
SPECIAL SECTION ON LATEST ADVANCES AND EMERGING APPLICATIONS OF DATA HIDING

Received April 18, 2016, accepted April 25, 2016, date of publication April 29, 2016, date of current version May 23, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2561019

Insider Collusion Attack on Privacy-Preserving
Kernel-Based Data Mining Systems
PETER SHAOJUI WANG, FEIPEI LAI, (Senior Member, IEEE), HSU-CHUN HSIAO,
AND JA-LING WU, (Fellow, IEEE)
Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan

Corresponding author: P. S. Wang (shaojuiwang@gmail.com)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant 101-2221-E-002-203-MY3.

ABSTRACT In this paper, we consider a new insider threat for the privacy preserving work of distributed
kernel-based data mining (DKBDM), such as distributed support vector machine. Among several known
data breaching problems, those associated with insider attacks have been rising significantly, making this
one of the fastest growing types of security breaches. Once considered a negligible concern, insider attacks
have risen to be one of the top three central data violations. Insider-related research involving the distribution
of kernel-based data mining is limited, resulting in substantial vulnerabilities in designing protection against
collaborative organizations. Prior works often fall short by addressing a multifactorial model that is more
limited in scope and implementation than addressing insiders within an organization colludingwith outsiders.
A faulty system allows collusion to go unnoticed when an insider shares data with an outsider, who can then
recover the original data from message transmissions (intermediary kernel values) among organizations.
This attack requires only accessibility to a few data entries within the organizations rather than requiring
the encrypted administrative privileges typically found in the distribution of data mining scenarios. To the
best of our knowledge, we are the first to explore this new insider threat in DKBDM. We also analytically
demonstrate the minimum amount of insider data necessary to launch the insider attack. Finally, we follow
up by introducing several proposed privacy-preserving schemes to counter the described attack.

INDEX TERMS Privacy preserving data mining, insider attack, data hiding, kernel.

I. INTRODUCTION
Data-breaching problems related to insider attacks are
one of the fastest growing attack types. According to the
‘‘2015 Verizon Data Breach Investigations Report,’’
[1] attacks from ‘‘insider misuse’’ have risen significantly,
from 8% in 2013 to 20.6% in 2015. This near-triple rate of
increase is astonishing when one considers that this rise has
taken place over a span of only two years. As a result of
this rapid increase, insider attacks are now among the top
three types of data breaches [1]. Insider attacks arise not from
system security errors but from staff inside the company’s
enterprise data security circles. Thus, insider attacks, because
of this lack of technical barriers, are simple to carry out
successfully. For example, in a single 10-minute phone call
to an enterprise chain store, a nontechnical employee can
provide enough data to a potential attacker for that attacker
to execute a virtual attack—or worse—an impersonation.
One call is all it takes for the system to crumble. A company
may spend huge sums of hard-earned capital to find technical

solutions to protect its perimeter yet still find it difficult to
prevent an insider attack.

Many data mining applications store huge amounts of per-
sonal information; therefore, extensive research has primarily
focused on dealing with potential privacy breaches [2]–[5].
One prime area of research in preserving privacy is the Sup-
port Vector Machine (SVM) [4], [5]. SVM is a very popular
data mining methodology used mainly with the kernel trick
to map data into a higher dimensional feature space as well
as maintain archives with better mining precision results.
With privacy protection in mind, Vaidya et al. provided a
state-of-the-art privacy-preserving distributed SVM scheme
to securelymerge kernels [4], [5]. Their proposal encoded and
hid the kernel values in a noisy mixture during transmission
such that the original data cannot be recovered even if these
distributed organizations colluded.

To the best of our knowledge, no prior work has considered
a robust pragmatic model in which ‘‘insiders within orga-
nizations’’ collude with outsiders. Such a pragmatic model
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considers the insider as the key player in sharing data with
an attacker, who can then recover the original data from the
intermediary kernel values of the SVM model. This attack
is more realistic because the attacker needs only to obtain
a few data entries rather than the entire database from an
organization to successfully recover the rest of the private
data [6]. A comparison between our proposed insider col-
lusion attack model and the present models in the privacy-
preserving DKBDM area is shown in Fig. 1.

FIGURE 1. Different attack models in DKBDM areas.

In Fig. 1, a central cloud/transmission server and three
participant organizations (represented by squares) cooper-
ate with each other (represented by dashed double-headed
arrows) to perform data mining. The black squares denote the
malicious attackers, which collude (represented by the wide
solid double-headed arrows) to deduce the private data kept
by the other participants. Fig. 1 (a) shows some organiza-
tions colluding with each other; Fig. 1 (b) implies a mali-
cious cloud colluding with some participant organizations;
and Fig. 1 (c) denotes the malicious cloud colluding with
insiders within organizations (insiders own only part of the
data). Fig. 1 (c) is our proposed attack model. In this work,
we first present a situational attack based on insider knowl-
edge as an illustrative example. We then proceed to analyze
the minimum amount of data required to launch an insider
attack. The minimum number is then given a degree of
capacity that characterizes a potential attacker. Finally, we
describe several privacy-preserving schemes to deal with the
above-mentioned attacks.

II. RELATED WORK
Researchers whose focus is on security breaches have long
considered insider threats as serious concerns that need to be
curtailed. However, the approach through which this limita-
tion ought to be implemented varies by institution [7]–[11].
Some important examples of insider threat schemes are men-
tioned by Claycomb and Nicoll [7] and include the following
two cases:
(1) Administrators of a rogue cloud service provider.
(2) Employees in victims’ organizations who exploit cloud

weaknesses for unauthorized data access.
The first type of insider threat (1) has been addressed most

extensively by research. The other case (2), which deals with
an organizational insider who exploits vulnerabilities through
cloud services to gain unauthorized access to organization
systems and data, is the target we seek to tackle in this study.

Some research articles such as those of Lin and Chen [13]
propose a random transformation scheme to preserve privacy.
The process works by outsourcing the SVM training, thereby
ensuring a lack of disclosure to the service provider of the
actual content within the database. This privacy-preserving
outsourcing method helps protect against the first type of
insider threat model mentioned above (1).

Other articles such as those byGoryczka et al. [15] propose
an ‘‘m-privacy’’ technique, which deals with the so-called
‘‘m-adversary’’ insider attack. This attack is carried out by
an outsider who colludes with m data providers (insiders),
allowing inferences about other pieces of information from
k-anonymized data. However, their method is limited to and
works only for the k-anonymity privacy model [14]. The
k-anonymity privacy model is a privacy-preserving data pub-
lishing scheme that works to reduce the granularity of data
representation such that any given record becomes indistin-
guishable by mapping it to a number of records (‘k’) in
the data. The ‘‘m-privacy’’ approach is orthogonal to our
proposed method. Our method is a secure multiparty com-
putation (SMC) scheme for distributed data mining. In this
type ofmethod, different parties cooperatively train themodel
for data mining tasks without revealing the actual data to
each other. A distinction between prior work in this area
and that of our model is that their insider collusion attack
models [4], [5], [16] are defined either as collusion between
collaborative organizations or collusion between the cloud
and participant organizations, as shown in Fig. 1 (a) (b),
while our model considers insiders within organizations as
the key contributors for collusion with outsiders, as shown
in Fig. 1 (c).

REVIEW OF KERNEL-BASED DATA MINING METHOD
Here, we review the kernel-based data mining system. The
implementation of kernel tricks brings huge improvements to
statistical learning theory [17]. These kernel tricks incorpo-
rate the use of special functions (kernel functions) to map the
original data input to a higher dimensional space, where the
data clustering/classification job can be performed better, as
shown in Fig. 2.

FIGURE 2. After the kernel mapping, nonlinear separable data can
become a linear classification case in a higher dimensional space.1

There are several systems for implementing this scheme;
however, our focus is on those systems that use kernel values
(instead of original data) as the most basic computing unit.
For example, Vaidya et al. propose a privacy-preserving dis-
tributed SVM method for securely merging kernels [4], [5].

1Picture source: https://prateekvjoshi.files.wordpress.com/2012/08/2d-
to-3d-projection.jpeg
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Navia-Vázquez et al. propose a distributed semiparamet-
ric support vector machine (DSSVM) using kernels as
basic units to reduce the communication information [18].
Gönen et al. propose a multiple kernel machine learning
model that describes the kernel as being a basic computing
unit capable of possibly merging different types of kernel
functions [19], [20]. We will provide more detail about these
proposals in the next section.

One of the remarkable features of this type of system is
that data can be hidden in the kernel value safely. It does
this by first performing the kernel computation and then,
transforming every pair of the original data (two vectors)
into a kernel value (a single number). In this new format,
no one can obtain the original data vectors of ‘‘a single
number,’’ e.g., for two data vectors x1 = [1, 3, 7] and
x5 = [2, 5, 8], their linear kernel value K15 = x1 · x5 =
[1, 3, 7] · [2, 5, 8]= 1 ∗ 2+ 3 ∗ 5+ 7 ∗ 8 = 73. It is impos-
sible for anyone who knows only the value of K15 to obtain
the content of x1 and x5.

FIGURE 3. The attacking scenario: Insiders within the hospitals help the
outside attacker (the SVM Server) to launch attacks.

III. INSIDER COLLUSION ATTACK IN A
KERNEL-BASED DATA MINING SYSTEM
First, we will illustrate in detail the privacy breach scenario
through an example. As shown in Fig. 3, there are three
roles: the SVM server, hospitals (organizations), and patients
(members of organization). The SVM server provides the
SVM service, which builds a global SVM model and per-
forms classification. Organizations in this example are rep-
resented by three hospitals, which store their patient records
separately. Organizations such as hospitals apply an SVM
service to their data for data analysis. Some of the members
are labeled as patients, while others consist of staff including
doctors and nurses, each of whom has a part of the overall
patient data records. Some members are insiders, who may
then collude with outsiders to launch attacks. For example,
a member within an organization such as an irresponsible
doctor may sell patient records to outsiders. In such a situa-
tion, the semi-trusted SVM server acts as an outside attacker,
attempting to acquire the entire private patient data with the
help of the portion of the patients’ records already obtained
from the doctor.

THREAT MODEL
There are three players in the investigated threat scenario:

1. DataOwners—Organizations or Clients: These organi-
zations own the data and can be trusted. In a distributed
computing environment, they may also participate in
data mining tasks.

2. Insiders: Members within the data owner’s organiza-
tion are semi-trusted. They may leak their own data
to outsiders. The insiders leak nothing but the data
content. For example, the data indices do not need to
be leaked.

3. Outsider: The entity does not belong to the data owner’s
organization. This group is semi-trusted and may col-
lude with insiders. In a distributed environment, the
data mining server, which coordinates sharing among
the different subset of affiliate groups, may act as
a potential outsider. This outsider (e.g. data mining
server) knows the parameters of the mining data, but
does not have access to the data content because that
has been packed into a kernel format, as described in
the following section.

THE STATE-OF-THE-ART PRIVACY-PRESERVING
COOPERATIVE SVM SYSTEM
For a simple explanation, we look to Vaidya’s state-of-the-art
privacy-preserving SVM System (PPSVM) [4]. In particular,
we look at the modified version of Que et al. [5], which
adds a coordinate server to the PPSVM system to illustrate
the implementation of this type of cooperative SVM system.
We also use this example system to introduce our proposed
insider attacking scheme in Sections 3.1 to 3.3.

PPSVM has the following three procedures:
Procedure 1 (Local Kernel Matrix Calculation):Organiza-

tions use local data to build a global SVMmodel in the SVM
server from vertically partitioned data. As shown in Fig. 4,
from the high-level point of view, the entire set of vertically
partitioned data records means that for the whole data matrix,
with m features and n records, each vertical slice represents a
different hospital’s data. As shown in Fig. 5, Vaidya’s local-
kernel-merging theorem presents relationships in equations
(1) and (2), where xi and xj denote two different patient data
records, xri means the part of xi stored in the hospital r ,
K r
ij stands for the local kernel value computed by data vectors

FIGURE 4. Vertically distributed data with m dimensions (features) and
n rows (records). Each vertical slice represents a different hospital’s data.
Here we assume that the total number of hospitals (z) is 3.
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FIGURE 5. An illustration of the meaning of the local-kernel-merging
theorem given in [4]. Here we also assume that z = 3.

xri and x
r
j of the hospital r , as shown in equation (3), and z is

the total number of hospitals.

xTi xj = x1
T

i x1j + x
2T
i x2j + · · · + x

zT
i x

z
j (1)

K global
ij = K 1

ij + K
2
ij + · · · + K

z
ij (2)

K r
ij = xr

T

i xrj (3)

Equations (1) and (2) work for not only linear kernel but
also polynomial kernel and RBF kernel. The reason is that
both the polynomial kernel (c.f. equation (4)) and RBF kernel
(c.f. equation (5)) can be represented as a dot product of data
vectors. In equations (4) and (5), b is the bias, p is a power
number and g is a gamma parameter.

Kij = [(xTi xj)+ b]
p (4)

Kij = exp
(
−
∥∥xi − xj

∥∥2/g)
= exp(−(xTi xi−2x

T
i xj + xTi xj)/g) (5)

Each organization can compute its linear local kernel val-
ues by equation (3) and then, combine the local values to con-
struct the linear global kernel values by equations (1) and (2).
If either a polynomial or RBF kernel is needed, they (or a
central cloud server) can further apply equation (4) or (5), on
the basis of these linear global kernel values, to generate their
polynomial or RBF kernel results.

In addition, each organization, h, holds a kernel matrix,
KMh. Each element KMh(i, j) is the kernel value, K h

ij , made
by its own data pair (xhi , x

h
j ), as shown in Fig. 6.

FIGURE 6. An example of a 4× 4 kernel matrix.

Procedure 2 (Transmitting the Local Kernel Matrix to the
Server): Each organization sends its partial kernel matrices to
the SVM Server. The goal is to obtain a merged kernel matrix
result used in SVM computation during the next procedure.
Procedure 3 (Partial Weights Calculation): The SVM

server calculates the global SVMmodel parameters based on
the merged kernel matrix and handles matrix multiplications

of high-dimensional data. A local organization can obtain
a global SVM model from calculations performed on the
server.

In the above system (and other similar systems) because the
original data have been packed (hidden) in the kernel values
locally, the SVM server and other organizations cannot obtain
the data content.

However, we observe that to complete the training/
classification task, the system needs to compute every pair of
kernel values Kij. We also observe that every kernel value is
composed of two data vectors. These observations motivate
our proposed insider attack method. If there is a malicious
insider in this system and the insider holds one of the two
data vectors for a kernel value, he may possibly be able to
recover the other one based on the known data vector. The
proposed attacking steps are detailed as follows.

A. ATTACK STEP 1: KERNEL COLLECTION
In this step, the malicious outsider collects kernel values from
the victim system—as many as possible.

According to Que’s modification version of Vaidya’s state-
of-the-art PPSVM system [4], [5], the server is able to
collect ‘‘all’’ the private kernel matrices directly following
procedure 2 of the system as described above.

There are many more ways to achieve the goal
of collecting kernel values; we will not address them
all in this paper. Another example is illustrated by
Navia-Vázquez’s distributed semiparametric support vector
machine (DSSVM) [18]: in which kernels are used as basic
units to reducing the amount of information required for
communication. In [18], every client needs to send the pairs
{Rm, rm} to the other clients for distributed learning, where
Rm and rm are two intermediate matrices consisting of kernel
values to reduce the communication load. Note that rm =
KT
mWmym, Km is the kernel matrix of client m, and Wm is

a part of the client’s entire weighting matrix, whereas W ,
and ym are the client part of the whole y-value matrix. The
two parameters W and y are public to all clients. Thus, the
client receiving {Rm, rm} could invertrm to obtain the kernel
matrix Km based on the two public parameters W and y.
If one of the clients is an attacker, he can obtain all the values
of the kernel matrix of the previous client.

B. ATTACK STEP 2: KERNEL-AND-INSIDER-DATA (KID)
LINKING
In this step, an insider colludes (shares his own data) with
one of the outsiders, and then, the outsider searches for the
kernel values composed from the data of the insider and his
collection of kernel values.

The idea of the outsider’s search stems from the fact that
kernel values are composed on the basis of the insider’s data
and the other (non-insider) data, as shown in equation (6).

Kernel ij = (InsiderDatai)T (NotInsiderDataj) (6)

In addition, this attacking scheme relies on using the ker-
nel matrix, as shown in Fig. 6, which is very popular in
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DKBDM area. We continue to use the above example of
Vaidya’s PPSVM [4], [5] to describe our idea as follows.

For a kernel matrix, if the outsider can obtain i (the index
of the insider’s data xi), he can easily find all possible gen-
eralized kernels, Kij. Thus, the first job is to obtain the index
value i, as shown in Fig. 7. Note that, according to our threat
model assumption, the outsider has only the content of the
insider’s data, rather than its index.

The method for finding the index is explained as follows.
As shown in Fig. 8, assume we know the content of
data A, B, C and their kernel values. Additionally, assume
that we know that the kernel values of (A, B) and (A, C) are
both unique within in the kernel matrix. If we then carefully
observe their indices in the kernel matrix, we could easily find
the index of their common element, which would be the index
of data A.

FIGURE 7. If the outsider knows the specific data index, he is then able to
obtain several of the insider’s data records.

FIGURE 8. An example of deducing the index of an insider’s data: The
index of insider-data A should be 3.

For example, Fig. 8 (a) shows the three data records A,
B, C (represented by the blue ovals) in Hospital 3’s data and
the kernel-computation-result values of (A, B) and (A, C)
(represented by the terms near the blue curve lines).
Fig. 8 (b) presents the kernel matrix of Hospital 3’s data,
which has two values (circled in green) that are exactly equal
to the kernel-computation-result values for (A, B) and (A, C)
from Fig. 8 (a). We draw an orange linkage line between the
two kernel values encircled in green, to present the index of
their common elements, and this index of common elements
would be the index of data A. The index of insider-data A
should be 3.

However, in the real world, there are complex situations,
such that the kernel values are ‘‘not’’ unique in the kernel
matrix of this organization. Consequently, the likelihood of
failure for the above method is high. An example is shown
in Fig. 9. (For simplicity, we call the linkage line between
the two kernel values a ‘‘kernel line’’, e.g., the line drawn
between K13 and K43 in Fig. 8 (b).) To deal with these

FIGURE 9. An example of applying Principles 1∼3. Similar to the example
in Fig. 8 (b), however, here are more pairs of kernel values 2 and 9, which
lead to more kernel lines.

complex problems efficiently, the following principles are
considered:
• Principle 1: Because there is a symmetrical property in
the kernel matrix, consider only vertical and horizontal
kernel lines.

• Principle 2: Merge the kernel lines for the same axis of
the index, because they all represent the same index.

• Principle 3: Remove the kernel lines representing the
indices of the other insider’s data. Some indices may
have been labeled as the insiders’ as a result of past
search results; therefore, they should not be considered
again.

Finally, if more than one kernel line still exists, the pos-
sibility of obtaining the correct index is 1/#undecided kernel
lines—that is, they are chosen with equal probability.

For example, Fig. 9 shows more than one pair of kernel
values 2 and 9, which leads to several kernel lines. The sym-
bol ‘‘Pi’’ with an arrow pointing to a kernel line represents
Principle i applied to each possible kernel line. The dashed
purple kernel lines would be deleted based on the principles;
the orange solid line is the real kernel line. Fig. 9 (b) shows
that there is only one real kernel line for all these potential
kernel lines after applying Principles 1∼3 to Fig. 9 (a).

This Kernel-and-Insider-Data-Linking attack is imple-
mented in Algorithm 1.

C. ATTACK STEP 3: DATA RECOVERY
The outsider learned which kernel values were composed
from which insider’s data in step 2. In this step, the out-
sider recovers the remaining private data inside these kernels,
which are composed of one insider’s data and one private
data. For example, in Fig. 8 (b), all the elements Ki3,i 6=3,
which are K13, K23, and K43 on the orange kernel line are
composed of one insider data (insider-data A, whose index
is 3) and one unknown private data (the data whose index
is i). The question is: How can we retrieve the unknown data
from the kernel valueKi3,i 6=3? This is the main focus in attack
step 3. We will continue to use the same example of Vaidya’s
PPSVM system [4], [5] used above to help introduce our idea.

Suppose that in steps 1 and 2, the malicious outsider has
successfully collected n insider’s data, Sj, where j = 1 ∼ n,
and has also collected the kernel values, Kij, composed of
the insider’s data, Sj, and a non-insider’s data, Di. Assume
that in total there are p non-insider’s data values in Di, where
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Algorithm 1 Kernel-and-Insider-Data-Linking Attack
Require: m × m kernel matrix KM, total m data records
x1 ∼ xm, and total n insider’s data s1 ∼ sn

1: for k = 1 . . . n do
2: {Compute K1 and K2, where K1 is the kernel value

of (sk , sp,p 6=k,16p6n), and K2 is the kernel value of (sk ,
sq,q 6=k||q 6=p,16q6n)}

3: Let KC1 = [], KC2 = [], l1 = 0, l2 = 0, IndexCand =
[], Index = []

4: for for i = 1 . . .m do //Search for values equal to K1
and K2 in KM

5: for j = 1 . . .m do
6: if KM(i, j) = K1 then
7: KC1(l1) = (i, j)
8: else if KMi, j) = K2 then
9: KC2(l2) = (i, j)
10: end if
11: end for
12: end for
13: for u = 1 . . .max(l1) do //Apply Principle 1 & 2 to

kernel lines
14: for v = 1 . . .max(l2) do
15: if KC1(u)[1] 6= KC1(v)[1] & KC1(u)[2] =

KC1(v)[2] then
16: if no element of the array IndexCand(k) =

KC1(u)[2] then
17: Insert the element KC1(u)[2] into the array

IndexCand(k)
18: end if
19: end if
20: end for
21: end for
22: end for
23: for k = 1 . . . n do //Apply Principle 3 to kernel lines
24: if #element of IndexCand(k) = 1 then
25: Index(k) = theelementofIndexCand(k)
26: end if
27: end for
28: for k = 1 . . . n do
29: if #element of IndexCand(k) > 1 then
30: Delete all elements of IndexCand(k) that has been

assigned to the other Index
31: Index(k) = a randomly chosen ele-

ment from the remaining elements of IndexCand(k)
32: end if
33: end for

i = 1 ∼ p. Sj and Di are all vectors with m elements,
and Sj (k) is the k-th element of Sj, where k = 1 ∼ m.
This is also true for Di (k). The goal of attack step 3 is to
deduce all the non-insider’s data, D1 ∼ Dp. First, the outsider
uses the following method to deduce one non-insider’s data
value, Du, and then proceeds to deduce all the other unknown
non-insider’s data values, one by one, in the same way.

In our illustration, we consider a data mining system oper-
ating on the linear kernel (the most basic kernel). The linear
kernel equation was given above (3). For those linear kernel
values composed of the insider’s data Sj and the non-insider’s
data Dj, their kernel computation can be expressed as in
equation (7), where the value in the parentheses denotes the
index of an element of a vector.

K ij = Di · Sj = Di (1)× Sj (1)+ Di (2)

×Sj (2)+ · · · + Di (m)× Sj (m) (7)

The ultimate goal of the outsider is to deduce all unknown
Di using the known Kij and Sj. To obtain Du in equation (8),
as shown at the top of the next page, the outsider can list
a set of n data simultaneously as depicted in equation (9),
as shown at the top of the next page. In this manner, he
can then solve these n simultaneous equations, which gives
him the unique solution content for Du. Subsequently, the
attacker can continue to deduce all the other non-insider’s
data vectors Di by repeating the same process.
To simplify this concept, we provide an example in the

form of vectors: Suppose the attacker wants to obtain the
unknown data vector D2. He has three known insider’s data
vectors of dimension 3, which are,

S1 = [2, 2,−1] , S3 = [−5, 1, 1] , and S4 = [10, 1,−2]

Assume he also has three known linear kernel values com-
posed of the insider’s and the unknown data vector:

K21 = 4, K23 = 5, and K24 = 5

Assume the unknown data vector D2 is

D2 = [a, b, c]

Then, the attacker can list a set of simultaneous equations
based on equation (7):

2a+ 2b− 1c = 4
−5a+ 1b+ 1c = 5
10a+ 1b− 2c = 5

The attacker solves these equations and obtains this unique
solution:

D2 = [a, b, c] = [2, 5, 10]

Then the attacker can continue to deduce all other unknown
data vectors in the same way.

A DKBDM system, such as Vaidya’s PPSVM sys-
tem [4], [5], can also operate on polynomial or RBF kernels,
either of which can be generated from the linear kernel values
by equations (4) and (5). In our above scenario, a central cloud
server is responsible for calculating equations (4) and (5)
to transform linear kernels into polynomial or RBF kernels.
Also, in this same example, we make the assumption that
the outsider is this central cloud; thus, the cloud can readily
obtain the original linear kernel values and then follow up by
applying the attacking scheme described above to deduce all
the hidden private data.
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Kuj = Du · Sj, j = 1 ∼ n (8)

Du (1)× S1 (1)+ Du (2)× S1 (2)+ · · · + Du (m)× S1 (m) = Ku1
Du (1)× S2 (1)+ Du (2)× S2 (2)+ · · · + Du (m)× S2 (m) = Ku2
·

·

·

Du (1)× Sn (1)+ Du (2)× Sn (2)+ · · · + Du (m)× Sn (m) = Knu

(9)

When the attacker is not this central cloud, but rather an
individual, the following description shows how a similar
scheme can be applied to polynomial or RBF-kernel based
systems. The main idea behind this turnout is to mathemat-
ically reduce the polynomial/RBF-kernel format to a linear
kernel format.

1) THE CASE OF POLYNOMIAL KERNEL
The polynomial kernel equation is given by equation (4).
The kernel computation for those polynomial kernel val-
ues composed of the insider’s data Sj and the non-insider’s
data Di is given by equation (10) and can be rewritten into
equation (11):

Kij = [(Di · Sj)+ b]
p (10)

K ′ij =
p
√
Kij − b

= Di · Sj = Di(1)× Sj(1)+ · · · + Di(m)× Sj(m) (11)

Our threat model makes the assumption that the outsider
knows the parameters b and p needed to carry out the data
mining outcomes. It is rather easy for the outsider to trans-
form the value Kij to K ′ij. Then, the outsider can list n simul-
taneous equations based on equation (11), which is similar
to equation (7); the only difference being that it replaces the
kernel values K ′ij of equation (11). Hence, the corresponding
attacking process will be identical to that of linear kernel.

Furthermore, there are possibly multiple-root solutions to
this situation. For polynomial kernel equation (4), if p is even,
there are two possible real-value root solutions,± p

√
Kij.When

the value ofK ′ij cannot be determined, the attackmay fail. This
experimental depiction is further elaborated in Section 5.3.

2) THE CASE OF RBF KERNEL
The RBF kernel mathematical formulation is shown in equa-
tion (5). The kernel computation for the RBF kernel values
composed of the insider’s data Sj and the non-insider’s data
Di is given by equation (12). Per our threat model assumption,
the outsider knows the parameterg, that is

Kij = exp(−
∥∥Di − Sj

∥∥2/g)
= exp(−(Di · Di − 2Di · Sj + Sj·Sj)/g) (12)

However, unlike the above, the outsider may not easily
solve a set of n RBF equations. The reason for this is shown

in equation (12), which can be rewritten as equation (13)—
that is, in a quadratic form: only Di is variable and Sj is known
to the outsider.

K ′ij = −g× log(K ij) = (Di · Di − 2Di · Sj + Sj·Sj) (13)

But there is a trick; we can eliminate the term Di·Di by
subtracting the two quadratic components.

Assume the outsider has two kernel values, K ′ij and K
′

i,j−1
as denoted in equations (14) and (15).

K ′ij =
(
Di · Di − 2Di · Sj + Sj·Sj

)
(14)

K ′i,j−1 = (Di · Di − 2Di · Sj−1 + Sj−1·Sj−1) (15)

Then subtracting K ′i,j−1 from K ′ij gives equation (16):(
Di · Di − 2Di · Sj + Sj·Sj

)
−

(
Di · Di−2Di · Sj−1+Sj−1·Sj−1

)
= K ′ij − K

′

i,j−1 (16)

After rearranging the above equations, he obtains the
following equality:

−2Di · Sj+2Di · Sj−1 = K ′ij − K
′

i,j−1−Sj · Sj − Sj−1 · Sj−1
(17)

Because the insider’s data vectors Sj, Sj−1 and kernel values
K ′ij,K

′

i,j−1 are known to the outsider, this leaves only the linear
components −2Di · Sj + 2Di · Sj−1 as unknowns for the out-
sider. Furthermore, to simplify this equation, he reorganizes
it as shown in equation (18).

Di·(Sj − Sj−1) = (Sj · Sj + Sj−1 · Sj−1 + K ′i,j−1 − K
′
ij)/2

(18)

Defining S∗j and K
∗
ij by equations (19) and (20), that is

S∗j = (Sj − Sj−1) (19)

K∗ij = (Sj · Sj + Sj−1 · Sj−1 + K ′i,j−1 − K
′
ij)/2 (20)

then we have

Di·S∗j = K∗i,j (21)

Equation (21) is very similar to the linear kernel in equa-
tion (7), with the difference that Sj and Kij are replaced by S∗j
and K∗ij , respectively. However, the corresponding attacking
process will be the same as that of the linear kernel.
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In this example of PPSVM operating on vertically parti-
tioned data, the attacker can recover one hospital’s data by
launching attack steps 1–3. Then he can repeat the same
process to recover the data from all the other hospitals.

D. HOW MUCH INSIDER DATA IS REQUIRED
TO LAUNCH AN ATTACK?
The existence of a unique solution to the above-mentioned
simultaneous equations implies that privacy data can be
breached by a malicious outsider. However, a unique solution
does not always exist for simultaneous equations. It only
possibly exists in the following situation: when the number of
equations is equal to or greater than the number of variables.
In Section 3.3, the number of equations represents the number
of insider, and the number of variables represents the number
of data dimensions. In short, if the amount of insider data2

is equal to or larger than the dimensions of the dataset, the
insider can breach the privacy. Furthermore, if we consider
the linear dependence between the data vectors, the final
privacy breach rule is the following:
If the rank of the insider-datamatrix3 is equal to or larger

than the dimensions of the dataset, the privacy could be
breached by the insider attack.

Let us take the following dataset as an example. Suppose
the malicious outsider wants to obtain an unknown data
vector D2. The outsider knows three insider-data vectors
consisting of three dimensions as described below; however,
the data vectors S3 and S4 are linear dependent.

S1 = [2, 2,−1] , S3 = [−5, 1, 1] , and S4 = [−10, 2, 2]

The outsider also knows the linear kernel values made by the
insider’s data vectors and the unknown data vector D2:

K21 = 4, K23 = 5, and K24 = 10.

The outsider assumes the unknown data vector D2 as follows:
D2 = [a, b, c].

Then the outsider can then list a set of the equations:
2a+ 2b− 1c = 4
−5a+ 1b+ 1c = 5
−10a+ 2b+ 2c = 10

The outsider will then attempt to solve the above equations.
However, there is no unique solution to these equations
because the second and third equations are the same. It is
impossible to solve two equations with three unknown vari-
ables. The outsider, having tried to solve the equations, fails
to obtain a unique solution.

IV. THE PRIVACY-PRESERVING METHODS
The key to successfully countering the proposed attack
with insider collusion lies in preventing the satisfaction of the

2In RBF kernel, the number of insider’s data should be the number of the
transformed insider’s data, S∗i = (Si − Si−1), as shown in equation (21).

3In RBF kernel, the rank of insider’s data should be the rank of the
transformed insider’s data, S∗i = (Si − Si−1), as shown in equation (21).

privacy breach rule described in Section 3.4. In the following
two sections we describe our two proposed methods that can
effectively counter such attacks.

A. REDUCING THE NUMBER OF THE INSIDERS
The first method involves reducing the total number of insid-
ers until it becomes smaller than the number of data dimen-
sions. The questions that then come to mind are: How can
we evaluate the number of insiders? and How can we then
identify the insiders to reduce their numbers?

There have been several related research discussions
regarding this process [7], [8], [21]. We add our proposed
method of identifying the insiders to these as described below.
Catching Insiders based on Temporal Events
First, we add an additional dimension of data in every data

record. This extradimensional data will be used in kernel
computation. We assume that this extradimensional data will
not complicate the SVM classification result too much. The
lack of complication is supposed because the extradimen-
sional data are obtained from preclustering results performed
by using clustering schemes such as a self-organizing map
on the existing dataset. These schemes can map the origi-
nal data to very low dimensions as a ‘‘thumbnail’’ of the
dataset.

In this way, if there is an insider within an organization,
he will need to access the extradimensional data to com-
plete attack step 2 as described above: the kernel-and-insider-
data (KID) linking.

Now, suppose that all successful accesses to system
resources are logged, including any that access the extradi-
mensional data. The monitoring system can then check if
there has been any abnormal access to the extradimensional
data based on temporal events.

Step 1: In general cases, in which the organization requests
data-mining tasks, there ought to be an access record for the
extradimensional data; otherwise, the extradimensional data
themselves (which are also accessible) will ‘‘likely’’ be the
insider action. For this reason, the data they are targeting for
access should be marked as ‘‘possible insider’s data’’. This
can be performed by a data clustering algorithm, such as
k-means, kNN (k Nearest Neighbor), or SVM.

Step 2: During a given time period, the monitoring sys-
tem may detect this malicious activity, finding several data
accesses marked as ‘‘possible insider’s data.’’ It should then
raise an alarm and notify the organization administrators.

Step 3: The organization administrator can quickly check
to determinewhether those ‘‘possible insider’s data’’ accesses
are truly the results of malicious activity, or simply erroneous
judgement. The administrator performs this check by com-
paring system logs of authorized access. He can then obtain
an estimate of the number of possible insiders.

In Section 5.4, we will show the experiment results after
reducing the number of insiders sufficiently (making it
smaller than the number of data dimensions) to avoid the
privacy breach problem.
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B. EXPANDING THE DIMENSION OF THE DATA
The second method to counter the attack is to expand the
dimension of the dataset, making it larger than the number
of insider.

Any method of data dimension expansion that does not
involve loss of accuracy can be used here [12], [22]–[24].
In this section, we use our proposed novel geometric trans-
form [25] because its privacy-preserving property enhances
the complexity for malicious attackers.

The basic idea of the method is to map a line x to a
random curve (x, y), that transforms the data mapped from
a 1-dimensional space to a 2-dimensional space with some
random perturbations. The mapping function is given in
equation (22), where Dj is a 1-dimensional vector, D′j is its
transformed 2-dimensional vector, Dj(i) is the i-th element
of vector Dj, and D̄j is the normalized result of Dj. Here,
k and θ are random parameters for preserving privacy.

D′j (i) = (k × cos((D̄j(i)× 180+ θ )/2),

× k sin ((D̄j(i)× 180+ θ )/2)) (22)

FIGURE 10. The initial data (There are two clusters: we denote one as the
blue dots ‘‘o’’ and another as the red dots ‘‘x’’).

FIGURE 11. Steps 2–6. (from the upper left to the lower right).

An example is shown in Figs. 10 and 11. Initially there are
two clusters of data in 1 dimension, where one cluster has
values distributed between−0.15 and−0.95, denoted by ‘‘o’’
and colored in blue. The other cluster has values distributed
between 0.05 and 0.85, denoted by ‘‘x’’ and colored in red.
After mapping, the final mapped data distribution retains
the clustering effect, but in the higher dimensional space,
as shown in Fig. 11 (e). Let us illustrate the idea of the
mapping function (22) as follows. Fig. 11 (a) is the result of
mapping the normalized data (1-dim.) to a unit circle (2-dim.).
Fig. 11 (b) then maps the data to a curve as a better clustering
result. Then we use some tricks for privacy protection as
follows. Fig. 10 (c) adds a random radius k to each node.
Fig. 11 (d) adds a random angleθ for moving all nodes.
Fig. 11 (e) randomly exchanges the dimensions of the entire
data set.

In Section 5.4, we show the experimental results after
applying this mapping method to avoid the privacy breach
problem.

V. EXPERIMENT ANALYSIS
In our experiment, we examine the proposed insider attack
scheme and the methods for preserving privacy. The datasets
used in the experiment are available at the UCI machine
learning repository [26]. We selected some medical and bank
credit datasets because they usually have stronger privacy
concerns. The selected medical datasets, containing medical
records of patients, are Wisconsin breast cancer, Pima Indian
diabetes, Statlog heart disease. The bank credit datasets, in
which personal information of bank customers is included,
are Australian credit and German credit numeric version. The
dataset statistics are listed in Table 1, showing how many
insiders are needed to execute the attack. In this experiment,
we assume all these datasets have the same scenario as in
Fig.3. We adopted LIBSVM [27] as the software tool and ran
the simulation experiment on a computer with an Intel Core
i7-4650U CPU running at 1.7 GHz with 8GB RAM.

TABLE 1. Dataset statistics and the number of insiders.

A. ATTACK STEP 1: COLLECTING KERNEL VALUES
We ran the simulated experiment on a real-world system,
the DPP-SVM online web service [5], as shown in Fig. 12.
According to the system’s documentation [5], the server can
obtain 100% of the kernel values; thus, this makes it the
primary vulnerability in our attack model.

FIGURE 12. The interface of the DPP-SVM Online Web Service [5]. The
local client computes the kernel matrix and sends it to the server.

2252 VOLUME 4, 2016



P. S. Wang et al.: Insider Collusion Attack on Privacy-Preserving Kernel-Based Data Mining Systems

B. ATTACK STEP 2: KERNEL-AND-INSIDER-DATA (KID)
LINKING
We ran a simulated KID-Linking attack on the datasets shown
in Table 1. To evaluate the threat of the KID -Linking attack,
we measure the ratio of the ‘‘recognized’’ insider’s data to
all insider’s data, which we call the ‘‘KID-Linking Rate.’’
A higher KID-Linking Rate signifies a greater possibility of
data privacy losses. The result is shown in Table 2.

TABLE 2. Linking the insider’s data with their kernel values.

C. ATTACK STEP 3: DATA RECOVERY
In step 3 of the attack, our experiment mainly focuses on how
the relationship of the number of insiders and the number of
dimensions affects the data recovery rate. This result is shown
in Table 3. Note that the data recovery rate for a Polynomial
Kernel is lower than the others; this is due to the multi-root
problem, as described in Section 3.3.

TABLE 3. Deducing the private content of SVM training data.

D. PRIVACY-PRESERVING METHOD 1:
REDUCING THE NUMBER OF INSIDERS
The first privacy-preserving method is to reduce the number
of insiders. In this simulated experiment, we assume that the
organization administrator has applied the proposed method
to catch insiders based on temporal events and, eventually,
reduces the number of insiders to be smaller than the number
of data dimensions. Under this assumption, the outsider tries
to do the third attack step to recover data. The results of
our experiments show that under this circumstance the data
recovery rate is drastically decreased, from an average of 96%
to 0%. The result is shown in Table 4

TABLE 4. Reducing the number of insiders.

E. PRIVACY-PRESERVING METHOD 2:
EXPANDING THE DIMENSION OF THE DATA
The second enhanced privacy-preservingmethod is to expand
the data dimensions. Based on the method described in
Section 4.2, the simulated experiment result shows that the
data recovery rate again decreases from an average of 96%
to 0%. The result is shown in Table 5. At the same time, the
impact on data mining accuracy is limited, decreasing 14%
on average in accuracy. Fig. 13 shows a comparison to the
result of section 5.3 in privacy loss (data recovery rate).

TABLE 5. Expanding the dimension of the data.

FIGURE 13. Comparison with the Result of Section 5.3 in Privacy Loss
(Data Recovery Rate).

F. CHECKING THE PRIVACY BREACH RULE
Finally, for checking the privacy breach rule described
in Section 3.4, we repeated the experiments from
Sections 5.3-5.5 with different settings for dimensions and
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FIGURE 14. The data recovery rates for different ranks of insider data and
numbers of dimensions.

insider ranks, to record all their average data recovery rates.
The results plotted in Fig. 14 show that the privacy breach
rule agrees with the experimental result. (Note that it is
impossible to have an insider data rank larger than the number
of dimensions, due to the rank property for a matrix.)

VI. CONCLUSION
In this paper, we propose an insider collusion attack that is a
threat to most data mining systems that operate on kernels and
discuss how many insiders are sufficient to launch this type
of attack. We also present two privacy-preserving methods
to defend against the attack. Finally, experimental results are
provided to prove the effectiveness of the proposed attack and
defense schemes.

Note that our proposed attack scheme is not only applicable
to the vertically partitioned data but also applicable to hori-
zontally partitioned data and arbitrarily partitioned data [4];
as long as every kernel value is composed of two data vectors
and stored in a kernel matrix, our proposed method can
reverse those kernel values back to the original data. In fact,
most data mining systems operating on kernel computation—
especially those in a distributed environment—are potential
victims of the proposed attack.

In the future work, we will discuss whether the privacy
breach rule described in Section 3.4 can be relaxed, such that
even though the exact recovery is not possible, but the attacker
can identify the subspace of the private information (corre-
sponding to many solutions to the set of linear equations).
Under this situation, how to evaluate the security level of the
system?

The scope of this paper is limited to non-homomorphic
encryption methods. The main reason for this is that, until
now, homomorphic encryption systems have been too slow to
be practical. However, if we consider homomorphic encryp-
tion based systems such as [28], we believe that the proposed
insider threats could lead to a known-plaintext attack, as
described in [29]. Of course, we plan to address this issue
in future work.
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