
Securing Data Planes in Software-Defined Networks

Tzu-Wei Chao† Yu-Ming Ke† Bo-Han Chen† Jhu-Lin Chen† Chen Jung Hsieh† Shao-Chuan Lee† Hsu-Chun Hsiao†‡

†National Taiwan University ‡Academia Sinica

Abstract—Ensuring correct data-plane operations is an in-
tegral part of securing software-defined networks (SDN). This
paper explores practical solutions for localizing and mitigating
malicious switches that disobey installed flow rules. Our main
insight is that the flexible and proactive nature of SDNs enables
efficient defense against realistic adversaries who can collude and
report falsified information in addition to manipulating packet
forwarding decisions. In contrast, previous proposals either
assume a simple threat model or require expensive cryptographic
operations even during peacetime. To systematically explore the
design space, we study three complementary techniques for data-
plane security, that is, active probing, statistics checking, and
packet obfuscation. This paper presents the initial design and
implementation of our data-plane security system and highlight
potential research challenges.

I. INTRODUCTION

Ensuring correct data-plane operations is challenging even

without malicious devices (e.g., routers or switches) in the

networks. The presence of malicious devices exacerbates the

problem; they can behave stealthily to evade detection and

even incriminate benign entities by reporting falsified infor-

mation. As more and more vulnerable routers and switches

are exploited to launch attacks (such as denial of service or

hijacking traffic), it is imperative to study how to secure data

planes against compromised in-network devices.

Unfortunately, previous solutions to detect or mitigate

malicious in-network devices either assume a simple threat

model [1]–[4] or incur substantial overhead even during peace-

time [5]–[7]. For example, network diagnostic tools such as

ATPG [2] often assume a benign environment in which failures

occur persistently and thus may incorrectly attribute benign

entities in the face of sophisticated attacks (e.g., colluding).

On the other hand, while cryptographic-based verification

protocols such as OPT [7] can enforce path compliance despite

strong adversaries, they may be infeasible for universal deploy-

ment due to their high overhead (e.g., pairwise key setup, per-

packet cryptographic operations, and increased packet size).

The software-defined networking (SDN) paradigm can facil-

itate flexible and proactive defense, thereby enabling efficient

solutions against strong adversaries. Given SDN’s programma-

bility and centralized control, our key insights are two-fold.

(1) Different defense mechanisms can be flexibly deployed in

response to different attack types and severity levels, thereby

minimizing wasted resources. The same functionality often

requires complex reconfiguration in traditional networks. (2)

New optimizations are possible because defense mechanisms

in SDN can dynamically change the network configuration

(e.g., forwarding rules and topology) to their advantage.

With these insights, we design and implement a data-

plane security system supporting fault localization and fault

mitigation against malicious SDN switches. Fault localization

aims to identify malicious switches, while fault mitigation

aims to improve resilience against malicious switches if iden-

tification fails. We consider a realistic threat model in which

malicious switches can selectively drop, inject, modify, or

misdirect traffic. They can also collude with each other and

report bogus information to incriminate benign entities. To

systematically mitigate such a wide spectrum of threats, we

explore three complementary techniques to secure data planes

and study how they can be tailored in SDN settings:

• Active probing is a fault localization technique that vali-

dates the correctness of flow rule execution by sending test

packets. A straightforward yet expensive solution is sending

one test packet per flow rule. Thus, the main challenge

is to minimize the number of test packets while ensuring

accurate and rapid detection.

• Statistics checking is another fault localization technique

that detects malicious switches by checking consistency of

flow statistics. A key challenge of statistics-based checking

is how to deal with malicious switches that report mislead-

ing information to incriminate benign ones.

• Packet obfuscation is a fault mitigation technique that,

by encrypting packet contents and/or headers, ensures

continuous network operations despite malicious switches

discriminating against certain flows. Challenges include

efficient key management and encryption/decryption.

In the rest of this paper, we define the threat model (§II), elab-

orate our proposed solutions and highlight potential research

challenges (§III), present preliminary results that support our

observation (§IV), and review related work (§V).

II. PROBLEM DEFINITION

Our goal is to secure packet forwarding against malicious

switches that disobey flow rules. To be practical, a fault

localization/mitigation scheme should minimize performance

overhead and locate malicious switches with high probability

and low delay. This section reviews relevant SDN data plane

operations and defines the threat model in detail.

A. Background: SDN/OpenFlow Data Plane

In SDN, the controller handles how packets are forwarded

by inserting and deleting flow rules on switches. Specifically,

a switch maintains one or more flow tables. Each flow entry978-1-4673-9486-4/16/$31.00 c© 2016 IEEE

(or flow rule) in a flow table contains match field, actions,

counters, priority, and timeout. When an incoming packet

matches a match field, the switch performs the corresponding

actions on the packet and updates the corresponding counters.

The priority field serves as a tie breaker if multiple rules

are matched. The timeout field specifies when the rule will

expire. In addition, the controller knows the complete network

topology and can request switches for counter values.

B. Threat Model

It has been shown that SDN switches can be compro-

mised [8] and are attractive targets for hacking [9]. We assume

an attacker that controls a subset of SDN switches called

malicious switches. The attacker has full control over all

communications going through and all information stored on

these malicious switches. Malicious switches can collude with

each other and misbehave selectively with respect to flows and

time. Flow-based selective attacks discriminate against certain

flows, while time-based selective attacks strike with a certain

probability in each time slot. It is worth noting that no prior

solution can efficiently mitigate such a strong adversary model.
Specifically, we classify potential threats regarding three

fundamental functionalities of SDN switches:
Threats against packet handling. We consider two primary

malicious actions—drop and inject—against packet handling,

because every attack against data plane integrity can be

reduced to a sequence of packet drops and injections [6].1

Threats against rule matching. Similarly, the attacker can

inject or delete installed flow rules on compromised switches,

and the combination of injections and deletions can implement

various attacks.2 In addition, as switches are required to report

expired flow rules to the controller, malicious switches can

create inconsistency between the controller’s view and the

actual network state by lying about such timeout events.
Threats against statistics reporting. Malicious switches can

report falsified counter values, deluding the controller into

making wrong decisions, such as blocking benign switches.
We assume that the controller is trusted. Attacks against

controllers are orthogonal to this paper and may be mitigated;

for example, using threshold-based cryptography [10]. Denial

of service by flooding is another major, unresolved threat

to SDN data planes but is outside the scope of this paper.

Although the attacker can also use malicious switches to eaves-

drop on packet contents, thus resulting in privacy breaches, we

focus on attacks against integrity rather than confidentiality.

III. SYSTEM DESCRIPTION

Our work utilizes the programmability and centralized

control of SDN networks, and thus is able to test network

functionality actively according to the controller’s knowledge.

By contrast, in a traditional network design, problems are

detected passively through checking statistics on switches.

1E.g., misdirection can be instantiated via dropping and then injecting the
same packet to a different interface. Header modification can be instantiated
via dropping and then injecting a new packet to the same interface.

2E.g., the attacker can manipulate a flow’s priority or add a rule to drop
packets from a specific IP address.

Packet Obfuscation

Extension

Application Plane

Control Plane

Data Plane

Active Probing
Statistics

Checking

Packet Obfuscation

Control

Packet Obfuscation

Extension

Fig. 1. Our proposed system w.r.t. the layers of SDN architecture.

Our proposed system deals with the defined problem in

two aspects: (1) fault localization by sending test packets and

inserting test flow rules, and (2) fault mitigation via packet

content obfuscation.

For fault localization, we describe two techniques to locate

compromised switches:

(1) We generate a set of test packets from the controller

to traverse all flow rules on controlled switches in the

network, verifying if the rules are consistent with the

controller’s knowledge (§III-A). By actively testing the

switches, we are able to detect incorrect packet handling

by adversaries. However, injected flow rules may not

always be discovered with this technique.

(2) We insert test flow rules to switches and collect statistics

to identify neighborhoods that report inconsistent results

(§III-B). The flow rules on a switch are designed to match

the expected behavior of its neighbors. With collected

flow counters, we verify the integrity of each switch by

comparing counters provided by the switch itself and

its neighbors. This method can locate the root cause of

incorrect packet handling and unintended flow rules down

to the smallest neighborhood (i.e., adjacent switches) but

may be unable to determine which one in the neighbor-

hood is misbehaving.

If compromised switches cannot be located with high cer-

tainty, or if not every switch is under control, we propose a

new flow action that obscures/unobscures packet content. It

mitigates malicious switches that perform unintended actions

against packets containing a certain header or payload (§III-C).

Figure 1 shows how the proposed system interacts with the

standard SDN layered architecture. Both testing methods are

implemented at the application level, while the packet obfusca-

tion mechanism requires additional support in the control and

data planes. Table I compares the three techniques regarding

the types of threats they are capable of detecting/mitigating.

TABLE I
COMPARISON OF THREE PROPOSED TECHNIQUES REGARDING

CAPABILITIES OF DETECTION/MITIGATION.

Threat Types
Active
Probing

Statistics
Checking

Packet
Obfuscation

Packet Handling * *

Rule Matching * *

Statistics Reporting *

A. Active Probing: Fault Localization by Sending Test Packets

At a high level, the active probing application consists of

two main steps, test packet generation and fault localization,

as Figure 2 illustrates. Before explaining them in detail, we

highlight the main technical challenges in each step:

Rule Graph

Network State

Topology

Forwarding Table

Compute the

set of test

packets

Generate Test

Packets

Fault

Localization

Event

Dispatcher

Receive events

Update

Rule Graph

Return test

packets

(1)

(2)

(3) (4)

(5)

(6)

(7)

(8)

Flow entry

modification

Send test

packets

Give reputation

and

Detection

Investigate the

result of

 test packets

Update

flow entry

(9)

Fig. 2. Overview of the fault localization with test packets.

• How to efficiently compute a minimum set of test

packets. In test packet generation, the controller computes a

minimum set of test packets (Pmin) that traverse every rule in

the network, thereby enabling lightweight monitoring of the

entire network. Intuitively, one might attempt to solve this by

applying well-established algorithms (e.g., finding a minimum

path cover, MPC [11]–[13]). However, as we will explain later,

existing algorithms cannot be directly applied due to additional

constraints in our setting; thus, we define the minimum legal

path cover (MLPC) problem, prove that finding Pmin can be

reduced to solving MLPC, and propose an algorithm to solve

it in O(n3) time.

• How to balance accuracy and efficiency in fault lo-

calization. Test packets are sent periodically. If the test

packets do not return as expected, the controller marks the

corresponding path as suspected, and begins to pinpoint faults

by sending additional test packets. However, narrowing down

the suspected region is non-trivial. Suppose the controller spots

two suspected paths intersecting each other. Without further

information, it would be hard to tell whether the switch at the

intersection is malicious or there are two (or more) malicious

switches on the paths. We can reduce false positives and false

negatives at the cost of sending more packets. We explore the

tradeoff by studying a divide-and-conquer algorithm, and leave

optimization as a future work.

1) Test Packet Generation: The controller maintains a rule

graph [1] representing the relationships between flow entries.

Given the topology and each switch’s flow rules, each vertex

in the rule graph represents one flow entry, and there is an edge

from vertex r1 to r2 if there exists some packet that matches

rule r1 and then rule r2 consecutively. Since the rule graph

encodes only pairwise relationships, there may be no packet

that can match every rule on a given path in the rule graph.

This explains why finding Pmin is not the same as finding a

minimum path cover in the rule graph.3

We say that a path is a legal path in the rule graph if a packet

can traverse it. We define the Minimum Legal Path Cover

3For example, consider a line topology of three switches in which switch
wi has rule ri. The match field of r1, r2 and r3 are src ip = 10.0.0.1,
dst ip = 10.0.0.2 and src ip = 10.0.0.3, respectively. Then the rule graph
consists of three nodes and two edges (r1, r2) and (r2, r3). However, no
packet can go through r1 → r2 → r3 because (src ip = 10.0.0.1) ∧
(src ip = 10.0.0.3) = ∅.

Algorithm 1: Test Packet Generation based on MLPC

Input : Rule graph G.

Output: Minimum set of test packets Pmin.

1 V ←− topological sorting(G);

2 G′ ←− transitive closure(G);

3 M ←− Hopcroft-Karp(G′, V) w/ legal augmenting paths;

4 Pmin ←− trace headers(M);
5 return Pmin;

(MLPC) problem to be finding the minimum number of legal

paths such that every vertex belongs to at least one legal path.

To this end, generating Pmin is equivalent to finding a MLPC

in the rule graph.

We propose Algorithm 1 to solve MLPC in O(n3), where

n is the number of rules. Our algorithm extends an algorithm

[11]–[13] that finds a minimum path cover (MPC). Due to

space limitations, we briefly sketch the construction and proof

as follows:

First we perform topological sorting of the rule graph. Given

a topological order, a modified Hopcroft-Karp algorithm is

applied to efficiently find legal augmenting paths. The Berge’s

Theorem shows a legal path cover C is minimum if and only

if no legal augmenting path on C can be extended. Given a

minimum legal path cover Cmin, we compute the header space

Hi (e.g., src ip = 10.0.x.x) for each path ℓi in Cmin. That

is, any packet with a header within Hi can traverse ℓi. Finally,

Pmin is generated by selecting one packet per Hi. The core

observation regarding this proof is that a similar algorithmic

construction of MPC works for finding MLPC in the sense

that MLPC has a stricter definition of paths than MPC.

2) Fault Localization: For the purpose of fault localization,

test packets need to be returned to the controller. To do this,

the controller appends an additional test flow rule at the end of

each test path. Ideally, to avoid affecting normal packets, the

appended test flow rule and test packet should be sufficiently

unique such that the test flow entry can only be matched by

the corresponding test packet. Our implementation achieves

this by putting a unique value in unused header fields (e.g.,

VLAN ID). Moreover, the last rule r on each test path should

be handled as follows to ensure that r can be tested without

affecting normal operations: (1) duplicate r to the next flow

table, (2) add the test flow entry that is set to the highest

priority on the next flow table, (3) modify the action of r on

the original table to goto the next table.

If a test packet is dropped (i.e., do not return before

timeout) or modified, the controller decreases the reputation

of the corresponding path. When the reputation value drops

below a certain threshold, the path is marked as suspected.

To determine the root cause (which switch is malicious), the

controller slices the path into two sub-paths and performs the

same procedure recursively until the length of the suspected

path is 1. Algorithm 2 shows this procedure.

B. Statistics Checking: Fault Localization by Cross-analyzing

In the OpenFlow protocol, switches record information

about processed packets, including the number and size of

Algorithm 2: Localize the fault with test packets

Input : Set of test packets P .

Output: Faulty or compromised switch(es).

1 while not localize the fault do

2 send test packets P ;

3 wait and receive the set of test packets P ′;

4 for each test packet p ∈ P and correspond p′ ∈ P ′

do

5 path←− the path traversed by p;

6 if p 6∈ P ′ or p 6= p′ then

7 decrease the reputation of p;

8 if the reputation of p < threshold then

9 if length of path = 1 then

10 localize the fault;

11 else

12 slice path(path, p);

processed (received, forwarded and dropped) packets, the

number of packets that match some rules in a flow table, etc.

By requesting these statistical data, the controller can have an

overall understanding of the network.

In the presence of malicious switches reporting fake infor-

mation, the controller requires extra information to validate

reports and identify malicious switches. To achieve this, we

propose that each switch can perform “neighborhood watch”

to monitor the behavior of neighboring switches, thereby

ensuring traffic conservation for each switch. If there are x

packets entering a switch and y packets are dropped or ended

at the switch, then there should be x− y packets leaving the

switch. This can be done at a finer granularity such as per-flow

or per-interface conservation.

At a high level, the controller inserts extra counter rules

to switches so that it can identify compromised switches by

comparing counter values among neighboring switches. The

sole function of a counter rule is to count packets and it does

not change the original behavior of forwarding.

Technically, our system consists of two parts: adding

counter rules and checking counter values. For adding

counter rules, the main challenge is ensuring that these newly-

added counter rules will not interfere with normal forwarding.

For checking counter values, the difficulty lies in how to

pinpoint misbehaving switches when they can lie and collude.

1) Adding Counter Rules: We leverage a new OpenFlow

feature—the support of multiple flow tables—to store auxiliary

counter rules on switches so that counting can be done

transparently without affecting normal forwarding.

As a proof of concept, our prototype system works as

follows. The controller inserts a new table from table and

several new flow tables to x table before and after the origi-

nal flow tables, correspondingly. x represents a switch ID, and

every action (including default actions) on to x table would

be “forward to x”. When a packet arrives at a switch, it will

go through from table, original flow tables, and to x table

in order before being forwarded to next switch.

Let N(s) denotes the set of neighbors of a switch s. O(r)
denotes a set of output switches, which are next-hop switches

Algorithm 3: Add counter rules

Input: A rule r on a switch s

1 r′ ←− r;

2 for s′ ∈ O(r) do

3 if s′ ∈ O(r) then

4 action(r′) ←− go to original flow table of s′;

5 else if s′ ∈ I(r) then

6 action(r′) ←− forward to s;

7 add r′ at to s table on s′;

8 action(r′) ←− drop;

9 match field(r′) ←− match field(r′) + ’in port’=s;

10 add r′ at from table on s′;

Algorithm 4: Validate the malicious switch

Input : Target switch s

Output: If statistic is consistent

1 for each s′ ∈ N(s) do

2 request from table and to s table on s′;

3 for each rule r on switch s do

4 if r is dropping rule then

5 if C(r) in every from table 6= 0 then

6 return false;

7 else if r is forwarding rule then

8 if |
∑

s′∈O(r) C(r) −
∑

s′∈I(r) C(r)| > θ then

9 return false;

10 return true;

of a forwarding rule r. If r is a dropping rule (i.e., whose

action is to drop packets), O(r) becomes an empty set. I(r)
denotes the difference of N(s) and O(r). Algorithm 3 shows

the procedure of adding counter rules. Notice that we need

to add counter rules for every rule on every switch to obtain

enough information for counter checking.

2) Checking Counter Values: Under our threat model, the

switch that the controller wants to check might return incorrect

data to avoid detection. Hence, instead of requesting statistics

from the target switch s directly, the controller will simultane-

ously request statistics from s′ ∈ N(s), determining whether

there are compromised switches by validating the consistency

of the returned data. Let C(r) denotes the auxiliary counter

of r, and θ denotes a tolerance threshold for packet loss and

latency. The validation procedure is depicted in Algorithm 4.

We set a reputation value for each switch. The reputation

of the target switch and adjacent switches decrease when

an inconsistency occurs. When the reputation value of a

switch drops below a threshold, the switch is potentially

compromised. It is important to note that this statistics-

checking method is suitable for localizing faults but may fail to

accurately identify malicious switches. In some cases, we can

at best localize the fault to one link but we cannot determine

which one of the two switches is malicious. Also, if a benign

switch is surrounded by a coalition of malicious switches, its

reputation may decrease faster than others. Hence, this method

should be combined with the other two methods to reduce false

positives and negatives.

For future work, we would like to extend our design to

detect other malicious actions in addition to traffic misdirec-

tion and dropping. Another unsolved challenge is to reduce

the number of auxiliary counter rules. In our algorithm,

the number of auxiliary rules increases with the number of

adjacent switches, and thus adding counter rules may become

a performance bottleneck and exhaust TCAM memory on

switches. We plan to investigate probabilistic approaches for

better performance.

C. Packet Obfuscation to Prevent Rule-based Misbehavior

A compromised switch is capable of performing unintended

actions to packets that match certain criteria, such as packets

with specific source/destination addresses or those containing

a certain string in the payload. An attacker can thus manipulate

sensitive traffic, or even perform man-in-the-middle attacks.

A simple yet effective method of mitigating adversaries is to

obfuscate packet headers and payload when sensitive packets

enter an untrusted region, and recover the packets before they

reach their destinations.

Based on the OpenFlow architecture, we propose a packet

obfuscation scheme by means of encryption. We extend the

original OpenFlow specification by adding two new flow

actions: encrypt and decrypt. By utilizing modern cryp-

tographic algorithms we are able to prevent the adversary from

recovering packet content without access to the secret key.

Encryption method. Modern cryptographic algorithms can

be categorized into two types: symmetric-key and asymmetric-

key cryptography. The performance of modern public-key

algorithms (e.g., RSA) is hardly comparable to symmetric-key

algorithms, which is a major concern in practical usage. Thus,

we consider applying symmetric-key cryptography. Switches

performing corresponding encrypt and decrypt actions

are assigned a pre-shared key for both operations. Performance

is especially guaranteed if hardware support is available, such

as Intel’s AES-NI instruction set for the x86 architecture. The

pre-shared key should be changed constantly to prevent the

exploitation of weaker algorithms (e.g., attacks to the RC4

cipher); therefore, a key synchronization mechanism between

switches is required for better securely.

Encryption range. Encryption allows us to hide certain

routing information, but the packet still needs to be correctly

routed to the destination. Applications utilizing this technique

should be aware that obfuscated information will be unavail-

able for successive routing until packets are navigated to

switches that match rules and unobfuscate them.

In our design, the encrypt and decrypt flow actions

include a range field deciding whether to encrypt the Layer 2

(L2) payload or Layer 3 (L3) payload:

• By encrypting the L3 payload, L4 (e.g., TCP/UDP) infor-

mation such as source/destination ports will be unavailable.

• By encrypting the L2 payload, L3 information including

source/destination IP addresses, as well as L4 information

will be hidden. In this case only traditional switching with

MAC addresses will be available.

The proposed method provides protection transparent to end

devices, and is more powerful than other approaches such as

VPNs, which are unable to protect routing information. Our

implementation in progress utilizes an AES-256-CBC cipher

with a static pre-shared key field included in both encrypt

and decrypt flow actions.

IV. PRELIMINARY RESULTS

Our fault localization and mitigation system is implemented

on top of Ryu and Open vSwitch in accordance with Open-

Flow 1.3. This section reports our evaluation methodology and

preliminary evaluation of the active probing method (§ III-A).

Methodology. To evaluate our data-plane security system in

realistic and diverse settings, we develop an automatic tool to

synthesize topologies and flow entries based on real datasets.

The tool then creates a virtual SDN network using Mininet.

Our topology is sampled from the router-level ISP topologies

measured by Rocketfuel [14]. As we are unaware of any

publicly available flow entry datasets, we use the all-pair K-

th shortest path algorithm to compute routing paths given the

synthesized topology. For each switch on a path, we insert a

flow entry that matches the destination’s IP prefix, such that

packets travelling to the prefix can traverse the path.

Preliminary results. Table II summarizes the results of the

test packet generation under different settings. The maximum

path length represents the maximum number of rules traversed

by one packet. The results confirm that our solution can

significantly reduce the number of required test packets to

cover every rule on the network, and the compression ratio is

roughly inversely proportional to the maximum path length.

TABLE II
RESULTS OF TEST PACKET GENERATION.

of switches 10 30 30 79
of wires 15 54 54 147

Max path len. 5 5 8 8
of rules 4764 82740 33637 205713

of test packets 954 15098 4203 24456

Figure 3 shows the detection delay of fault localization

vs. the number of malicious switches under four settings

(Table II). Detection delay is defined as the time between send-

ing the first test packet and catching all malicious switches.

Given the number of malicious switches, we determined which

switches and rules were malicious uniformly at random in each

run of the experiment. The minimum detection delay is 6.19

seconds and the maximum is 89.25 seconds in all experiments.

The controller can localize malicious switches within 6.19-

8.37 seconds in the smallest topology, within 12.28-35.65

seconds in the medium topology and within 68.27-89.25

seconds in the largest topology. The detection delay is roughly

proportional to the number of test packets being sent.

V. RELATED WORK

We review prior work in fault localization and mitigation.

Several network diagnostic tools are proposed for finding

network misconfiguration (e.g., loops and black holes) [2],

1 2 3 4 5
Number of switches with fault

0

10

20

30

40

50

60

70

80

90

100

110

120

D
e
te
ct
io
n
 d
e
la
y
(s
e
c)

4764 rules in TABLE II
82740 rules in TABLE II
33637 rules in TABLE II
205713 rules in TABLE II

Fig. 3. Detection delay of fault localization.

[15], [16]. For example, ATPG [2] aims to locate faults

by sending test packets that traverse the entire network.

VeriFlow [16] efficiently verifies network-wide invariants by

dynamically tracking flow updates. However, prior works often

focus on reliability rather than security and thus can be

bypassed by sophisticated adversaries.

Cryptographic-based verification protocols can localize

faults and enforce path compliance against strong adver-

saries [5]–[7] but often incur high overhead and require signifi-

cant changes to the current network architecture. For example,

ShortMAC [6] requires that every router on the forwarding

path add a small authenticator to each packet. DynaFL [5]

requires that each router record a sketch of every packet and

compare all the sketches in a neighborhood to eventually detect

malicious links. Our active-probing and statistics-checking

approaches leverage SDN’s features to reach similar goals

without changing the network architecture.

Chi et al. [4] propose a test-packet-based method that

randomly selects one rule for testing in each epoch. However,

this is inefficient and may be circumvented by colluding

switches. FortNox [17] extends the Nox controller to check

rule contradiction on a single switch against malicious Open-

Flow applications, which is orthogonal to our work.

Several studies provide traffic monitoring to support

anomaly detection and network forensic analysis in SDN [18]–

[21]. However, they often assume trusted switches and focus

on monitoring rather than locating where problems occur.

Encryption is commonly used to make traffic indistinguish-

able against a discriminating adversary [22]. Mowla et al. [23]

propose an approach that encrypts packets and inserts en-

cryption rules into switches to defend against spoofed IP

attacks in SDN environments. In our work, we propose a user-

transparent encryption/decryption scheme added under the

OpenFlow protocol to obscure/unobscure packets to prevent

the incorrect forwarding by discriminating switches.

VI. CONCLUSION

SDNs are believed to accelerate the innovation process.

At the same time, however, they present new challenges to

security research. This paper explores how SDN can help the

detection and mitigation of compromised switches under a

realistic threat model. We presented three promising solutions

to localize and mitigate malicious SDN switches, compared

these solutions, and articulated the research challenges during

design and implementation. We hope this paper can serve as

a roadmap to study data-plane attacks and defenses in SDN.

ACKNOWLEDGMENTS

This study is conducted under the “Accelerating the de-

velopment of mobile broadband services and industry - 4G+

network and application field deploy and testing project” of

the Institute for Information Industry which is subsidized by

the Ministry of Economic Affairs, Taiwan.

REFERENCES

[1] P. Kazemian, M. Change, and H. Zheng, “Real Time Network Policy
Checking Using Header Space Analysis,” in USENIX NSDI, 2013.

[2] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic Test
Packet Generation,” IEEE/ACM Transactions on Networking, vol. 22,
pp. 554–566, 2014.

[3] C. Fung and C. Fung, “FlowMon: Detecting Malicious Switches in
Software-Defined Networks,” in SafeConfig, 2015.

[4] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to detect a
compromised sdn switch,” in IEEE NetSoft, 2015.

[5] X. Zhang, C. Lan, and A. Perrig, “Secure and Scalable Fault Localization
under Dynamic Traffic Patterns,” in IEEE S&P, 2012.

[6] X. Zhang, Z. Zhou, H.-C. Hsiao, T. H.-J. Kim, A. Perrig, and P. Tague,
“ShortMAC: Efficient Data-Plane Fault Localization,” in NDSS, 2012.

[7] T. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight Source Authentication and Path Validation,” in ACM

SIGCOMM, 2014.
[8] “SDN switches aren’t hard to compromise, researcher

says,” http://www.networkworld.com/article/2956777/security/
sdn-switches-arent-hard-to-compromise-researcher-says.html.

[9] “NSA Laughs at PCs, Prefers Hacking Routers and Switches,” http:
//www.wired.com/2013/09/nsa-router-hacking/.

[10] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from
Malicious Administrators,” in ACM HotSDN, 2014.

[11] R. P. Dilworth, “A decomposition theorem for partially ordered sets,”
Annals of Mathematics, pp. 161–166, 1950.

[12] C. Berge, “Two theorems in graph theory,” Proceedings of the National

Academy of Sciences of the United States of America, vol. 43, no. 9, p.
842, 1957.

[13] J. E. Hopcroft and R. M. Karp, “An nˆ5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on computing, vol. 2, no. 4,
pp. 225–231, 1973.

[14] “Rocketfuel,” http://research.cs.washington.edu/networking/rocketfuel/.
[15] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and

S. T. King, “Debugging the data plane with anteater,” ACM SIGCOMM

Computer Communication Review, vol. 41, p. 290, 2011.
[16] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: verifying

network-wide invariants in real time,” ACM SIGCOMM Computer

Communication Review, vol. 42, no. 4, pp. 467–472, 2012.
[17] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A

security enforcement kernel for OpenFlow networks,” in ACM HotSDN,
2012.

[18] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in ACM

HotSDN, 2012.
[19] J. R. Ballard, I. Rae, and A. Akella, “Extensible and scalable network

monitoring using opensafe,” in INM/WREN, 2010.
[20] N. L. Van Adrichem, C. Doerr, F. Kuipers et al., “Opennetmon: Network

monitoring in openflow software-defined networks,” in IEEE NOMS,
2014.

[21] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in IEEE NOMS, 2014.

[22] I. Avramopoulos and J. Rexford, “Stealth Probing: Efficient Data-Plane
Security for IP Routing,” in USENIX ATC, 2006.

[23] N. Mowla, I. Doh, K. Chae et al., “An efficient defense mechanism for
spoofed IP attack in SDN based CDNi,” in ICOIN, 2015.

