageous
since HTTPS interception leads to privacy concerns [12]. In
addition, because the token will be placed in the URL, the
user can be aware that the protection is active.

2) Token Validation: To validate the token, the DAMUP
proxy first inspects the SNI field in TLS extension. If the token
in SNI is correct, it simply proxies the TCP connections to the
server. Otherwise, the connection is either aborted or falls back
to an error page if the SNI is invalid or empty. The default
behavior of handling invalid tokens can be determined by the
server. We briefly explain the pros and cons.

We can simply abort the connection, but new clients without
tokens may be affected. These users may falsely infer that
the website is down. By contrast, a fallback to an error
page provides the new client useful information. However, in
the error page, the TLS certificate will be invalid, since the
DAMUP proxy does not have the TLS private key of the
server.

B. DAMUP Proxy
1) Secure Tunnel: The DAMUP proxy establishes a site-to-

site VPN tunnel with the gateway, such that the server is able
to tunnel traffic through this secure channel. We utilize IPsec
to build an IKEv2 VPN with pre-shared keys. IPsec provides
data origin authentication and thus the tunnel is resistant to IP
address spoofing.

The tunnel serves two purposes. First, it ensures that all
traffic from the user can be tunneled to the server via the
DAMUP proxy. This is the basic cloud-based DDoS mitiga-
tion architecture. Second, all token derivation and negotiation
process is transmitted via the tunnel. IPsec provides data
confidentiality, which means all of the traffic is encrypted.

2) Cloud-based: As described in the threat model, the net-
work bandwidth and computational resources of the DAMUP
proxy should be as large as possible. Hence, cloud services can
be utilized to deploy the DAMUP proxy. These services not
only meet the demands of the proxy but are also affordable.
Moreover, DAMUP proxies can be geographically distributed
to enhance the ability to disperse and absorb attack traffic.

C. Server Implementation Details
1) Change DNS record: If the DNS name server of the

website can be changed, we can simply change the NS record
to the customized name server of the DAMUP proxy. A
wildcard DNS record will be set up, pointing to the DAMUP
proxy. Nevertheless, some websites may be unable to change
the DNS name server. Hence, we provide another option:
change the CNAME record. In this option, the A record of the
server will be replaced by a CNAME entry. The CNAME record
points the hostname to the DAMUP proxy. Therefore, it can
proxy the client traffic to the server.

2) Wildcard TLS Certificates: Because we leverage the
domain name to modify SNI, a wildcard TLS certificate is
required to avoid triggering browser warnings. That is, the
Common Name in the certificate has to contain the specific
domain name prefixed by the tokens. Otherwise, the browser
will warn the user due to mismatch error. Therefore, a wildcard
certificate (e.g., *.example.com) is required. Note that
using a multi-domain certificate is infeasible because the
number of possible tokens is large (thus the subdomains). It
is worth mentioning that wildcard certificates are becoming
more and more ubiquitous. The world’s largest free certificate
authority, Let’s Encrypt, plans to offer wildcard certificates in
February 2018 [5].

3) DNS Override: A DAMUP client modifies SNI by
locally updating the domain name of a connection request.
However, because the domain name prepended with a valid
token does not exist in any DNS records, the DNS has to be
overridden. We choose SOCKS V5 proxy as a solution because
it is capable of performing remote DNS lookups. Additionally,
most modern browsers support SOCKS5 and the Proxy Auto-
Configuration (PAC) file. The PAC file defines the hostname of
the proxy server, and whether the browser proxies the request
for a given domain name. Given below is a PAC file example.
The SOCKS proxy server is simply the same server of the
DAMUP proxy.

1 i f (dnsDomainIs (hos t , ” example . com”))
2 r e t u r n ”SOCKS damup−proxy . com :12345 ” ;

In the code above, only the requests under the subdomain of
example.com will proxy through the DAMUP proxy. This
ensures a user’s privacy and security.

If the DNS name server record can be changed, the user
does not need to use a SOCKS proxy because the domain
name exists in the DNS records.

4) Token manager: In order to differentiate benign flows
from the malicious ones, a DAMUP proxy requires its clients
to place tokens in the SNI field. We implement a cross-browser
extension based on the WebExtensions API. The browser
extension will store the client’s secret key in the local storage
in advance. Then, when the client makes a request to the target
domain, the browser extension will intercept it and place the
secret token in the SNI header.

Specifically, if an authorized client makes an HTTPS request
to example.com, this extension will intercept this request
before any TCP connection, and then calculate the secret-token
using HMAC of the client secret key and UNIX timestamp /
refresh interval T . The extension will modify the URL of this
request to secret-token.client_id.example.com.
As mentioned in Section IV-C, the token will be updated after
every T seconds to ensure security.

VI. EVALUATION

Testbed. To simulate a server with limited computational
resources and network throughput, a Raspberry Pi 3 running
NGINX HTTP server is set up as the server. The server is
connected with a router through a 100 Mbps Ethernet interface.
Both uplinks of the router and proxy are 1 Gbps.

Since all cloud-based schemes have path detour latency, we
focus on evaluating the overhead introduced by DAMUP’s
computational and communication overhead. Hence, in our
experiments, both the router and the DAMUP proxy have
public IP addresses under the same subnet, which is intended
to minimize the detour latency. In addition, an IPsec VPN
tunnel is established between the two public IP addresses.
Latency. The latency evaluation compares DAMUP with
a vanilla scenario where the naked server is configured
without any proxy server. In name, a DAMUP proxy is set
up to proxy users requests. The DNS A record of the server
is replaced with a CNAME record pointing to the hostname
of the proxy. Additionally, the user already has a valid key,
and utilizes the SOCKS5 proxy for remote DNS lookups. We
compare the latency of downloading 1 MB, 500 KB, and 100
KB PNG images respectively from the server. Each experiment
is repeated 1000 times.

The results are shown in Figure 5. When downloading 500
KB and 1 MB images, the extra latency is almost negligible.
After the TCP connection is established, the cost of trans-
mitting the file is low. However, when downloading 100 KB
images, the extra latency becomes larger because when using
the DAMUP solution, the user has to send the request via the
DAMUP proxy. The overhead mainly comprises two parts: the

1 M
B

Vanilla
DAMUP

500 KB

0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30
Latency (sec)

100 KB

Fig. 5: The test result of latency

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (sec)

0

200

400

600

800

1000

CD
F

Vanilla

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (sec)

0

200

400

600

800

1000
DAMUP

Normal
DDoS

Fig. 6: The test result of mitigation

query of remote DNS through SOCKS proxy, and the extra
overhead of proxying the HTTP request. Of the 36.66% extra
overhead (compared with the vanilla request), 33.23% is
due to the SOCKS proxy. If we are able to override the
user’s DNS request locally, the overhead can be reduced
substantially since it avoids sending request via the SOCKS
proxy. However, since overriding DNS locally requires user
interaction, we anticipate that using the SOCKS proxy is still
a highly usable, deployable solution.
Mitigation. We deployed 16 computers as malicious bots.
In the vanilla (naked server) scenario, the bots simply
perform a HTTPS GET DoS attack to overwhelm the server;
the benign users are simulated from a single machine. 6 users
will download a 500 KB image simultaneously, with a total
of 1000 requests. Figure 6 shows the evaluation results.

In the vanilla scenario, each bot overwhelms the naked
server by flooding HTTPS GET requests. For the benign
user, the request is considered failed if the response time
is more than 3 seconds. Figure 6 shows that 886 requests
fail to download the image, and only 11.4% of the requests
are successful. For those successful connections, the latency
increases dramatically. Compared to the normal case, the
mean of latency is approximately 6.6 times larger. In the
DAMUP scenario, each bot uses a fake token to attack the
server. Our result shows that very few requests failed — only
0.2%. Moreover, the difference of latency is almost negligible.
To summarize, the cloud-based architecture of DAMUP is
effective to mitigate DDoS attacks.

VII. CONCLUSION

In this paper, we propose a privacy-preserving, practi-
cal, and transparent DDoS mitigation architecture. DAMUP
highlights three contributions. First and foremost, DAMUP
focuses on the privacy. According to existing research [10],
76.5% of organizations share the private key with a third-
party provider; consequently, user privacy is severely violated.

Our proposed methodology not only preserves privacy, but
also performs effective DDoS mitigation. Secondly, DAMUP
is highly practical, deployable and scalable. While related
works require the cooperation of ISPs, ASes, DAMUP focuses
on practicality. Without modifying network infrastructure and
much user interaction, we utilize SNI to implement the secure
tokens. Finally yet importantly, unlike typical enterprise cloud-
based approaches, we adopt a transparent policy to mitigate
DDoS attacks. The server is able to define who the benign
users are.

ACKNOWLEDGMENTS

This work was supported in part by Taiwan Information Se-
curity Center (TWISC), Academia Sinica, and the Ministry of
Science and Technology of Taiwan under grants MOST 105-
2221-E-002-146-MY2, 106-3114-E-002-005 and 107-2636-E-
002-005-.

REFERENCES

[1] “Application-layer DDoS Attacks: The Numbers May
Surprise You,” https://www.arbornetworks.com/blog/insight/
application-layer-ddos-attacks-the-numbers-may-surprise-you.

[2] “Cloudbleed bug: Everything you need to know,” https://www.cnet.com/
how-to/cloudbleed-bug-everything-you-need-to-know.

[3] “DDoS Attacks Size,” https://www.helpnetsecurity.com/2016/07/19/
ddos-attacks-escalate/.

[4] “HatCloud - Bypass CloudFlare with Ruby,” https://github.com/
HatBashBR/HatCloud.

[5] “Looking forward to 2018,” https://letsencrypt.org/2017/12/07/
looking-forward-to-2018.html, accessed: 2018-01-23.

[6] “Overview of Keyless SSL,” https://www.cloudflare.com/ssl/keyless-ssl/.
[7] “Radware’s ssl-tls attack mitigation solution,” https://www.radware.com/

solutions/ssl-attack-protection.
[8] “The Average DDoS Attack Cost for Businesses

Rises to Over 2.5m,” http://www.zdnet.com/article/
the-average-ddos-attack-cost-for-businesses-rises-to-over-2-5m.

[9] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and
T. Wright, “Transport layer security (tls) extensions,” Internet Requests
for Comments, RFC Editor, RFC 3546, June 2003.

[10] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mis-
love, and C. Wilson, “Measurement and analysis of private key sharing
in the https ecosystem,” in ACM CCS, 2016.

[11] T. A. Colin Dixon, “Phalanx: Withstanding Multimillion-Node Botnets,”
in USENIX NSDI, 2008.

[12] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein,
M. Bailey, J. A. Halderman, and V. Paxson, “The security impact of https
interception,” in NDSS, 2017.

[13] Y. Gilad, A. Herzberg, M. Sudkovitch, and M. Goberman, “Cdn-on-
demand: An affordable ddos defense via untrusted clouds,” in NDSS,
2016.

[14] X. Liu, X. Yang, and Y. Xia, “Netfence: preventing internet denial of
service from inside out,” ACM SIGCOMM CCR, vol. 40, no. 4, pp.
255–266, 2010.

[15] Z. Liu, H. Jin, Y.-c. Hu, and M. Bailey, “MiddlePolice: Toward Enforc-
ing Destination-Defined Policies in the Middle of the Internet,” in ACM
CCS, 2016.

[16] P. Mittal, D. Kim, Y.-C. Hu, and M. Caesar, “Mirage: To-
wards deployable ddos defense for web applications,” arXiv preprint
arXiv:1110.1060, 2011.

[17] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C.
Hu, “Portcullis: Protecting Connection Setup from Denial-of-Capability
Attacks,” in Proceedings of ACM SIGCOMM, 2007.

[18] T. Vissers, T. Van Goethem, W. Joosen, and N. Nikiforakis, “Maneu-
vering Around Clouds: Bypassing Cloud-based Security Providers,” in
ACM CCS, 2015.

[19] D. W. Xiaowei Yang and T. Anderson, “A DoS-limiting Network
Architecture,” ACM SIGCOMM CCR, 2005.

[20] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet Flow Filter
to Mitigate DDoS Flooding Attacks,” in IEEE S&P, 2004.

https://www.arbornetworks.com/blog/insight/application-layer-ddos-attacks-the-numbers-may-surprise-you
https://www.arbornetworks.com/blog/insight/application-layer-ddos-attacks-the-numbers-may-surprise-you
https://www.cnet.com/how-to/cloudbleed-bug-everything-you-need-to-know
https://www.cnet.com/how-to/cloudbleed-bug-everything-you-need-to-know
https://www.helpnetsecurity.com/2016/07/19/ddos-attacks-escalate/
https://www.helpnetsecurity.com/2016/07/19/ddos-attacks-escalate/
https://github.com/HatBashBR/HatCloud
https://github.com/HatBashBR/HatCloud
https://letsencrypt.org/2017/12/07/looking-forward-to-2018.html
https://letsencrypt.org/2017/12/07/looking-forward-to-2018.html
https://www.cloudflare.com/ssl/keyless-ssl/
https://www.radware.com/solutions/ssl-attack-protection
https://www.radware.com/solutions/ssl-attack-protection
http://www.zdnet.com/article/the-average-ddos-attack-cost-for-businesses-rises-to-over-2-5m
http://www.zdnet.com/article/the-average-ddos-attack-cost-for-businesses-rises-to-over-2-5m

