®

Check for
updates

A Generic Web Application Testing and Attack Data
Generation Method

Hsiao-Yu Shih', Han-Lin Lu', Chao-Chun Yeh'?, Hsu-Chun Hsiao®,
and Shih-Kun Huang"**"

! Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
ncnoa22l@gmail.com, littleflyer20l15@gmail.com,
skhuang@cs.nctu.edu. tw
2 Information Technology Service Center, National Chiao Tung University, Hsinchu 300, Taiwan
3 Computational Intelligence Technology Center, Industrial Technology Research Institute,
Hsinchu 300, Taiwan
avainyeh@itri.org.tw
4 Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan
hchsiao@csie.ntu.edu. tw

Abstract. With the advances of diversified online services, there is an increasing
demand for web applications. However, most web applications contain critical
bugs affecting their security, allowing unauthorized access and remote code
execution. It is challenging for programmers to identify potential vulnerabilities
in their applications before releasing the service due to the lack of resources and
security knowledge, and thus such hidden defects may remain unnoticed for a
long time until being reported by users or third-party risk exposure. In this paper,
we develop an automated detection method to support timely and flexible
discovery of a wide variety of vulnerability types in web applications. The key
insight of our work is adding a lightweight detecting sensor that differentiates
attack types before performing symbolic execution. Based on the technique of
symbolic execution, our work generates testing and attack data by tracking the
address of program instruction and checking the arguments of dangerous func-
tions. Compared to prior analysis tools that also use symbolic execution, our work
flexibly supports the detection of more types of web attacks and improve system
flexibility for users thanks to the detecting sensor. We have evaluated our solution
by applying this detecting process to several known vulnerabilities on open-
source web applications and CTF (Capture The Flag) problems, and detected
various types of web attacks successfully.

Keywords: Web application testing - Symbolic execution - Capture The Flag
Software vulnerability

1 Introduction

Web applications have become a significant part of the Web because of the attractive
features such as easy installation, customization and high accessibility. However, they
are often deployed with critical software bugs that can be maliciously exploited. Once

© Springer International Publishing AG, part of Springer Nature 2018
S.-L. Peng et al. (Eds.): SICBS 2017, AISC 733, pp. 232-247, 2018.
https://doi.org/10.1007/978-3-319-76451-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76451-1_22&domain=pdf

A Generic Web Application Testing and Attack Data Generation Method 233

a weakness is found, it can be exploited to take control of the system. Hence, there is a
need for an analysis tool which can automatically detect vulnerabilities and defend
against threats.

1.1 Motivation and Objective

Web applications are usually built with multiple utilities for customers in various program-
ming languages. Our previous work, CRAXWeb [1], achieves the goal of detecting XSS
and SQL injection attack and generating the corresponding exploit [2—4]. However, many
types of attack remain unsupported. We propose to add an attack type differentiator called
detecting sensor in a designated call site of the Web service. The complex step of inserting
a detecting sensor into the web service components also decreases the flexibility in the
testing process. Therefore, we improve CRAXWeb to support the detection of more attack
types and speed up the procedure to deploy detecting sensors.

The aim of this work is to extend an existing exploit generator, CRAXWeb, for XSS
and SQL injection attack on web applications to implement generic web attack gener-
ation. This work is based on a popular dynamic analysis technique in the field of software
testing called symbolic execution [5, 6]. Many related works are also based on it.
However, most of the works focus on only XSS and SQL injection attack. Our challenge
is to protect web applications against multiple types of threats.

1.2 Overview

This paper is organized as follows. Section 2 describes the background of software
testing and related web security issues. Section 3 describes and compares related works.
Sections 4 and 5 explain our method and implementation, respectively. Experimental
results are reported in Sect. 6. Finally, Sect. 7 concludes our paper, with future work.

2 Background

2.1 Symbolic Execution

Symbolic execution is a testing approach that executes programs with symbolic rather
than concrete inputs. Its objective is to explore as many paths in a program as possible.
Before executing, a path constraint is initialized as true. Whenever the program execu-
tion encounters an assignment statement that associates with symbolic variable, the
symbolic variable will taint other concrete variables as symbolic. When symbolic
execution encounters a branch condition, it forks the execution state, following both
branch directions and updating the corresponding path constraints on the symbolic input.
If the program exits, or terminates unexpectedly, the current path constraint will be
solved to compute a concrete test case that drives the program to this execution point.
By considering symbolic execution on the example in Fig. 1, num is assigned a
symbol X at line 4 since it is user provided data. For the assignment at line 6, the symbolic
variable num taints the concrete variable key and the symbolic value of key becomes

234 H.-Y. Shih et al.

X - 100. For the branch at line 7, the execution encounters the symbolic variable key
and forks a new execution for another new path. One takes the true path with an addi-
tional constraint X - /00 == 0. The other takes the false path, with an additional constraint
X - 100 # 0. Whenever two forked executions finish, their path constraints can be solved
by the constraint solver for generating new test cases. One case is num = 100 and another
case is num = 101(not equal to 100). The process is shown in Figs. 1 and 2

void vul() PC: true
‘ |
int num, key = 0;
scanf("%d", &num);
PC: true
key = num - 100;
if(key == 0) v N
printf("unsafe");
else PC: (X-100==0) PC: (X-10020)
printf("safe"); l l
} num = 100 num =101
Fig. 1. Sample code Fig. 2. Symbolic execution for sample code

2.2 Web Security Issues

Cross Site Scripting (XSS)

Cross Site Scripting (XSS) is a common attack vector that injects code into website to
complete a range of actions from stealing logs to installing malicious software on user’s
computer. Two primary types of XSS are reflected XSS and stored XSS. In reflected
XSS, an attacker crafts a URL containing a malicious string and sends it to the victim.
Whoever clicks the link is going to have the script execute in the browser. In stored XSS,
also known as persistent XSS, an attacker injects the malicious payload into databases
or visitor logs and has it be available to all visiting users, the payload will run in each
of the victims’ browsers.

Cross-Site Request Forgery (CSRF)

Cross-site request forgery (CSRF) is a type of website exploit caused by transmitting unau-
thorized commands from a user whom the web application trusts. As opposed to XSS,
which exploits the user’s trust for a website, CSRF exploits a website’s trust for a partic-
ular user’s browser. CSRF attack forces a logged-on victim’s browser to send a forged
HTTP request, which allows the attacker to launch any desired requests against the website,
without the website being able to distinguish whether the requests are legitimate or not.

SQL Injection
An SQL injection vulnerability occurs when the data from an untrusted source are used
to dynamically construct a SQL query. Attackers trick the system by executing malicious

A Generic Web Application Testing and Attack Data Generation Method 235

SQL commands to manipulate the backend database [7]. An SQL injection attack may
result in data theft, loss, modification or corruption, or even complete takeover of the
server.

Command Injection

Command injection occurs when an application passes unsafe user supplied data to a
system shell. An attacker can execute operating system commands with the privileges
of the vulnerable application. There are many ways to exploit a command injection, such
as by injecting the command inside backticks (for example * 1s ‘) and running another
command if the first one succeeds (for example &&1s).

File Inclusion

A file inclusion vulnerability occurs when a user-controlled parameter is used as part of
a file name in a call to an including function (require (), or include () in PHP for
example). Depending on whether the file is remote or local, file inclusion can be cate-
gorized into Remote File Inclusion (RFI) and Local File Inclusion (LFI).

Remote File Inclusion allows an attack to include and execute a remotely hosted
file. Since the included file is controllable, the attack can run arbitrary code either on the
client side or on the server. In the scenario of Local File Inclusion, the attacker can access
unauthorized files or utilize directory traversal characters to retrieve sensitive files
available in other directories.

3 Related Work

This section presents a comprehensive survey of previous work undertaken in the field
of testing and vulnerability analysis for web scripting languages. There are three main
topics: Symbolic Execution based Test Generation, Static/Dynamic Analysis based
Attack Detection, and Symbolic Execution based Attack Detection. Symbolic Execution
based Test Generation.

Apollo [8] is a tool that uses concrete and symbolic (concolic) execution to generate
failure-inducing inputs for PHP web applications. Jalangi [9] is a dynamic analysis
framework for JavaScript that applies concolic execution to generate function argu-
ments. SymJS [10] contains a symbolic execution engine for JavaScript and an automatic
event explorer. Jalangi works for pure JavaScript programs, while SymJS works for
general web applications. Derailer [11] is a security bugs finding tool for Ruby on Rails
web applications. Chef [12] is a symbolic execution engines relying on the S’E [13] for
Python and Lua analysis. MultiSE [14] extends Jalangi and introduces a new technique
for merging states to improve its effectiveness.

3.1 Static/Dynamic Analysis Based Attack Detection

Pixy [15] performs interprocedural flow-sensitive data flow analysis to detect XSS
vulnerabilities in PHP scripts. XSS-GUARD [16] dynamically learns the set of scripts
that a web application intends to create for any HTML request. PIUIVT [17] enhances
the efficiency of invalid test inputs generation depending on feedback of analysis.

236 H.-Y. Shih et al.

MySQLInjectior [18]is a web scanning tool to detect SQL injection vulnerabilities based
on the identified styles. NKSI Scan [19] is a model based penetration test method for the
SQL injection vulnerabilities. It can generate test case covering different types and
patterns of SQL injection attack input. Zheng et al. [20] propose a path- and context-
sensitive interprocedural analysis to detect remote code execution vulnerabilities on
PHP applications. XSSDM [21] proposes a context-sensitive approach based on static
taint analysis and pattern matching techniques to detect XSS vulnerabilities. Joza [22]
is a hybrid approach which combines advantages of negative [23] and positive inference
[24] for SQL injection detection. DEKANT [25] uses static analysis with the ability to
learn to characterize vulnerabilities based on annotated source code slices.

3.2 Symbolic Execution Based Attack Detection

SAFELI[26] inspects Java to automatically generate SQL injection attack scenarios. Adrilla
[27] is an exploit generator which stems from Apollo. It combines concolic testing and
dynamic taint analysis to generate concrete attack vectors for PHP web applications. Kudzu
[28] is the first symbolic execution based framework for JavaScript code analysis. It uses
attack grammars to solve the exploit and finally finds out two unknown vulnerabilities.
Rubyx [29] is a symbolic executor for Ruby, with builtin support for specification and
verification of scripts. It proves complex security and correctness properties of Ruby-on-
Rails web applications. Huang et al. [30] proposed a hybrid vulnerability analyzer for Java
that applies symbolic execution to generate path constraints. Codeminer [31] combines
static analysis and symbolic code execution to identify XSS and SQL injection vulnerabil-
ities on PHP web applications. Compared to these works, our framework can detect XSS
and SQL injection attack for the web applications written in any language. Moreover, for
PHP web applications, our framework detects more types of attacks such as command
injection, code injection, and file inclusion.

4 Method

Our work is based on the Selective Symbolic Execution (SZE) [13] framework, which
supports application emulation using QEMU. Figure 3 is the model of our method, which
is divided into four main parts: Symbolic Environment, Dangerous Function Analysis,
Symbolic Argument Checking, and Host Management.

The Guest OS comprises a client and a server which runs one or more back-end web
applications and a database, working like the real-world web service environment. The
only difference is the way client communicates with server. Client sends symbolic data
to server along with HTTP requests. The Host OS keeps track of the program counter
during the request processing. When the addresses of dangerous functions are reached,
it will check whether the arguments of the functions are symbolic. The Host Manage-
ment contains a list of functions we are interested in and a configuration file used to
control the symbolic execution in the Host OS.

A Generic Web Application Testing and Attack Data Generation Method 237

Host Management

v

Host OS(S2E)

Checking Symbolic Variable

Detecting Dangerous Function Execution

application

server

Guest OS(QEMU)

Fig. 3. Symbolic environment, dangerous function analysis, symbolic argument checking, and
host management

4.1 Symbolic Environment

Symbolic Socket

To attack web applications, an attacker inject unexpected inputs to invoke abnormal
program execution and reaction, such as system crash and sensitive data leakage. These
malicious inputs are propagated within HTTP request, in the form of GET parameters
in URL or POST data in message body. For SQL injection, the single quotation mark
and the UNION operator are commonly leveraged to craft a malicious query, which is
joined into the original query intended to be run by the web application. For command
injection, the crafted command which is used as the arguments of dangerous functions
will be processed on the operating system.

In order to explore all possible paths through the whole web executing procedure
from request to response that correspond to all possible inputs, we have to make these
inputs symbolic. Hence, we adopt symbolic socket, which is composed of HTTP request
and symbolic data, to act as the communicator between the server and the client. The
symbolic data is injected into HTTP request to replace the value of original inputs from
users and passed to the web server along with the HTTP request. If the symbolic data
can reach the functions we are interested in, it implies that the arguments of these func-
tions can be controlled by the original symbolic data. Figure 4 shows the propagation
of symbolic data.

238 H.-Y. Shih et al.

client server
web application
GET /ping.php?ip=[_symbolic N > <?php
Host: www.example.com symbolic socket
$ip = $_GET[‘ip’];
POST /ping.php exec(’'ping ‘.$ip);

Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 30

ip=[symboiic_]

Fig. 4. Symbolic data propagates to the server along with HTTP request

4.2 Dangerous Function Analysis

Target Function Detection

To facilitate web security testing, our technique should be able to detect as many types of
vulnerabilities as possible. Because most of the vulnerabilities occur when untrusted data
is passed into and executed by functions in web application languages, what we care about
in this detecting method is the address of such dangerous functions. S’E is extensible to
support different architectures and features by means of a plugin interface. We implement
a customized plugin in the Host OS to monitor the address that the symbolic data flows
through the programs in the Guest OS during the symbolic execution.

In order to fulfill the goal of detecting SQL injection attack in web applications which
are written in different programming languages, it is essential to analyze the query
processing in the database server. The dispatch_command () function in MySQL
source code is where MySQL actually starts the analysis of commands, including
queries, prepared statements and other command types. Figure 5 shows part of the code
indispatch_command (). As the name of the function implies, it is responsible for
dispatching the query to the appropriate handler. Since the SQL query run by a web

bool (enum enum_server_command command, THD *thd,
char* packet, uint packet_length)

switch (command) {
case COM_INIT_DB:

// ..
case
{
if (alloc_query(thd, packet, packet_length))
break; // fatal error is set
/] .
mysql_parse(thd, , thd->query_length(), &parse_state);
/] .
}

Fig. 5. MySQL function dispatch_command()

A Generic Web Application Testing and Attack Data Generation Method 239

application is a standard SQL query over the connection, we focus on the COM_QUERY
block in the switch statement. If the block is reached during symbolic execution, we can
continuingly check whether the query string (i.e. thd-> query()) is controllable.

For other types of attack such as command injection, code injection, file inclusion
and more, we target at the functions in PHP since it is the most widely used web appli-
cation programming language and has raised substantial number of security issues due
to the improper use of functions. Take command injection for example, one of our target
functions is shell_exec (), which allows users to execute an external program.
Figure 6 shows the shell_exec () function in ext/standard/exec.c of PHP 5.5.38.
The char pointer, char *command, is the command that will be executed as well as the
argument that we have to check.

Symbolic Argument Checking

If the recorded functions are reached, we have to continuingly verify the controllability
of the arguments. S”E fetches blocks of guest code, translates them to the host’s instruc-
tion set, and passes the resulting translation to the execution engine. It determines which
code to fetch and translate by reading the state of the virtual CPU and the guest memory.

Function Argument Checking.
It is time-consuming to insert s2e opcode to PHP or MySQL source code and recompile
the binaries.

To deal with this problem, we design a method to analyze the program state at the
Host OS when S°E notices that a dangerous function is executed instead of invoking the
checking process from the Guest OS. This reduces the manipulation on web service
components, leaving the web environment easy to deploy. The web server, database,

PHP_FUNCTION()

{
FILE *in;

size_t command_len;
zend_string *ret;
php_stream *stream;

ZEND_PARSE_PARAMETERS_START(1, 1)
Z_PARAM_STRING(, command_len)
ZEND_PARSE_PARAMETERS_END();

#ifdef PHP_WIN32

if ((in=VCWD_POPEN(, "rt"))==NULL) {
#else

if ((in=VCWD_POPEN(, "r"))==NULL) {
#endif

php_error_docref(NULL, E_WARNING, "Unable to execute '%s'", command);
RETURN_FALSE;
}
//...
}

/* VCWD_POPEN will finally call popen() in C standard library */

Fig. 6. PHP function shell_exec()

240 H.-Y. Shih et al.

and programming language can be built through a package manager like pip or apt-get
without hardcoding other functions needed by symbolic execution.

The method to analysis function arguments is divided into two steps: reading the
memory address from the register where the function argument stores and determining
whether the value in the memory is symbolic or concrete. Figure 7 shows an overview
of the workflow.

Guest

make controllable data symbolic

send symbolic data
with HTTP request

Host

< dangerous function
<

track the pc/state of the instruction is reached?
associated with symbolic data

go through

web server/

database/
web application

read the address of argument
from certain register

|

complete HTTP request

send HTTP response

read the value of argument
from the address

argument is
symbolic?

log into result file

Fig. 7. The overview of the workflow

4.3 Host Management

Dangerous Function List

In order to reduce the complexity of processes for users, we build a list of functions and
their corresponding attack types. Users can choose what kind of detection they want to
implement on the web application by writing a python script to specify the attack types
or functions that are of interest. There is no need for users to consider the addresses of
the function and the argument. Figure 8 is the example of the python script. In this
example, although the file_get_contents () function does not belong to any of
the two attack types, it is also the target function.

attack_type = { "SQL injection", "Command injection" }
function = { "file_get_contents" }

N =

Fig. 8. Python script example that is provided by user

A Generic Web Application Testing and Attack Data Generation Method 241

S Implementation

In this section, we explain in detail how our method is implemented on S’E.The first
partis Symbolic Environment including the whole system architecture of our framework
and the propagation of symbolic data. The second part is Host OS Risk Detection; it
relates to the plugin we design to detect function execution and identify symbolic argu-
mentsZ. The third part is Host Management; it works as the communicator between users
and S°E.

5.1 Symbolic Environment

System Architecture

The architecture of the system is summarized in Fig. 9: the web application is built in
the Guest OS, which is running on a machine emulator called QEMU. The Host OS
constructed by S’E receives the information propagated from the Guest OS, and then
our customized S°E plugin can verify whether the dangerous functions are reached and
whether the function arguments are symbolic. Users can specify the functions or attack
types in a python script. The configuration writer creates the configuration file depending
on the script and the dangerous function list to control the plugin.

Most web applications are based on the client-server architecture where the client
submits data while the server stores and retrieves data. We make the testing application
run on top of Debian 7 with Apache as the web server and MySQL as the database in
light of flexibility and accessibility of use.

CRAXWeb

Host OS (S2E)
N st OS (QEMU) 3

ppPHP : S2E

: — :
MySQL : Symbolic Variable Checking Plugin
[client)—- server *

configuration file

Config Writer

dangerous functions list
]

|
python script

Fig. 9. System Architecture

Symbolic Socket
We deploy a program acting as the client in the Guest OS to generate symbolic socket,
which is made up of a HTTP request with injected symbolic data. Then, the HTTP

242 H.-Y. Shih et al.

request message with the symbolic string is written to the socket and sent to the web
server, as shown in Fig. 10.

original request

GET /ping.php?ip=127.0.0.1

Host: www.example.com

char str[101];
s2e_make_symbolic(str, 100, “str”);

GET /ping.php?ip=

Host: www.example.com

Grite(server_fd, request, request_len))

Fig. 10. Generate a symbolic socket

Whenever a branch referring to symbolic data is encountered, the entire states (i.e.
memory, registers and PC) will be forked and each side of the branch will be explored
by S’E.

5.2 Dangerous Function Analysis

In order to detect multiple types of attacks, we focus on the execution of the functions
that might be used by attackers with malicious intentions. In this section, we detail the
analysis process of finding function address and the implementation of checking
symbolic variable in our customized plugin.

Target Function Detection
¢ MySQL Executable Analysis

MySQL supplies different executables to serve different purposes for users. For example,
mysql is a command-line client for executing SQL statement interactively and mysqld
is the server executable. Since the symbolic data is sent to the web server along with
HTTP request from the client-side, the target to analyze is mysqld, which is the server
daemon in the Unix-like operating system.

By reversing mysqld with the IDA Pro Disassembler, we can find the address of
dispatch_command () function, which is the entry point of MySQL query.

A Generic Web Application Testing and Attack Data Generation Method 243

In addition to the address of the function, the value of the argument is also necessary
for checking symbolic variable. S’E keeps track of the instruction executed in the Guest
OS with the -corresponding state. We observe the disassembly code of
dispatch_command () and find the register where the argument is stored.

o PHP Module Analysis

Using the PHP module to execute PHP scripts on Apache is the default mode set at the
creating phase of most web frameworks. The PHP module acts as the PHP interpreter
that is embedded in each Apache processes, which means that no external PHP process
is required. As the interpreter is started along with Apache, it can cache certain infor-
mation and need not to repeat the same tasks each time a script is executed, leading to
the good performance on PHP heavy sites.

Apache loads numerous modules when the service starts, including the PHP module
which is named libphp5.so. In order to get the base address of the PHP module inside
the Apache process, we use pmap command in Linux which can report memory map of
a process to list the information related to libphp5.so.

Then we reverse libphp5.so in the Apache process to get the starting address and
length of functions such as zif_shell_exec() or shell_exec() in PHP.

Symbolic Argument Checking

S’E provides macros to access the registers and memory of S’E-specific state. To get
the contents in registers, we use readCpuRegisterConcrete () macro to read
concrete value from general purpose CPU register. There are two macros to read the
content in memory according to the status of the target memory: readMemoryCon-
crete () gets concrete data, if the target memory is concrete status; readMe-
mory8 () gets symbolic data, if the target memory is symbolic status. However,
readMemoryConcrete () fails if the value is symbolic. Since the argument has
chance to be symbolic, we use readMemory8 () to read the content from memory and
then cast it into the KLEE Expression. S’E uses the KLEE Expression class as
the fundamental building block of all values in the emulated memory object. A concrete
value is merely a KLEE ConstantExpression which is derived from KLEE
Expression. We determine a value is symbolic if its cast expression is not a KLEE
ConstantExpression.

5.3 Host Management

Dangerous Function List

The dangerous function list is written in JSON format. It contains numerous function
names as the keys and each of them has the following components: the function address,
the offset of the register which stores the function argument, and the attack type. S’E
uses the predefined offset value to access each register from QEMU. Figure 11 is the
example of the function list.

244 H.-Y. Shih et al.

"dispatch_command" : {
"address" : 0x8228296,
"argument" : 0x0,

"type" : "SQL injection",

}l

"shell_exec" : {
"address" : Oxb5c672b4,
"argument" : 0x0,
"type" : "Command injection

Fig. 11. The example of the function list

6 Evaluation

6.1 Evaluation of Vulnerable Applications

Experimental Environment

All experiments performed on a host hardware including a 2.4 Ghz CPU with 8 cores,
8 GB physical memory and host OS with Ubuntu 12.04 64-bit desktop edition. The guest
environment that is emulated by QEMU includes 2.8 GHz CPU with a single core,
128 MB physical memory and guest OS with Debian 7 32-bit for Linux platform. The
software environment is based on S’E 1.0. The database handler is based on MySQL
5.5.49 and the PHP version is 5.5.38.

Experimental Results

The experiment reports the vulnerabilities detection on different platforms to prove the
feasibility of platform-independent web testing with our method. Test 1 is a PHP web
service that contains numbers of dangerous functions. Test 2 is a website with SQL
injection vulnerability and it is built on a Python web framework called Flask. mfw is
a challenge of CSAW online CTF in 2016. The forth test case is the web services of
RCTF final attack-and-defense contests in 2015; it is built on Codeigniter and with
various types of vulnerabilities. The fifth, sixth, and seventh test cases are both the plugin
of Wordpress and have been recorded in the CVE list. Table 1 shows the experimental
result of vulnerability detection.

A Generic Web Application Testing and Attack Data Generation Method 245

Table 1. Evaluation of vulnerable applications

Test Attack types Detected functions | #of lines | Testing Platform CVE
case time (sec)
Test 1 | SQLi, mysql_query, 55 102.06 PHP

Commandi, LFI | system, shell_exec,
assert, fopen

Test 2 | SQLi MySQL- 36 31.66 Python (Flask)
dispatch_commend
Test 3 | Code injection assert 62 6.25 PHP
Test4 | SQLi, Code create_function, 44553 34.59/41.7 | PHP
injection unserialize (Codeigniter)

Test 5 | Commandi shell_exec 23086 33.53 PHP 2015-5227
Test 6 | Code injection call_user_func 5377 60.19 PHP 2014-1215
Test 7 | Path traversal file_get_contents 2264 48.58 PHP 2014-5368

*Test 3: mfw (CSAW CTF 2016 web 125), Test 4: RCTF Final 2015, Test 5: Landing Pages (WordPress plugin), Test 6: Download Manager
(WordPress plugin), Test 7: wp-source-control (WordPress plugin)

7 Conclusion and Future Work

The aim of this work is to extend an existing dynamic analysis framework to implement
automatic attack detection for web framework. By detecting the execution of dangerous
functions, developers can figure out potential vulnerabilities before releasing the web
service. This means that software flaws can be fixed early on, and that developers can
complete quick security audits.

Our work fulfills the goal of multiple types of web attacks, and has implemented the
testing procedure on web applications that are built on different framework and written
in different programming languages. The experimental result proved the feasibility of
our implementation. In addition, some of the test cases were announced as known
vulnerabilities in the CVE database.

Our work can automatically detect SQL injection and XSS attack and generate
corresponding exploit string. A SQL injection exploit payload possibly contains the
string such as “’or I = 1;-", so we set the exploit generator to solve the constraints to
generate an input that formed by the basic exploit string. Thanks to our generic construc-
tion, it is also possible to generate exploits for other types of web security issues with
the same method. By considering the exploit generation on code injection, when the
symbolic data reaches the eval () or assert () functions, exploit generator can
continuingly generate the exploit string that formed by “system(‘1s’)”.

Acknowledgements. This work was supported by the Institute for Information Industry under
the grant 106-EC-17-D-11-1502.

246

H.-Y. Shih et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Huang, S.-K., Lu, H.-L., Leong, W.-M., Liu, H.: Craxweb: automatic web application testing

and attack generation. In: 2013 IEEE 7th International Conference on Software Security and
Reliability (SERE), pp. 208-217. IEEE (2013)

. Bisht, P., Hinrichs, T., Skrupsky, N., Venkatakrishnan, V.: WAPTEC: whitebox analysis of

web applications for parameter tampering exploit construction. In: Proceedings of the 18th
ACM Conference on Computer and Communications Security, pp. 575-586. ACM (2011)

. Martin, M., Lam, M.S.: Automatic generation of XSS and SQL injection attacks with goal-

directed model checking. In: Proceedings of the 17th Conference on Security Symposium,
pp- 31-43. USENIX Association (2008)

. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, EJ., Woo, M., Brumley, D.: Automatic

exploit generation. Commun. ACM 57(2), 74-84 (2014)

. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385-394 (1976)
. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about dynamic taint

analysis and forward symbolic execution (but might have been afraid to ask). In: 2010 IEEE
Symposium on Security and Privacy (SP), pp. 317-331. IEEE (2010)

. Halfond, W.G., Viegas, J., Orso, A.: A classification of SQL-injection attacks and

countermeasures. In: Proceedings of the IEEE International Symposium on Secure Software
Engineering, vol. 1, pp. 13-15. IEEE (2006)

. Artzi, S., et al.: Finding bugs in dynamic web applications. In: Proceedings of the 2008

International Symposium on Software Testing and Analysis, pp. 261-272. ACM (2008)

. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: a selective record-replay and dynamic

analysis framework for JavaScript. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pp. 488-498. ACM (2013)

Li, G., Andreasen, E., Ghosh, I.: SymJS: automatic symbolic testing of JavaScript web
applications. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 449-459. ACM (2014)

Near, J.P., Jackson, D.: Derailer: interactive security analysis for web applications. In:
Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, pp. 587-598. ACM (2014)

Bucur, S., Kinder, J., Candea, G.: Prototyping symbolic execution engines for interpreted
languages. ACM SIGARCH Comput. Archit. News 42(1), 239-254 (2014)

Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-path analysis
of software systems. ACM SIGPLAN Not. 46(3), 265-278 (2011)

Sen, K., Necula, G., Gong, L., Choi, W.: MultiSE: multi-path symbolic execution using value
summaries. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 842-853. ACM (2015)

Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: a static analysis tool for detecting web application
vulnerabilities. In: 2006 IEEE Symposium on Security and Privacy, pp. 258-263. IEEE
(2006)

Bisht, P., Venkatakrishnan, V.: XSS-GUARD: precise dynamic prevention of cross-site
scripting attacks. In: International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pp. 23-43. Springer (2008)

Li, N., Xie, T., Jin, M., Liu, C.: Perturbation-based user-input-validation testing of web
applications. J. Syst. Softw. 83(11), 2263-2274 (2010)

Ali, A.B.M., Abdullah, M.S., Alostad, J.: SQL-injection vulnerability scanning tool for
automatic creation of SQL-injection attacks. Procedia Comput. Sci. 3, 453—458 (2011)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A Generic Web Application Testing and Attack Data Generation Method 247

Tian, W., Yang, J.-F., Xu, J., Si, G.-N.: Attack model based penetration test for SQL injection
vulnerability. In: 2012 IEEE 36th Annual Computer Software and Applications Conference
Workshops (COMPSACW), pp. 589-594. IEEE (2012)

Zheng, Y., Zhang, X.: Path sensitive static analysis of web applications for remote code
execution vulnerability detection. In: Proceedings of the 2013 International Conference on
Software Engineering, pp. 652—661. IEEE Press (2013)

Gupta, M.K., Govil, M.C., Singh, G., Sharma, P., XSSDM: towards detection and mitigation
of cross-site scripting vulnerabilities in web applications. In: 2015 International Conference
on Advances in Computing, Communications and Informatics ICACCI), pp. 2010-2015.
IEEE (2015)

Naderi-Afooshteh, A., Nguyen-Tuong, A., Bagheri-Marzijarani, M., Hiser, J.D., Davidson,
J.W.: Joza: hybrid taint inference for defeating web application SQL injection attacks. In:
2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 172-183. IEEE (2015)

Sekar, R.: An efficient black-box technique for defeating web application attacks. In: NDSS
(2009)

Nguyen-Tuong, A., et al.: To B or not to B: blessing OS commands with software DNA
shotgun sequencing. In: 2014 Tenth European Dependable Computing Conference (EDCC),
pp. 238-249. IEEE (2014)

Medeiros, 1., Neves, N., Correia, M.: DEKANT: a static analysis tool that learns to detect
web application vulnerabilities. In: Proceedings of the 25th International Symposium on
Software Testing and Analysis, pp. 1-11. ACM (2016)

Fu, X., Qian, K.: SAFELI: SQL injection scanner using symbolic execution. In: Proceedings
of the 2008 Workshop on Testing, Analysis, and Verification of Web Services and
Applications, pp. 34-39. ACM (2008)

Kieyzun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic creation of SQL injection and
cross-site scripting attacks. In: IEEE 31st International Conference on Software Engineering,
ICSE 2009, pp. 199-209. IEEE (2009)

Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution
framework for javascript. In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 513—
528. IEEE (2010)

Chaudhuri, A., Foster, J.S.: Symbolic security analysis of ruby-on-rails web applications. In:
Proceedings of the 17th ACM Conference on Computer and Communications Security, pp.
585-594. ACM (2010)

Huang, Y.-Y., Chen, K., Chiang, S.-L.: Finding security vulnerabilities in Java Web
applications with test generation and dynamic taint analysis. In: Proceedings of the 2011 2nd
International Congress on Computer Applications and Computational Science, pp. 133-138.
Springer (2012)

Agosta, G., Barenghi, A., Parata, A., Pelosi, G.: Automated security analysis of dynamic web
applications through symbolic code execution. In: 2012 Ninth International Conference on
Information Technology: New Generations (ITNG), pp. 189-194. IEEE (2012)

	A Generic Web Application Testing and Attack Data Generation Method
	Abstract
	1 Introduction
	1.1 Motivation and Objective
	1.2 Overview

	2 Background
	2.1 Symbolic Execution
	2.2 Web Security Issues

	3 Related Work
	3.1 Static/Dynamic Analysis Based Attack Detection
	3.2 Symbolic Execution Based Attack Detection

	4 Method
	4.1 Symbolic Environment
	4.2 Dangerous Function Analysis
	4.3 Host Management

	5 Implementation
	5.1 Symbolic Environment
	5.2 Dangerous Function Analysis
	5.3 Host Management

	6 Evaluation
	6.1 Evaluation of Vulnerable Applications

	7 Conclusion and Future Work
	Acknowledgements
	References

