
CLEF: Limiting the Damage Caused by Large
Flows in the Internet Core

Hao Wu1,2[0000−0002−5100−1519], Hsu-Chun Hsiao3[0000−0001−9592−6911],
Daniele E. Asoni4[0000−0001−5699−9237],

Simon Scherrer4[0000−0001−9557−1700], Adrian Perrig4[0000−0002−5280−5412], and
Yih-Chun Hu1[0000−0002−7829−3929]

1 University of Illinois at Urbana Champaign
2 Rubrik, Inc.

3 National Taiwan University
4 ETH Zurich

Abstract. The detection of network flows that send excessive amounts
of traffic is of increasing importance to enforce QoS and to counter DDoS
attacks. Large-flow detection has been previously explored, but the pro-
posed approaches can be used on high-capacity core routers only at the
cost of significantly reduced accuracy, due to their otherwise too high
memory and processing overhead. We propose CLEF, a new large-flow
detection scheme with low memory requirements, which maintains high
accuracy under the strict conditions of high-capacity core routers. We
compare our scheme with previous proposals through extensive theoreti-
cal analysis, and with an evaluation based on worst-case-scenario attack
traffic. We show that CLEF outperforms previously proposed systems in
settings with limited memory.

Keywords: Large-flow detection, damage metric, memory and compu-
tation efficiency

1 Introduction

Detecting misbehaving large network flows5 that use more than their allocated
resources is not only an important mechanism for Quality of Service (QoS) [29]
schemes such as IntServ [5], but also for DDoS defense mechanisms that allocate
bandwidth to network flows [4,19,23]. With the recent resurgence of volumetric
DDoS attacks [3], the topics of DDoS defense mechanisms and QoS are gaining
importance; thus, the need for efficient in-network accounting is increasing.

Unfortunately, per-flow resource accounting is too expensive to perform in the
core of the network [12], since large-scale Internet core routers have an aggregate
capacity of several Terabits per second (Tbps). Instead, to detect misbehaving
flows, core routers need to employ highly efficient schemes which do not require

5 As in prior literature [12, 34], the term large flow denotes a flow that sends more
than its allocated bandwidth.

2 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

them to keep per-flow state. Several approaches for large-flow detection have
been proposed in this context; they can be categorized into probabilistic (i.e.,
relying on random sampling or random binning) and deterministic algorithms.
Examples of probabilistic algorithms are Sampled Netflow [8] and Multistage
Filters [11,12], while EARDet [34] and Space Saving [25] are examples of deter-
ministic approaches.

However, previously proposed algorithms are able to satisfy the requirements
of core router environments only by significantly sacrificing their accuracy. In
particular, with the constraints on the amount of high-speed memory on core
routers, these algorithms either can only detect flows which exceed their as-
signed bandwidth by very large amounts, or else they suffer from high false-
positive rates. This means that these systems cannot prevent the performance
degradation of regular, well-behaved flows, because of large flows that manage
to stay “under the radar” of the detection algorithms, or because the detection
algorithms themselves erroneously flag and punish the well-behaved flows.

As a numeric example, consider that for EARDet to accurately detect misbe-
having flows exceeding a threshold of 1 Mbps on a 100 Gbps link, it would require
105 counters for that link. Maintaining these counters, together with the neces-
sary associated metadata, requires between 1.6 MB and 4MB of state6, which ex-
ceeds typical high-speed memory provisioning for core routers, and would come
at a high cost (for comparison, note that only the most high-end commodity
CPUs approach the 1–4 MB range with their per-core L1/L2 memory, and the
price tag for such processors surpasses USD 4000 [15]).

In this paper we propose a novel randomized algorithm for large flow detec-
tion called Recursive Large-Flow Detection (RLFD). RLFD works by considering
a set of potential large flows, dividing this set into multiple subsets, and then
recursively narrowing down the focus to the most promising subset. This algo-
rithm is highly memory efficient, and is designed to have no false positives. To
achieve these properties, RLFD sacrifices some detection speed, in particular for
the case of multiple concurrent large flows. We improve on these limitations by
combining RLFD with the deterministic EARDet, proposing a hybrid scheme
called CLEF, short for in-Core Limiting of Egregious Flows. We show how this
scheme inherits the strengths of both algorithms: the ability to quickly detect
very large flows of EARDet (which it can do in a memory efficient way), and the
ability to detect low-rate large flows with minimal memory footprint of RLFD.

To have a significant comparison with related work, we define a damage
metric which estimates the impact of failed, delayed, and incorrect detection
on well-behaved flows. We use this metric to compare RLFD and CLEF with
previous proposals, which we do both on a theoretical level and by evaluating the
amount of damage caused by (worst-case) attacks. Our evaluation shows that
CLEF performs better than previous work under realistic memory constraints,

6 The IP metadata consists of source and destination addresses, protocol number, and
ports. Thus, it requires about 16 bytes and 40 bytes per counter for IPv4 and IPv6,
respectively.

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 3

both in terms of our damage metric and in terms of false negatives and false
positives.

To summarize, this paper’s main contributions are the following: a novel,
randomized algorithm, RLFD, that provides eventual detection of persistently
large flows with very little memory cost; a hybrid detection scheme, CLEF, which
offers excellent large-flow detection properties with low resource requirements;
the analysis of worst-case attacks against the proposed large-flow detectors, using
a damage metric that allows a realistic comparison with the related work.

2 Problem Definition

This paper aims to design an efficient large-flow detection algorithm that min-
imizes the damage caused by misbehaving flows. This section introduces the
challenges of large-flow detection and defines a damage metric to compare dif-
ferent large-flow detectors. We then define an adversary model in which the
adversary adapts its behavior to the detection algorithm in use.

2.1 Large-Flow Detection

A flow is a collection of related traffic; for example, Internet flows are com-
monly characterized by a 5-tuple (source / destination IP / port, transport
protocol). A large flow is one that exceeds a flow specification during a period
of length t. A flow specification can be defined using a leaky bucket descriptor
TH(t) = γt + β, where γ > 0 and β > 0 are the maximum legitimate rate and
burstiness allowance, respectively. Flow specifications can be enforced in two
ways: arbitrary-window, in which the flow specification is enforced over every
possible starting time, or landmark-window, in which the flow specification is
enforced over a limited set of starting times.

Detecting every large flow exactly when it exceeds the flow specification, and
doing so with no false positives requires per-flow state (this can be shown by the
pigeonhole principle [32]), which is expensive on core routers. In this paper, we
develop and evaluate schemes that trade timely detection for space efficiency.

As in prior work in flow monitoring, we assume each flow has a unique and
unforgeable flow ID, e.g., using source authentication techniques such as ac-
countable IPs [1], ICING [27], IPA [20], OPT [17], or with Passport [21]. Such
techniques can be deployed in the current Internet or in a future Internet archi-
tecture, e.g., Nebula [2], SCION [36], or XIA [14].

Large-flow detection by core routers. In this work, we aim to design a
large-flow detection algorithm that is viable to run on Internet core routers. The
algorithm needs to limit damage caused by large flows even when handling worst-
case background traffic. Such an algorithm must satisfy these three requirements:

– Line rate: An in-core large-flow detection algorithm must operate at the
line rate of core routers, which can process several hundreds of gigabits of
traffic per second.

4 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

– Low memory: Large-flow detection algorithms will typically access one or
more memory locations for each traversing packet; such memory must be
high-speed (such as on-chip L1 cache). Additionally, such memory is expen-
sive and usually limited in size, and existing large-flow detectors are inade-
quate to operate in high-bandwidth, low-memory environments. An in-core
large-flow detection algorithm should thus be highly space-efficient. Though
perfect detection requires counters equal to the maximum number of simul-
taneous large flows (by the pigeonhole principle [32]), our goal is to perform
effective detection with much fewer counters.

– Low damage: With the performance constraints of the previous two points,
the large-flow detection algorithm should also minimize the damage to honest
flows, which can be caused either by the excessive bandwidth usage by large
flows, or by the erroneous classification of legitimate flows as large flows (false
positives). Section 2.2 introduces our damage metric, which takes both these
aspects into account.

2.2 Damage Metric

We consider misbehaving large flows to be a problem mainly in that they have an
adverse impact on honest flows. To measure the performance of large flow detec-
tion algorithms we therefore adopt a simple and effective damage metric which
captures the packet loss suffered by honest flows. This metric considers both (1)
the direct impact of excessive bandwidth usage by large flows, and (2) the poten-
tial adverse effect of the detection algorithm itself, which may be prone to false
positives resulting in the blacklisting of honest flows. Specifically, we define our
damage metric as D = Dover +Dfp, where Dover (overuse damage) is the total
amount of traffic by which all large flows exceed the flow specification, and Dfp

(false positive damage) is the amount of legitimate traffic incorrectly blocked by
the detection algorithm. The definition of the overuse damage assumes a link at
full capacity, so when this is not the case the damage metric represents an over-
approximation of the actual traffic lost suffered by honest flows. We note that
the metrics commonly used by previous work, i.e., false positives, false negatives,
and detection delay, are all reflected by our metric.

2.3 Attacker Model

In our attacker model, we consider an adversary that aims to maximize damage.
Our attacker responds to the detection algorithm and tries to exploit its transient
behavior to avoid detection or to cause false detection of legitimate flows.

Like Estan and Varghese’s work [12], we assume that attackers know about
the large-flow detection algorithm running in the router and its settings, but have
no knowledge of secret seeds used to generate random variables, such as the de-
tection intervals for landmark-window-based algorithms [9, 10, 12, 13, 16, 24–26],
and random numbers used for packet/flow sampling [12]. This assumption pre-
vents the attacker from performing optimal attacks against randomized algo-
rithms.

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 5

We assume the attacker can interleave packets, but is unable to spoof legiti-
mate packets (as discussed in Section 2.1) or create pre-router losses in legitimate
flows. Figure 1 shows the network model, where the attacker arbitrarily inter-
leaves attack traffic (A) between idle intervals of legitimate traffic (L), and the
router processes the interleaved traffic to generate output traffic (O) and per-
form large-flow detection. Our model does not limit input traffic, allowing for
arbitrary volumes of attack traffic.

In our model, whenever a packet traverses a router, the large-flow detector
receives the flow ID (for example, the source and destination IP and port and
transport protocol), the packet size, and the timestamp at which the packet
arrived.

Router
(w/ Detector)

O…
Interleaving

…A

…L

Fig. 1: Adversary Model.

3 Background and Challenges

In this section we briefly review some existing large flow detection algorithms,
and discuss the motivations and challenges of combining multiple algorithms
into a hybrid scheme.

3.1 Existing Detection Algorithms

We review the three most relevant large-flow detection algorithms, summarized
in Table 1. We divide large flows into low-rate large flows and high-rate large
flows, depending on the amount by which they exceed the flow specification.

EARDet. EARDet [34] guarantees exact and instant detection of all flows
exceeding a high-rate threshold γh = ρ

m , where ρ is the link capacity and m
is the number of counters. However, EARDet may fail to identify a large flow
whose rate stays below γh.

Multistage Filters. Multistage filters [11, 12] consist of multiple parallel
stages, each of which is an array of counters. Specifically, arbitrary-window-based
Multistage Filter (AMF), as classified by Wu et al. [34], uses leaky buckets as
counters. AMF guarantees the absence of false negatives (no-FN) and immediate
detection for any flow specification; however, AMF has false positives (FPs),
which increase as the link becomes congested.

Flow Memory. Flow Memory (FM) [12] refers to per-flow monitoring of
select flows. FM is often used in conjunction with another system that specifies
which flows to monitor; when a new flow is to be monitored but the flow memory
is full, FM evicts an old flow. We follow Estan and Varghese [12]’s random

6 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

eviction. If the flow memory is large enough to avoid eviction, it provides exact
detection. In practice, however, Flow Memory is unable to handle a large number
of flows, resulting in frequent flow eviction and potentially high FN. FM’s real-
world performance depends on the amount by which a large flow exceeds the
flow specification: high-rate flows are more quickly detected, which improves the
chance of detection before eviction.

Table 1: Comparison of three existing detection algorithms. None of them achieve
all desired properties.

Algorithm EARDet AMF FM

No-FP yes no∗ yes

No-FN
low-rate no∗∗ yes no∗

high-rate yes yes yes∗∗∗

Instant detection yes yes yes

∗In our technical report [33] we show that Flow Memory has high FN and AMF has
high FP for low-rate large flows when memory is limited.

∗∗EARDet cannot provide no-FN when memory is limited.
∗∗∗Flow Memory has nearly zero FN when large-flow rate is high.

3.2 Advantages of Hybrid Schemes

As Table 1 shows, none of the detectors we examined can efficiently achieve no-
FN and no-FP across various types of large flows. However, different detectors
exhibit different strengths, so combining them could result in improved perfor-
mance.

One approach is to run detectors sequentially; in this composition, the first
detector monitors all traffic and sends any large flows it detects to a second
detector. However, this approach allows an attacker controlling multiple flows to
rotate overuse among many flows, overusing a flow only for as long as it takes
the first detector to react, then sending at the normal rate so that remaining
detectors remove it from their watch list and re-starting with the attack.

Alternatively, we can run detectors in parallel: the hybrid detects a flow
whenever it is identified by either detector. (Another configuration is that a flow
is only detected if both detectors identify it, but such a configuration would have
a high FN rate compared to the detectors used in this paper.) The hybrid inherits
the FPs of both schemes, but features the minimum detection delay of the two
schemes and has a FN only when both schemes have a FN. The remainder of
this paper considers the parallel approach that identifies a flow whenever it is
detected by either detector.

The EARDet and Flow Memory schemes have no FPs and are able to quickly
detect high-rate flows; because high-rate flows cause damage much more quickly,
rapid detection of high-rate flows is important to achieving low damage. Com-
bining EARDet or Flow Memory with a scheme capable of detecting low-rate

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 7

flows as a hybrid detection scheme can retain rapid detection of high-rate flows
while eventually catching (and thus limiting the damage of) low-rate flows. In
this paper, we aim to construct such a scheme. Specifically, our scheme will se-
lectively monitor one small set at a time, ensuring that a consistently-overusing
flow is eventually detected.

4 RLFD and CLEF Hybrid Schemes

In this section, we present our new large-flow detectors. First, we describe the
Recursive Large-Flow Detection (RLFD) algorithm, a novel approach which is
designed to use very little memory but provide eventual detection for large
flows. We then present the data structures, runtime analysis, and advantages
and disadvantages of RLFD. Next, we develop a hybrid detector, CLEF, that
addresses the disadvantages of RLFD by combining it with the previously pro-
posed EARDet [34]. CLEF uses EARDet to rapidly detect high-rate flows and
RLFD to detect low-rate flows, thus limiting the damage caused by large flows,
even with a very limited amount of memory.

4.1 RLFD Algorithm

RLFD is a randomized algorithm designed to perform memory-efficient detection
of low-rate large flows; it is designed to scale to a large number of flows, as
encountered by an Internet core router. RLFD is designed to limit the damage
inflicted by low-rate large flows while using very limited memory. The intuition
behind RLFD is to monitor subsets of flows, recursively subdividing the subset
deemed most likely to contain a large flow. By dividing subsets in this way,
RLFD exponentially reduces memory requirements (it can monitor md flows
with O(m+ d) memory).

The main challenges addressed by RLFD include efficiently mapping flows
into recursively divided groups, choosing the correct subdivision to reduce de-
tection delay and FNs, and configuring RLFD to guarantee the absence of FPs.

Recursive subdivision. To operate with limited memory, RLFD recursively
subdivides monitored flows into m groups, and subdivides only the one group
most likely to contain a large flow.

We can depict an RLFD as a virtual counter tree7 (Figure 2(a)) of depth d.
Every non-leaf node in this tree has m children, each of which corresponds to a
virtual counter. The tree is a full m-ary tree of depth d, though at any moment,
only one node (m counters) is kept in memory; the rest of the tree exists only
virtually.

Each flow f is randomly assigned to a path PATH(f) of counters on the vir-
tual tree, as illustrated by the highlighted counters in Figure 2(b). This mapping

7 The terms “counter tree” and “virtual counter” are also used by Chen et al. [7],
but our technique differs in both approach and goal. Chen et al. efficiently manage
a sufficient number of counters for per-flow accounting, while RLFD manages an
insufficient number of counters to detect consistent overuse.

8 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

is determined by hashing a flow ID with a keyed hash function, where the key
is randomly generated by each router. Our technical report [33] explains how
RLFD efficiently implements this random mapping.

…
… …

… …

𝑳𝟏

𝑳𝟐

𝑳𝒅

𝑳𝟑

flows

(a) Virtual Counter Tree
(Full m-branch Tree)

m counters

flows

(b) A Tree
Branch.

f2 f3 f4 f5 f6f1 fL

f2 f6 fL

THRLFD

𝑳𝟏

𝑳𝟐

(c) Example with 7
flows,
m = 4, and d = 2.

Fig. 2: RLFD Structure and Example.

Since there are d levels, each leaf node at level Ld will contain an average
of n/md−1 flows, where n is the total number of flows on the link. A flow f
is identified as a large flow if it is the only flow associated with its counter
at level Ld and the counter value exceeds a threshold THRLFD. To reflect the
flow specification TH(t) = γt + β from Section 2.1, we set THRLFD = γT` + β,
where T` is the duration of the period during which detection is performed at
the bottom level Ld. Any flow sending more traffic than THRLFD during any
duration of time T` must violate the large-flow threshold TH(t), so RLFD has
no FPs. We provide more details about how we balance detection rate and the
no-FP guarantee in our technical report [33].

RLFD considers only one node in the virtual counter tree at a time, so it
requires only m counters. To enable exploration of the entire tree, RLFD divides
the process into d periods; in period k, it loads one tree node from level Lk.
Though these periods need not be of equal length, in this paper we consider
periods of equal length T`, which results in a RLFD detection cycle Tc = d · T`.

RLFD always chooses the root node to monitor at level L1; after monitoring
at level Lk, RLFD identifies the largest counter Cmax among the m counters at
level Lk, and uses the node corresponding to that counter for level Lk+1. Our
technical report [33] shows that choosing the largest counter detects large flows
with high probability.

Figure 2(c) shows an example with m = 4 counters, n = 7 flows, and d = 2
levels. fL is a low-rate large flow. In level L1, the largest counter is the one
associated with large flow fL and legitimate flows f2 and f6. At level L2, the
flow set {fL, f2, f6} is selected and sub-divided. After the second round, fL is
detected because it violates the counter value threshold THRLFD.

Algorithm description. As shown in Figure 3(a), the algorithm starts at
the top level L1 so each counter represents a child of the root node. At the
beginning of each period, all counters are reset to zero. At the end of each

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 9

period, the algorithm finds the counter holding the maximum value and moves
to the corresponding node, so each counter in the next period is a child of that
node. Once the algorithm has processed level d, it repeats from the first level.

Figure 3(b) describes how RLFD processes each incoming packet. When
RLFD receives a packet x from flow f , x is dropped if f is in the blacklist
(a table that stores previously-found large flows). If f is not in the blacklist,
RLFD hashes f to the corresponding counters in the virtual counter tree (one
counter per level of the tree). If one such counter is currently loaded in memory,
its value is increased by the size of the packet x. At the bottom level Ld, a large
flow is identified when there is only one flow in the counter and the counter value
exceeds the threshold THRLFD. To increase the probability that a large flow is
in a counter by itself, we choose d ≥ dlogm ne and use Cuckoo hashing [28] at the
bottom level to reduce collisions. Once a large flow is identified, it is blacklisted:
in our evaluation we calculate the damage D with the assumption that large
flows are blocked immediately after having been added to the blacklist.

k < d?findmax-value
V.C. Cmax

counters	in	next	
level	represent
Cmax’s child V.C.s

No

period k
ends

reset	
counters;
k	:=	k	+	1

Yes

Cmax
only has one

flow?
Cmax >

threshold?
blacklist

flow	in Cmax

Yes Yes
No No

k :=	1
reset	counters;

counters	represent
1st-level	V.C.s

start

(a) Level Change Diagram.

forward	xpacket	x is in
blacklist?

V.C. in
memory?

update	V.C.	
by	size	of	x

No

Yes
Yes

apply policy to
blacklisted flows hash	to	V.C.

(b) Packet Processing Diagram.

Fig. 3: RLFD Decision Diagrams. “V.C.” stands for virtual counter.

4.2 RLFD Details and Optimization

We describe some of the details of RLFD and propose additional optimizations
to the basic RLFD described in Section 4.1.

Hash function update. We update the keyed hash function by choosing a
new key at the beginning of every initial level to guarantee that the assignment of
flows to counters between different top-to-bottom detection cycles is independent
and pseudo-random. For simplicity, in this paper we analyze RLFD assuming
the random oracle model. Picking a new key is computationally inexpensive and
needs to be performed only once per cycle.

Blacklist. When RLFD identifies a large flow, the flow’s ID should be added
to the blacklist as quickly as possible. Thus, we implement the blacklist with
a small amount of L1 cache backed by permanent storage, e.g., main memory.

10 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

Because the blacklist write only happens at the bottom-level period and the
number of large flows detected in one iteration of the algorithm is at most one,
we first write these large flows in the L1 cache and move them from L1 cache
to permanent storage at a slower rate. By managing the blacklist in this way,
we provide high bandwidth for blacklist writing, defending against attacks that
overflow the blacklist.

Using multiple RLFDs. If a link handles too much traffic to use a single
RLFD, we can use multiple RLFDs in parallel. Each flow is hashed to a specific
RLFD so that the load on each detector meets performance requirements. The
memory requirements scale linearly in the number of RLFDs required to process
the traffic.

4.3 RLFD’s Advantages and Disadvantages

Advantages. With recursive subdivision and additional optimization tech-
niques, RLFD is able to (1) identify low-rate large flows with non-zero probabil-
ity, with probability close to 100% for flows that cause extensive damage (our
technical report [33] analyzes RLFD’s detection probability); and (2) guarantee
no-FP, eliminating damage due to FP.

Disadvantages. First, a landmark-window-based algorithm such as RLFD
cannot guarantee exact detection over large-flow specification based on arbi-
trary time windows [34] (landmark window and arbitrary window are intro-
duced in Section 2.1). However, this approximation results in limited damage,
as mentioned in Section 3. Second, recursive subdivision based on landmark time
windows requires at least one detection cycle to catch a large flow. Thus, RLFD
cannot guarantee low damage for flows with very high rates. Third, RLFD works
most effectively when the large flow exceeds the flow specification in all d levels,
so bursty flows with a burst duration shorter than the RLFD detection cycle Tc
are likely to escape detection (where burst duration refers to the amount of time
during which the bursty flow sends in excess of the flow specification).

4.4 CLEF Hybrid Scheme

We propose a hybrid scheme, CLEF, which is a parallel composition with one
EARDet and two RLFDs (Twin-RLFD). This hybrid can detect both high-rate
and low-rate large flows without producing FPs, requiring only a limited amount
of memory. We use EARDet instead of Flow Memory in this hybrid scheme
because EARDet’s detection is deterministic, thus has shorter detection delay.

Parallel composition of EARDet and RLFD. As described in Section 3.2,
we combine EARDet and RLFD in parallel so that RLFD can help EARDet
detect low-rate flat flows, and EARDet can help RLFD quickly catch high-rate
flat and bursty flows.

Twin-RLFD parallel composition. RLFD is most effective at catching
flows that violate flow specification across an entire detection cycle Tc. An at-
tacker can reduce the probability of being caught by RLFD by choosing a burst

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 11

duration shorter than Tc and an inter-burst duration greater than Tc/d (thus
reducing the probability that the attacker will advance to the next round during
its inter-burst period). We therefore introduce a second RLFD (RLFD(2)) with a

longer detection cycle T
(2)
c , so that a flow must have burst duration shorter than

T
(1)
c and burst period longer than T

(2)
c /d to avoid detection by the Twin-RLFD

(where RLFD(1) and T
(1)
c , are the first RLFD and its detection cycle respec-

tively). For a given average rate, flows that evade Twin-RLFD have a higher

burst rate than flows that evade a single RLFD. By properly setting T
(1)
c and

T
(2)
c , Twin-RLFD can synergize with EARDet, ensuring that a flow undetectable

by Twin-RLFD must use a burst higher than EARDet’s rate threshold γh.

Timing randomization. An attacker can strategically send traffic with burst

durations shorter than T
(1)
c , but choose low duty cycles to avoid detection by

both RLFD(1) and EARDet. Such an attacker can only be detected by RLFD(2),
but RLFD(2) has a longer detection delay, allowing the attacker to maximize
damage before being blacklisted. To prevent attackers from deterministically

maximizing damage, we randomize the length of the detection cycles T
(1)
c and

T
(2)
c .

5 Evaluation

We experimentally evaluate CLEF, RLFD, EARDet, and AMF-FM with respect
to worst-case damage [33, Sec. 5.1]. We consider various large-flow patterns and
memory limits and assume background traffic that is challenging for CLEF and
RLFD. The experiment results confirm that CLEF outperforms other schemes,
especially when memory is extremely limited.

5.1 Experiment Settings

Link settings. Since the required memory space of a large-flow detector is
sublinear to link capacity, we set the link capacity to ρ = 1Gbps, which is high
enough to incorporate the realistic background traffic dataset while ensuring the
simulation can finish in reasonable time. We choose a very low threshold rate
γ = 12.5 KB/s, so that the number of full-use legitimate flows nγ = ρ/γ is 10000,
ensuring that the link is as challenging as a backbone link (as analyzed in our
technical report [33]). The flow specification is set to TH(t) = γt + β, where β
is set to 3028 bytes (which is as small as two maximum-sized packets, making
bursty flows easier to catch).

The results on this 1Gbps link allow us to extrapolate detector performance
to high-capacity core routers, e.g., in a 100Gbps link with γ = 1.25 MB/s.
Because CLEF’s performance with a given number of counters is mainly related
to the ratio between link capacity and threshold rate nγ (as discussed in our
technical report [33]), CLEF’s worst-case performance will scale linearly in link
capacity when the number of counters and the ratio between link capacity and

12 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

threshold rate is held constant. AMF-FM, on the other hand, performs worse as
the number of flows increases (according to our technical report [33]). Thus, with
increasing link capacity, AMF-FM may face an increased number of actual flows,
resulting in worse performance. In other words, AMF-FM’s worst-case damage
may be superlinear in link capacity. As a result, if CLEF outperforms AMF-FM
in small links, CLEF will outperform AMF-FM by at least as large a ratio in
larger links.

Background traffic. We consider the worst background traffic for RLFD and
CLEF: we determine the worst-case traffic in our technical report [33, Thm. 1].
Aside from attack traffic, the rest of the link capacity is completely filled with
full-use legitimate flows running at the threshold rate γ = 12.5 KB/s. The total
number of attack flows and full-use legitimate flows is nγ = 10000. Once a flow
has been blacklisted by the large-flow detectors, we fill the idle bandwidth with a
new full-use legitimate flow, to keep the link always running with the worst-case
background traffic.

Attack traffic. We evaluate each detector against large flows with various
average rates Ratk and duty cycle θ. Their bursty period is set to be Tb = 0.967s.
To evaluate RLFD and CLEF against their worst-case bursty flows (θTb < 2Tc),
large flows are allotted a relatively small bursty period Tb = 4T` = 0.967s, where
T` = β/γ = 0.242s is the period of each detection level in the single RLFD. In

CLEF, RLFD(1) uses the same detection level period T
(1)
` = T` = 0.242s as well.

Since RLFD usually has d ≥ 3 levels and Tc ≥ 3T`, it is easy for attack flows to
meet θTb < 2Tc.

In each experiment, we have 10 artificial large flows whose rates are in the
range of 12.5 KB/s to 12.5 MB/s (namely, 1 to 1000 times that of threshold rate
γ). The fewer large flows in the link, the longer delay required for RLFD and
CLEF to catch large flows; however, the easier it is for AMF-FM to detect large
flows, because there are fewer FPs from AMF and more frequent flow eviction
in FM. Thus, we use 10 attack flows to challenge CLEF and the results are
generalizable.

Detector settings We evaluate detectors with different numbers of counters
(20 ≤ m ≤ 400) to understand their performance under different memory limits.
Although a few thousands of counters are available in a typical CPU, not all can
be used by one detector scheme. CLEF works reasonably well with such a small
number of counters and can perform better when more counters are available.

– EARDet . We set the low-bandwidth threshold to be the flow specification
γt + β, and compute the corresponding high-rate threshold, γh = ρ

m+1 , for
m counters as in [34].

– RLFD . A RLFD has d levels and m counters. We set the period of a de-
tection level as T` = β/γ = 0.242 seconds8. d = b1.2× logm(n)c+ 1 to have
fewer flows than the counters at the bottom level. The counter threshold of
the bottom level is THRLFD = γT` + β = 2β = 6056 Bytes.

8 If T` � β/γ, it is hard for a large flow to reach the burst threshold β in such a short
time; if T` � β/γ, the detection delay is too long, resulting in excessive damage.

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 13

– CLEF . We allocate m/2 counters to EARDet, and m/4 counters to each
RLFD. RLFD(1) and EARDet are configured like the single RLFD and the
single EARDet above. For the RLFD(2), we properly set its detection level

period T
(2)
` to guarantee detection of most of bursty flows with low damage.

The details of the single RLFD and CLEF are in our technical report [33].
– AMF-FM . We allocate half of the m counters to AMF and the rest to

FM. AMF has four stages (a typical setting in [12]), each of which contains
m/8 counters. All m counters are leaky buckets with a drain rate of γ and
a bucket size β.

EARDet Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
RLFD Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
AMF-FM Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
CLEF Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5

EARDet Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
RLFD Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
AMF-FM Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
CLEF Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5

Fig. 4: Damage (in Bytes) caused by 200-second large flows at different average
flow rate Ratk (in Byte/s) and duty cycle θ = 1.0 (flat large flows) under de-
tection of different schemes with different number of counters m. The larger the
dark area, the lower the damage guaranteed by a scheme. Areas with white color
are damage equals or exceeds 5× 108. Figures of bursty flows are shown in our
technical report [33]. CLEF outperforms other schemes in detecting flat flows,
and has competitive performance to AMF-FM and EARDet over bursty flows.

5.2 Experiment Results

For each experiment setting (i.e., attack flow configurations and detector set-
tings), we did 50 repeated runs and present the averaged results.

Figure 4 demonstrates the damage caused by large flows at different average
rates, duty cycles, and number of detector counters during 200-second experi-
ments; the lighter the color, the higher the damage. The damage ≥ 5×108 Byte
is represented by the color white. Figures 5(a) to 5(e) compare damage in cases

14 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a

m
a

g
e

 (
B

y
te

)

×10
8

0

1

2

3
Damage, m=200

(a) Flat, θ = 1.0
Large Flow Rate (B/s)

10
4

10
6

10
8

D
a

m
a

g
e

 (
B

y
te

)

×10
8

0

1

2

3
Damage, m=200

(b) Bursty, θ = 0.50
Large Flow Rate (B/s)

10
4

10
6

10
8

D
a

m
a

g
e

 (
B

y
te

)

×10
8

0

1

2

3
Damage, m=200

(c) Bursty, θ = 0.25

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a

m
a

g
e

 (
B

y
te

)

×10
8

0

1

2

3
Damage, m=200

(d) Bursty, θ = 0.10
Large Flow Rate (B/s)

10
4

10
6

10
8

D
a

m
a

g
e

 (
B

y
te

)

×10
8

0

1

2

3
Damage, m=200

EARDet
RLFD
AMF-FM
CLEF

(e) Bursty, θ = 0.02

Fig. 5: Damage (in Bytes) caused by 200-second large flows at different average
rate Ratk (in Byte/s) and duty cycle θ. Each detection scheme uses 200 counters
in total. The clear comparison among schemes suggests CLEF outperforms others
with low damage against various large flows.

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a

ti
o

0

0.5

1
FN Ratio, m=200

(a) Flat, θ = 1.0
Large Flow Rate (B/s)

10
4

10
6

10
8

F
N

 R
a

ti
o

0

0.5

1
FN Ratio, m=200

(b) Bursty, θ = 0.50
Large Flow Rate (B/s)

10
4

10
6

10
8

F
N

 R
a

ti
o

0

0.5

1
FN Ratio, m=200

(c) Bursty, θ = 0.25

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a

ti
o

0

0.5

1
FN Ratio, m=200

(d) Bursty, θ = 0.10
Large Flow Rate (B/s)

10
4

10
6

10
8

F
N

 R
a

ti
o

0

0.2

0.4

0.6

0.8
FN Ratio, m=200

EARDet
RLFD
AMF-FM
CLEF

(e) Bursty, θ = 0.02

Fig. 6: FN ratio in a 200-second detection for large flows at different average rate
Ratk (in Byte/s) and duty cycle θ. Each detection scheme uses 200 counters in
total. CLEF is able to detect (FN< 1.0) low-rate flows undetectable (FN= 1.0)
by AMF-FM or EARDet.

of different detectors with 200 counters. Figures 6(a) to 6(e) show the percentage
of FNs produced by each detection scheme with 200 counters within 200 seconds.
We cannot run infinitely-long experiments to show the +∞ damage produced
by detectors like EARDet and AMF-FM over low-rate flows, so we use the FN
ratio to suggest it here. An FN of 1.0 means that the detector fails to identify
any large flow in 200 seconds and is likely to miss large flows in the future. Thus,
an infinite damage is assigned. On the contrary, if a detector has FN rate < 1.0,
it is able to detect remaining large flows at some point in the future.

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 15

CLEF ensures low damage against flat flows. Figures 4, 5(a), and 6(a)
show that RLFD and CLEF work effectively at detecting low-rate flat large flows
and guaranteeing low damage. On the contrary, such flows cause much higher
damage against EARDet and AMF-FM. The nearly-black figure (in Figure 4)
for CLEF shows that CLEF is effective for both high-rate and low-rate flat flows
with different memory limits. Figure 5(a) shows a clear damage comparison
among detector schemes. CLEF, EARDet, and AMF-FM all limit the damage
to nearly zero for high-rate flat flows. However, the damage limited by CLEF
is much lower than that limited by AMF-FM and EARDet for the low-rate flat
flows. EARDet and AMF-FM results show a sharp top boundary that reflects
the damage dropping to zero at the guaranteed-detection rates.

The damage limited by an individual RLFD is proportional to the large-
flow rate when the flow rate is high. Figure 6(a) suggests that AMF-FM and
EARDet are unable to catch most low-rate flat flows (Ratk < 106 Byte/sec),
which explains the high damage by low-rate flat flows against these two schemes.

CLEF ensures low damage against various bursty flows. Figures 5(b)
to 5(e) demonstrate the damage caused by bursty flows with different duty cycle
θ. The smaller the θ is, the burstier the flow. As the large flows become burstier,
the EARDet and AMF-FM schemes improve at detecting flows whose average
rate is low. Because the rate at the burst is Ratk/θ, which increases as θ decreases,
thus EARDet and AMF-FM are able to detect these flows even though their
average rates are low. For a single RLFD, the burstier the flows are, the harder
it becomes to detect the large flows and limit the damage. As we discussed in
Section 4.4, when the burst duration θTb of flows is smaller than the RLFD
detection cycle Tc, a single RLFD has nearly zero probability of detecting such
attack flows. Thus, we need Twin-RLFD in CLEF to detect bursty flows missed
by EARDet in CLEF, so that CLEF’s damage is still low as the figures show.
When the flow is very bursty (e.g., θ ≤ 0.1), the damage limitation of the CLEF
scheme is dominated by EARDet.

Figures 5(b) to 5(e) present a clear comparison among different schemes
against bursty flows. The damage limited by CLEF is lower than that limited by
AMF-FM and EARDet, when θ is not too small (e.g., θ ≥ 0.25). Even though
AMF-FM and EARDet have lower damage for very bursty flows (e.g., θ ≤ 0.1)
than the damage limited by CLEF, the results are close because CLEF is assisted
by an EARDet with m/2 counters. Thus, CLEF guarantees a low damage limit
for a wider range of large flows than the other schemes.

CLEF outperforms others in terms of FN and FP. To make our com-
parison more convincing, we examine schemes with classic metrics: FN and FP.
Since we know all four schemes have no FP, we simply check the FN ratios in
Figures 6(a) to 6(e). Generally, CLEF has a lower FN ratio than AMF-FM and
EARDet do. CLEF can detect large flows at a much lower rate with zero FN
ratio, and is competitive to AMF-FM and EARDet against very bursty flows
(e.g., Figures 6(b) and 6(e)).

16 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

CLEF is memory-efficient. Figure 4 shows that the damage limited by
RLFD is relatively insensitive to the number of counters. This suggests that
RLFD can work with limited memory and is scalable to larger links without re-
quiring a large amount of high-speed memory. This can be explained by RLFD’s
recursive subdivision, by which we simply add one or more levels when the mem-
ory limit is low. Thus, we choose RLFD to complement EARDet in CLEF.

In Figure 4, CLEF ensures a low damage (shown in black) with tens of
counters, while AMF-FM suffers from a high damage (shown in light colors),
even with 400 counters.

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
7

0

2

4

6

8
Damage, m=200

θ = 1
θ = 0.5
θ = 0.25
θ = 0.1
θ = 0.02

(a) Damage

Large Flow Rate (B/s)
10

4
10

6
10

8
F

N
 R

a
ti
o

0

0.5

1
FN Ratio, m=200

θ = 1
θ = 0.5
θ = 0.25
θ = 0.1
θ = 0.02

(b) FN Ratio

Fig. 7: Damage and FN ratio for large flows at different average rate Ratk (in
Byte/s) and duty cycle θ under detection of CLEF with m = 200 counters. CLEF
is insensitive to bursty flows across duty cycles: 1) the damages are around the
same scale (not keep increasing as duty cycle decrease, because of EARDet), 2)
the FN ratios are stable and similar.

CLEF is effective against various types of bursty flows. Figures 7(a)
and 7(b) demonstrate the changes of damage and FN ratio versus different duty
cycles θ when CLEF is used to detect bursty flows. In the 200-second evaluation,
as θ decreases, the maximum damage across different average flow rates increases
first by (θ ≥ 0.1) and then decreases by (θ < 0.1). The damage increases when
θ ≥ 0.1 because Twin-RLFD (in CLEF) gradually loses its capability to detect
bursty flows. The damage therefore increases due to the increase in detection
delay.

However, the maximum damage does not increase all the way as θ decreases,
because when θ is getting smaller, EARDet is able to catch bursty flows with a
lower average rate. This explains the lower damage from large flows in the 200-
second timeframe. Figure 7(b) shows that the FN ratio curve changes within
a small range as θ decreases, which also indicates the stable performance of
CLEF against various bursty flows. Moreover, the FN ratios are all below 1.0,
which means that CLEF can eventually catch large flows, whereas EARDet and
AMF-FM cannot.

CLEF operates at high speed. We also evaluated the performance of a
Golang-based implementation under real-world traffic trace from the CAIDA [6]
dataset. The implementation is able to process 11.8M packets per second, which

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 17

is sufficient for a 10 Gbps Ethernet link, which has a capacity of 14.4M packets
per second.

6 Related Work

The most closely related large-flow detection algorithms are described in Sec-
tion 3.1 and compared in Section 5 and further in our technical report [33]. This
section discusses other related schemes.

Frequent-item finding. Algorithms that find frequent items in a stream can
be applied to large-flow detection. For example, Lossy Counting [24] maintains
a lower bound and an upper bound of each item’s count. It saves memory by
periodically removing items with an upper bound below a threshold, but loses
the ability to catch items close to the threshold. However, the theoretical memory
lower bound of one-pass exact detection is linear to the number of large flows,
which is unaffordable by in-core routers. By combining a frequent-item finding
scheme with RLFD, CLEF can rapidly detect high-rate large flows and confine
low-rate large flows using limited memory.

Collision-rich schemes. To reduce memory requirement in large-flow uti-
lization, a common technique is hashing flows into a small number of bins. How-
ever, hash collisions may cause FPs, and FPs increase as the available memory
shrinks. For example, both multistage filters [11, 12] and space-code Bloom fil-
ters [18] suffer from high FPs when memory is limited.

Sampling-based schemes. Sampling-based schemes estimate the size of a
flow based on sampled packets. However, with extremely limited memory and
thus a low sampling rate, neither packet sampling (e.g., Sampled Netflow [8])
nor flow sampling (e.g., Sample and Hold [12] and Sticky Sampling [24]) can
robustly identify large flows due to insufficient information. In contrast, RLFD
in CLEF progressively narrows down the candidate set of large flows, thereby
effectively confining the damage caused by large flows.

Top-k detection. Top-k heavy hitter algorithms can be used to identify flows
that use more than 1/k of bandwidth. Space Saving [25] finds the top-k frequent
items by evicting the item with the lowest counter value. HashPipe [30] im-
proves upon Space Saving so that it can be practically implemented on switch-
ing hardware. However, HashPipe still requires keeping 80KB to detect large
flows that use more than 0.3% of link capacity, whereas CLEF can enforce flow
specifications as low as 10−6 of the link capacity using only 10KB of memory.
Tong et al. [31] propose an efficient heavy hitter detector implemented on FPGA
but the enforceable flow specifications are several orders looser than CLEF.
Moreover, misbehaving flows close to the flow specification can easily bypass
such heavy hitter detectors. The FPs caused by heavy hitters prevent network
operators from applying strong punishment to the detected flows.

Chen et al. [7] and Xiao et al. [35] propose memory-efficient algorithms for
estimating per-flow cardinality (e.g., the number of packets). These algorithms,

18 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

however, cannot guarantee large-flow detection in adversarial environments due
to under- or over-estimation of the flow size.

Liu et al. [22] propose a generic network monitoring framework called UniMon
that allows extraction of various flow statistics. It creates flow statistics for all
flows, but has high FP and FN when used to detect large flows.

7 Conclusion

In this paper we propose new efficient large-flow detection algorithms. First, we
develop a randomized Recursive Large-Flow Detection (RLFD) scheme, which
uses very little memory yet provides eventual detection of persistently large
flows. Second, we develop CLEF, which scales to Internet core routers and is
resilient against worst-case traffic. None of the prior approaches can achieve the
same level of resilience with the same memory limitations. To compare attack
resilience among various detectors, we define a damage metric that summarizes
the impact of attack traffic on legitimate traffic. CLEF can confine damage
even when faced with the worst-case background traffic because it combines
a deterministic EARDet for the rapid detection of very large flows and two
RLFDs to detect near-threshold large flows. We denomstrated that CLEF is
able to guarantee low-damage large-flow detection against various attack flows
with limited memory, outperforming other schemes even with CLEF’s worst-case
background traffic. Further experimental evaluation confirms the findings of our
theoretical analysis and shows that CLEF has the lowest worst-case damage
among all detectors and consistently low damage over a wide range of attack
flows.

8 Acknowledgments

We thank Pratyaksh Sharma and Prateesh Goyal for early work on this project
as part of their summer internship at ETH in Summer 2015. We also thank the
anonymous reviewers, whose feedback helped to improve the paper.

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013), ERC grant agreement 617605, the Ministry of Science and
Technology of Taiwan under grant number MOST 107-2636-E-002-005, and the
US National Science Foundation under grant numbers CNS-1717313 and CNS-
0953600. We also gratefully acknowledge support from ETH Zurich and from
the Zurich Information Security and Privacy Center (ZISC).

References

1. Andersen, D.G., Balakrishnan, H., Feamster, N., Koponen, T., Moon, D.,
Shenker, S.: Accountable internet protocol (AIP). In: Proceedings of ACM SIG-
COMM (2008). https://doi.org/10.1145/1402958.1402997, http://portal.acm.

org/citation.cfm?doid=1402958.1402997

https://doi.org/10.1145/1402958.1402997
http://portal.acm.org/citation.cfm?doid=1402958.1402997
http://portal.acm.org/citation.cfm?doid=1402958.1402997

CLEF: Limiting the Damage Caused by Large Flows in the Internet Core 19

2. Anderson, T., Birman, K., Broberg, R., Caesar, M., Comer, D., Cotton, C., Freed-
man, M.J., Haeberlen, A., Ives, Z.G., Krishnamurthy, A., et al.: The nebula future
internet architecture. In: The Future Internet Assembly. pp. 16–26. Springer (2013)

3. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J.,
Durumeric, Z., Halderman, A.J., Invernizzi, L., Kallitsis, M., Kumar, D., Lever,
C., Ma, Z., Mason, J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K., Zhou,
Y.: Understanding the Mirai botnet. In: USENIX Security Symposium (2017)

4. Basescu, C., Reischuk, R.M., Szalachowski, P., Perrig, A., Zhang, Y., Hsiao, H.C.,
Kubota, A., Urakawa, J.: SIBRA: Scalable internet bandwidth reservation archi-
tecture. In: Proceedings of Network and Distributed System Security Symposium
(NDSS) (Feb 2016)

5. Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture:
an Overview. RFC 1633 (Informational) (Jun 1994), http://www.ietf.org/rfc/
rfc1633.txt

6. CAIDA: Caida Anonymized Internet Traces 2016. https://data.caida.org/

datasets/passive-2016/ (2016)
7. Chen, M., Chen, S., Cai, Z.: Counter tree: a scalable counter architecture for per-

flow traffic measurement. IEEE/ACM Transactions on Networking (2016)
8. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informa-

tional) (Oct 2004), http://www.ietf.org/rfc/rfc3954.txt
9. Cormode, G., Muthukrishnan, S.: An Improved Data Stream Summary: The

Count-Min Sketch and its Applications. Journal of Algorithms 55(1), 58–75 (2005).
https://doi.org/10.1016/j.jalgor.2003.12.001, http://linkinghub.elsevier.com/
retrieve/pii/S0196677403001913

10. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency Estimation of Internet
Packet Streams with Limited Space. In: Proceedings of ESA (2002), http://www.
springerlink.com/index/0MJ1EXMY9L9MCQAD.pdf

11. Estan, C.: Internet Traffic Measurement: What’s Going on in my Network? Ph.D.
thesis (2003)

12. Estan, C., Varghese, G.: New Directions in Traffic Measurement and Accounting:
Focusing on the Elephants, Ignoring the Mice. ACM Transactions on Computer
Systems (TOCS) 21(3), 270–313 (2003), http://dl.acm.org/citation.cfm?id=
859719

13. Fang, M., Shivakumar, N.: Computing Iceberg Queries Efficiently. In: Proceedings
of VLDB (1999), http://ilpubs.stanford.edu:8090/423/

14. Han, D., Anand, A., Dogar, F., Li, B., Lim, H., Machado, M., Mukundan, A.,
Wu, W., Akella, A., Andersen, D.G., Byers, J.W., Seshan, S., Steenkiste, P.: XIA:
Efficient support for evolvable internetworking. In: Proc. 9th USENIX NSDI. San
Jose, CA (Apr 2012)

15. Intel: Intel Xeon Processor E7 v4 Family. https://ark.intel.com/products/

series/93797/Intel-Xeon-Processor-E7-v4-Family (2016)
16. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A Simple Algorithm for Find-

ing Frequent Elements in Streams and Bags. ACM Transactions on Database
Systems 28(1), 51–55 (2003). https://doi.org/10.1145/762471.762473, http://

portal.acm.org/citation.cfm?doid=762471.762473
17. Kim, T.H.J., Basescu, C., Jia, L., Lee, S.B., Hu, Y.C., Perrig, A.: Lightweight

source authentication and path validation. In: ACM SIGCOMM Computer Com-
munication Review. vol. 44, pp. 271–282. ACM (2014)

18. Kumar, A., Xu, J., Wang, J.: Space-code bloom filter for efficient per-flow traffic
measurement. IEEE Journal on Selected Areas in Communications 24(12), 2327–
2339 (2006)

http://www.ietf.org/rfc/rfc1633.txt
http://www.ietf.org/rfc/rfc1633.txt
https://data.caida.org/datasets/passive-2016/
https://data.caida.org/datasets/passive-2016/
http://www.ietf.org/rfc/rfc3954.txt
https://doi.org/10.1016/j.jalgor.2003.12.001
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913
http://www.springerlink.com/index/0MJ1EXMY9L9MCQAD.pdf
http://www.springerlink.com/index/0MJ1EXMY9L9MCQAD.pdf
http://dl.acm.org/citation.cfm?id=859719
http://dl.acm.org/citation.cfm?id=859719
http://ilpubs.stanford.edu:8090/423/
https://ark.intel.com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family
https://ark.intel.com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family
https://doi.org/10.1145/762471.762473
http://portal.acm.org/citation.cfm?doid=762471.762473
http://portal.acm.org/citation.cfm?doid=762471.762473

20 H. Wu, H-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig and Y-C. Hu

19. Lee, S.B., Kang, M.S., Gligor, V.D.: CoDef: Collaborative defense against large-
scale link-flooding attacks. In: Proceedings of CoNext (2013)

20. Li, A., Liu, X., Yang, X.: Bootstrapping accountability in the Internet we have.
In: Proceedings of USENIX/ACM NSDI (Mar 2011)

21. Liu, X., Li, A., Yang, X., Wetherall, D.: Passport: Secure and adoptable source au-
thentication. In: Proceedings of USENIX/ACM NSDI (2008), http://www.usenix.
org/event/nsdi08/tech/full_papers/liu_xin/liu_xin_html/

22. Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., Braverman, V.: One Sketch to
Rule Them All: Rethinking Network Flow Monitoring with UnivMon. In: ACM
SIGCOMM (2016). https://doi.org/10.1145/2934872.2934906

23. Liu, Z., Jin, H., Hu, Y.C., Bailey, M.: MiddlePolice: Toward enforcing destination-
defined policies in the middle of the internet. In: Proceedings of ACM CCS (Oct
2016)

24. Manku, G., Motwani, R.: Approximate Frequency Counts over Data Streams. In:
Proceedings of VLDB (2002), http://dl.acm.org/citation.cfm?id=1287400

25. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: International Conference on Database Theory.
pp. 398–412. Springer (2005)

26. Misra, J., Gries, D.: Finding Repeated Elements. Science of Computer Program-
ming 2(2), 143–152 (1982)

27. Naous, J., Walfish, M., Nicolosi, A., Mazires, D., Miller, M., Seehra, A.: Verify-
ing and enforcing network paths with ICING. In: Proceedings of ACM CoNEXT
(2011). https://doi.org/10.1145/2079296.2079326

28. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: European Symposium on Algorithms.
pp. 121–133. Springer (2001)

29. Shenker, S., Partridge, C., Guerin, R.: Specification of Guaranteed Quality of
Service. RFC 2212 (Proposed Standard) (Sep 1997), http://www.ietf.org/rfc/
rfc2212.txt

30. Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., Rexford, J.:
Heavy-hitter detection entirely in the data plane. In: Proceedings of the Symposium
on SDN Research. pp. 164–176. ACM (2017)

31. Tong, D., Prasanna, V.: High throughput sketch based online heavy hitter detection
on fpga. ACM SIGARCH Computer Architecture News 43(4), 70–75 (2016)

32. Trybulec, W.A.: Pigeon hole principle. Journal of Formalized Mathematics 2(199),
0 (1990)

33. Wu, H., Hsiao, H.C., Asoni, D.E., Scherrer, S., Perrig, A., Hu, Y.C.: CLEF: Lim-
iting the Damage Caused by Large Flows in the Internet Core (Technical Re-
port). Tech. Rep. arXiv:1807.05652 [cs.NI], ArXiv (2018), https://arxiv.org/

abs/1807.05652

34. Wu, H., Hsiao, H.C., Hu, Y.C.: Efficient large flow detection over arbitrary win-
dows: An algorithm exact outside an ambiguity region. In: Proceedings of the 2014
Conference on Internet Measurement Conference. pp. 209–222. ACM (2014)

35. Xiao, Q., Chen, S., Chen, M., Ling, Y.: Hyper-compact virtual estimators for big
network data based on register sharing. In: ACM SIGMETRICS Performance Eval-
uation Review. vol. 43, pp. 417–428. ACM (2015)

36. Zhang, X., Hsiao, H.C., Hasker, G., Chan, H., Perrig, A., Andersen, D.G.: SCION:
Scalability, control, and isolation on next-generation networks. In: IEEE Sympo-
sium on Security and Privacy. pp. 212–227 (2011)

http://www.usenix.org/event/nsdi08/tech/full_papers/liu_xin/liu_xin_html/
http://www.usenix.org/event/nsdi08/tech/full_papers/liu_xin/liu_xin_html/
https://doi.org/10.1145/2934872.2934906
http://dl.acm.org/citation.cfm?id=1287400
https://doi.org/10.1145/2079296.2079326
http://www.ietf.org/rfc/rfc2212.txt
http://www.ietf.org/rfc/rfc2212.txt
https://arxiv.org/abs/1807.05652
https://arxiv.org/abs/1807.05652

	CLEF: Limiting the Damage Caused by Large Flows in the Internet Core

