
Migrant Attack: A Multi-Resource DoS Attack on
Cloud Virtual Machine Migration Schemes

Jia-Rung Yeh
Department of Computer Science

National Taiwan University

Taipei, Taiwan

Email: jiarung.yeh@gmail.com

Hsu-Chun Hsiao
Department of Computer Science

National Taiwan University

Taipei, Taiwan

Email: hchsiao@csie.ntu.edu.tw

Ai-Chun Pang
Department of Computer Science

National Taiwan University

Taipei, Taiwan

Email: acpang@csie.ntu.edu.tw

Abstract—Live virtual machine (VM) migration is the core
technology in elastic cloud computing. With live VM migration,
cloud providers can improve resource use and quality of service
by adjusting the VM placement on demand. However, live
migration is expensive because of high CPU usage and the
negative effect on co-located VMs, and frequent live migration
thus severely undermines the performance of the cloud. Although
existing dynamic allocation schemes are designed to minimize
the number of live migrations, this study demonstrated that a
denial-of-service adversary can cause excessive live migrations by
exploiting dynamic allocation. The attack, which we term migrant
attack, deliberately varies the resource usages of a malicious VM
to trigger live migration. A crucial feature of the migrant attack
is that even if VMs on the same physical machine are perfectly
isolated through virtualization, a malicious VM can still affect
the availability of the co-located VMs. As proof of concept, we
investigated two common VM allocation schemes: load balancing
and consolidation. We evaluated the effectiveness of the attack
by using both simulations and testbed experiments. We also
discuss several potential countermeasures, such as enforcing
another layer of isolation between malicious and harmless VMs
in dynamic allocation schemes.

I. INTRODUCTION

With the emergence of virtualization and cloud computing,

users and developers can employ resources in a more effective

and flexible manner than ever [1]. However, the success of

cloud computing services attracts unwanted attention from

malicious parties. A recent survey reported that 34% of cloud

providers encountered 11-50 denial-of-service (DoS) attacks

per month in 2014. While most of these attacks against clouds

so far were conducted through traffic flood [2], concerns

have been raised regarding whether any of the unique cloud

properties expands the DoS attack surface.

One of the unique cloud properties is live migration: the vir-

tualization technology allows cloud providers to move running

virtual machines (VMs) among physical machines (PMs) on

demand, thereby improving resource use and quality of service

(QoS). In this paper, we consider two common dynamic alloca-

tion policies—load balancing and consolidation—and assume

the allocator will continue to live migrate until resource use

is in an acceptable state.

However, live migration is expensive. Because of their high

resource usage, colocated VMs require more time to accom-

plish their workload in the original PM during migration [3].

Therefore, frequent live migration severely undermines cloud

performance. Although existing dynamic allocation schemes

that determine whether each VM requires migration are often

designed to minimize the number of live migrations, in this

paper, we show that an adversary can cause excessive live

migration by exploiting dynamic allocation.

We present the migrant attack, a novel DoS attack that aims

to destabilize a cloud’s VM placement using a small number

of compromised VMs. The adversary deliberately manipulates

the resource usage of the compromised VMs to trigger live

migration, thereby degrading the performance of co-located

VMs and the cloud. The main challenge of designing such an

attack is how to reduce the number of required compromised

VMs, so that the attack can be both efficient and stealth.

To address this challenge, the migrant attack builds on the

following two key observations of dynamic allocation:

• Because the allocator monitors and schedules resources

periodically, the allocation scheme is subject to a time of

check to time of use (TOCTOU) problem. That is, the

adversary can control the resource use of the compro-

mised VMs such that the allocator is tricked to issue a

migration request at the time the allocator checks, but

by the time the allocator actually starts the migration

process, the migration will further push the cloud away

from a stable state.

• Because the allocator employs multiple dynamic allo-

cation policies over multiple resources, the adversary

can choose to invoke one that requires minimal work.

In this study, we consider two allocation policies (i.e.,

load balancing and consolidation) and three resources

(i.e., CPU, bandwidth, and memory), which renders six

possible conditions to trigger live migration.

Based on these two observations, we demonstrated that

VM allocators can be misled and therefore wrongly perform

unnecessary migrations.

The main contributions of this study can be summarized as

follows:

1) We identify new DoS vulnerabilities exploiting dynamic

VM allocation.

2) We highlight the main challenge of exploiting such vul-

nerabilities in a practical manner and propose to leverage

2016 11th Asia Joint Conference on Information Security

978-1-5090-2285-4/16 $31.00 © 2016 IEEE

DOI 10.1109/AsiaJCIS.2016.14

92

Fig. 1. Two basic strategies for tuning PM resource use.

the TOCTOU problem and target multiple resources and

policies for improving efficiency and stealthiness of the

attack.

3) We design a DoS attack (called the migrant attack) that

can destabilize a cloud’s VM placement using a small

number of compromised VMs.

4) We evaluate the migrant attack using both testbed ex-

periments and large-scale simulations.

This paper is structured as follows. Section II provides the

cloud service background, allocation and migration, and Open-

Stack. Section III is divided into preparation and attacking

parts. Section IV presents metrics related to the cost of at-

tackers and damage, and Section V evaluates the experimental

results. Section VI provides related works. Finally, Section VII

presents the conclusion and future works.

II. BACKGROUND

Cloud computing is an integration of virtualization and

large-scale data center computing [1], which aims to use and

manage resources more efficiently; it is designed to solve

large-scale computation problems.

All these services must be deployed on a physical server

for operation, indicating that the location where these services

or VMs are launched influences the power consumption, and

QoS. If a physical machine (PM) hosts only a small number

of virtual machines (VMs), then we may reduce energy con-

sumption by shutting down the PM and relocaiting the VMs to

other PMs. The different distributions of VMs scattered on the

PMs provide various types of feedback, leading us to adopt

two basic strategies as below and Fig. 1.

1. Load balancing: A cloud transfers heavy loads from

some PMs to other PMs with lighter loads.

2. Consolidation: A cloud collects the VMs in the PMs

with low resource use into one PM to shut down the

former PMs.

For these hybrid strategies, VM allocating methods deter-

mine how each VM is mapped to its PM to satisfy goals,

such as optimal cost function, or some constraints that are

limited by the physical bond of a PM’s resources. Moreover,

we focused on various methods of each allocator, such as the

use of a PM that is required for it to be considered a high

loading PM, to determine its threshold. These thresholds may

be fixed or dynamic, depending on their designs.

After rescheduling these VMs, we must physically move the

selected VMs among PMs. This type of movement is called

migration. Currently, virtualization can be used to extract a

system image from a running VM to network-attached storage,

allowing migration to only manage the CPU state and memory

to reduce network traffic and CPU loads.

Moreover, when migration is processed, its scheme deter-

mines when to stop the source VM and copy the final CPU

state or memory data to the VM in the destination until

the VM in the destination recovers to provide service. The

period without service provided using VM is called downtime,

and the time required for a complete migration to process

is referred to as migration time. Various migration schemes

can be classified into the following schemes according to the

decisions reached at the time when service is halted: precopy,

postcopy, and stop-and-copy migration schemes [4], and these

schemes will give different downtime.

III. ATTACK

In this section, we describe the migrant attack and its

process that exploits the weak isolation of resource use; the

migrant attack is a challenge that must be addressed.

We divide this section into two parts to describe the migrant

attack. In the first part of migrant attack, attackers use some

batch tasks, which can be observed objectively to measure

the PM’s loads and the threshold of schemes from various

allocators. In the second part, the attacker can use the observed

threshold in the first part. With rented VMs, the interference

by the attacker can mislead the allocator to falsely determine

that PMs require consolidation or balance its loads. Therefore,

excessive migration consumes more energy and increases

service instability. We assume that the adversary can control

a sufficient number of VMs for attacks. We will show in

our evaluation that the required number of malicious VMs

is reasonable. Because the adversary can pose as one or more

regular customers to rent VMs from the cloud provider, the

cloud provider cannot differentiate an attacker from a coalition

of benign customers without further information.

A. Resource Use Leakage Exploitation

In this section, we differentiate PMs with different loadings

by using the leakage of resource isolation. This is accom-

plished by examining the task completion time and whether

the migration has happened. Our attack preparation involves

six steps and two conditions for a loop to stop.

• Step 1: Scatter VMs on PMs, which belong to the target

cloud.

• Step 2: Execute the batch tasks of each resource inten-

sively (CPU, memory, up-link or down-link, and so on).

• Step 3: Record the time each task uses in set T.

• Step 4: Compute the variance and average of the time

that each VM used.

93

Fig. 2. Example of a migrant attack.

• Step 5: Repeat Steps 2 and 4 in each scattered VM until

either Condition 1 or 2 is satisfied.

• Step 6: Sort these VMs according to variance and average

in decreasing order.

• Condition 1 The variance computed converged to some

setting threshold.

• Condition 2 The threshold of the iteration amount.

From the recorded time, we determine the threshold that

allocator trigger the migration. This problem can be divided

into two parts on the basis. Firstly, whether the attacker

controlling the VM monitors the downtime or not. If we

observe and measure the downtime, then we can directly

confirm whether this VM is migrated. Otherwise, if malicious

VMs don’t monitor downtime, then we divide set T into

various parts in the length that the same length of converged

sequence in Condition 1. According to each parts, if the

consecutive part’s variance has changed, then migration might

have occurred.

Therefore, we consider each threshold of resource use on the

PM near the allocator that is preparing to migrate. According

to this, we can determine whether each VM is an appropriate

attack target.

B. Migrant Attack

We only select VMs with resources close to the threshold

observed. The steps in the migrant attack are as follows:

• Step 1 Execute the measuring batch tasks, as provided in

section III-A.

• Step 2 Determine the type of resource most appropriate

to trigger a migration.

• Step 3 Execute the intensive task by selecting a resource

for a period to trigger the migration.

• Step 4 Proceed to Step 1.

For example, in Fig. 2, instants A, B, and C are malicious

VMs. If the location of A is CPU intensive, then it implements

CPU batch tasks that cause the allocator to observe the

location of A and migrates A to another PM to allow the new

Fig. 3. Downtime locates the final part of migration.

distribution of VMs to have superior resource use. In each

round, malicious VMs consume different resources, like on

CPU overloading PM executing the task with CPU intensive,

according to the threshold which is easy to trigger a migration

and we get from the part of leakage. When the allocator aims

to reschedule the VM placement, these PMs are easy to select

for executing load balancing. However, frequent or massive

migration has a negative influence on the cloud; more details

for migration cost are discussed in Section VI.

IV. METRICS

We consider that the migrant attack may influence a real

cloud environment. Therefore, we aim to determine the num-

ber of malicious VMs and degrees of resource use that are

sufficient to influence other users to enable these users to

be aware of malicious behavior. To quantify the success of

the migrant attack, we consider it from two perspectives:

user sensitiveness and cloud cost, which allow us to define

three metrics: downtime, migration time, and the degree of

imbalance.

The downtime is a period during migration indicating that

the migrated VM cannot serve its users. Various migration

schemes have different downtime properties. Three types of

migration schemes exist: precopy, postcopy, and stop-and-copy

migration schemes. When a VM is migrated, a hypervisor

copies this VM’s state to its destination. However, the VM

continues serving, and some memory states change, similar to

copy processing. The hypervisor pauses the VM to copy the

final memory state, and the three types of migration schemes

provide various methods of determining the pause time point.

The scheme used in this study is precopy migration, and it

provides the downtime in the rearward part of migration.

Migration time is the summation of all migrations in the

cloud. It is closely related to the reallocation frequency be-

cause a more frequent reallocation provides more migration

time in the whole cloud environment.

94

The degree of imbalance is a metric that represents al-

locator performance, and we define it as the ratio of two

resource use values. The first value is the difference between

maximum(UMax) and minimum(Umin) resource use in the

same PM. And this maximum/minimum is refer to the different

PMs’ loads in the same time slot. For the second value, we

computed the average(UAvg) of the PMs by employing the

resource use in the same time frame. These values indicate that

resource use varies during the time frame. In a fixed moment,

if this value is lower, then the entire system is more balanced

or smooth.

degree of imbalance = UMax−UMin

UAvg

The attacker’s goal should be increased with the migration

times, downtime, or degree of imbalance.

V. EVALUATION

In this section, we present our experimental results. To

describe the migrant attack in a real environment in a more

detailed manner, we implemented emulation and simulation.

A. Emulation

For improved readability, we divided the experiment into

four parts: testbed, exploitation, migration cost, and degree of

imbalance. First, we introduce the testbed. Second, resource

use exploitation emphasizes that various loads on the PM are

differentiated using the VM performance. Third, we consider

the cost of migration, which provides us with a direct descrip-

tion of the attacker and general user. Finally, we highlight the

influence of the migrant attack on the allocator performance.

1) Testbed Model: We did not implement the migrant attack

in a real environment because of legal and ethical concerns.

Instead of actually renting VM to mount the migrant attack,

we set up a small-scale but complete environment with a

controller that behaves similarly to a specific allocator with

policies for load balancing and consolidation, and we emulated

the loads model on this cloud. In this section, we describe our

environment and general loads model.

Our environment is small scale compared with a real cloud

environment because establishing a large-scale environment to

conduct a security experiment without disturbing other users

is unrealistic. In addition, obtaining a small, independent, and

meaningful trace for a data center or cloud data center is

difficult. Without loss of generality, we emulated our CPU

and network loads by using mathematical computation and

http service to allow our VM to consume resources similar to

a real environment, and our archiecture is on the Fig. 4.

We process a routine task called regular load in each VM

that retrieves a job list to allow various tasks to continue

executing every 2 s, and each list is completed approximately

between 3 and 20 s. These tasks in the list are classified into

three types of intensive jobs (CPU, upload, and download)

for the purpose of emulating the general cloud load. And we

constructed a central request dispatcher that determines and

changes the load in every VM every 20 s. Each VM can obtain

the information of use from the central request dispatcher.

Fig. 4. Relation of VM, central request dispatcher and test PM.

According to this list, regular load determines the amount and

the kind required for tasks in each round.

However, determining whether the PM required migration

according to some static thresholds or particular methods in a

realistic attack is difficult. The migrant attack can dramatically

reduce the quality of the cloud if massive VMs are to be

migrated. Therefore, we used a template of the allocator

for load balancing and consolidation proposed by Xiao et

al [5]. The allocator evaluates each PM by using skewness

value and determines the PM suitable for load balancing or

consolidation. The allocator selected some VMs from their

own PMs needing load balancing or consolidation to migrate

to the destination PM according to the value of skewness they

proposed. We compare the quality of performance of load

balancing among the migrant attack, a general scenario without

any attacks, and a naive attack that consumes all the resources

of the VM.

In emulation, we choose CPU, uplink bandwidth, and

downlink bandwidth as our benchmark to determine whether

PMs are overloading or needed a consolidation in utilization

according to that the migration times of general scenario below

40 times in three hours. Since different applications make huge

difference in these three kinds of resource on different VMs.

We keep the average utilization of CPU between 15 to 75, the

average transferring packet rate between 100 to 1500, and the

average receiving packet rate between 150 to 2400.

We constructed our testbed by using physical servers with

Intel Core(TM) i7-3770 3.40 GHz, 15-GB RAM, and 1-TB

HD and used KVM as the hypervisor, whereas all the VMs

have 1 VCPU and 512-MB RAM. In addition, we used the

network tool ping to monitor the downtime. Because our

allocator sent a migration request to the target PM, we pinged

the migrated VM every 0.1 s to obtain the downtime by

summing consecutive loss packages close to the trip time.

We used two sets of thresholds to determine the requirement

for load balancing. Finally, we installed and configured the

latest OpenStack release called Icehouse on the operating

system with Ubuntu 12.04TLS to better investigate conduct

our experiment more efficiently [6].

95

Fig. 5. Distribution of tasks using the time between different compute loads.

2) Leakage Test: The variance of VM can decide different

conditions that determine the scale of PM. We selected three

conditions for the PM with various loadings according to the

number of VMs launched and workloads on the VMs. In the

PM without loads, we launched only one VM to execute the

leakage tests. In the PM with general loads and PM with

heavy loads, we launched five VMs and selected one VM to

execute the leakage test. Conversely, we placed general loads

and heavy loads according to the testbed model. As displayed

in Figs. 5, the variance is distinguishable among the three PMs.

Moreover, the average and median numbers are features that

help to distinguish the loading scales of the PM.

3) Measure the Damage During Downtime and Migration
Times: Two scenarios of setting the VMs, 15 general VMs,

and 13 general VMs with 2 malicious VMs are presented. Our

schedule provides a new placement to migrate a VM every 2

min except during downtime. We compared the naive resource-

consuming attack and migrant attack by measuring the migra-

tion times of each VM. The naive resource-consuming attack

triggers slightly more migrations than the condition without

any attacks does because the schedule efficiently manages

various loads. The migrant attack can mislead the schedule

to perform needless migrations to other VMs. In addition to

migration times, we measured the downtime of migrated VMs

in the migration process, observing the average downtime of

each migration that increases slightly as the migration times

increase.

On the user side, we recorded the migration times of

different VMs. These malicious VMs were selected to migrate

intermittently rather than frequently, and the malicious VMs

implementing the migrant attack had more migration times

than other VMs did, as displayed in Fig. 7 and Fig. 8.

Moreover, the scenario with naive attacked VMs had slightly

more migration times than the scenario without any attacks

did(Fig. 6).

4) Measurement of the Damage Caused by Using the Imbal-
ance Degree: Similar to the previous experiment, we recorded

Fig. 6. Cumulation of downtime in different scenarios.

Fig. 7. Migration times of each VM where two malicious VMs implement
the migrant attack.

Fig. 8. Migration times of each VM where two malicious VMs implement
the naive resource-consuming attack.

96

Fig. 9. Degree of imbalance between various PMs when computing the
resource.

the use of resources to compute the degree of imbalance.

Moreover, we transformed our raw data into Bezier curves to

show the trends for better readability. Since the Bezier curve

is a smooth curve used to model smooth curves from the data

difficult to read that can be scaled indefinitely. The degree of

imbalance for the scenario without malicious VMs is less than

that for the scenarios with malicious VMs(Fig. 9). However,

some general scenarios are close to or higher than the attacked

scenario for the following two reasons: (1) because the use of

such a resource is decreasing, the decreasing condition may

not be persistent, and consolidation or load balancing is not

conducted in real time and (2) when a particular resource

is subjected to the migrant attack, the other resource is not

influenced by the migrant attack.

B. Simulation

We simulated another experiment to demonstrate the in-

fluence on the large-scale condition, and implement the re-

striction of migration to mitigate the influence of frequently

migrations.

1) Environment: Wolski et al. presented a IaaS dataset,

which records the VMs’ used cores, start, and stop time in

a company with 50000 100000 employees [7]; 24 cores are

present in each node. For the original frequent migration,

for which our use simulation was employed, we assumed

that 20 nodes are present instead of 13 nodes. We simulated

three types of resource use because determining the precise

information regarding each type of resource use of every

VM is difficult. We randomly generated resource use in

N(40,3.5), which distributes approximately 30%-50% VMs

for initialization; we increased 20% in N on average for the

intensive resource used. For a real-time and long-tail effect, we

changed each use value by a step, which is uniformly random

from -3 to +3 units after every second.

In particular, for a higher number of nodes and VMs than

the amount of emulation, we set the reallocation frequency to

10 min once which reference from the consolidation work [8].

Fig. 10. Cumulation of average migration times in different scenarios.

Fig. 11. CDF of migration times after each simulation.

Similarly, according to the behavior of migration times without

any attacks, we determine whether PMs are not overloading

or needed a consolidation between 20 to 80 in the first

resource, and 20 to 75 in the second and third resource. In our

simulation, almost 9000 VMs were initiated and distributed in

2000 h. Each malicious VM assumes four cores.

2) Result: We processed each scenario 100 times for 0,

5, 10, 15, and 20 malicious VMs, and all malicious VMs

mount migrant attacks from the 300th hour to the 1800th hour.

According to Fig. 10 and Fig. 11, the trend of each scenario

with migrant attack stops, and the incerase of migration times

then slow. Otherwise, the migration times increase slowly

during some segments of the migrant attack because of the

few VM requests (Fig. 12). According to Fig. 11, when more

malicious VMs are present, each scenario on average has more

migration times. One trend is that more malicious VMs have

a wider range of migration time distribution. This indicates a

positive relationship between the stability of migration times

and the malicious VMs.

97

Fig. 12. Comparison of migration times and VM initiated in each hour in
the cloud.

Fig. 13. The comparison of different migration quota settings.

3) Mitigation: We set a mitigation scheme that we divide

all PMs into two groups: Restraining group and Loosing group.

Loosing group is a group without scheduling of QoS and

resource utilization by gathering some VM with using up their

migration quota, and Restraining group is the other group with

regular scheduling as before. Then, we determine different

thresholds of quota by 20, 40, and 60. For comparison, we

test this mitigation scheme with the scenario has 20 malicious

VMs, and repeat the simulation ten times in each scenario.

From Fig. 13, we can see that migration quota can effectively

mitigate the burst of migration times.

VI. RELATED WORKS

The impact of a migrant attack greatly depends on the

allocator and migration cost. Therefore, we divide this section

as follows: VM allocation, migration cost, and other cloud

DoS attacks.

A. VM Allocation

In this scenario, an allocator may easily exhibit superior

performance or resource use but is also an easy target of the

migrant attack. According to the allocation policy, determining

the threshold is crucial to ascertaining whether use should

involve load balancing or consolidation. Therefore, we clas-

sified previous methods according to the fixed and unfixed

thresholds.

Most studies have used a fixed threshold. After Beloglazov

et al. reported an allocation problem related to energy use and

QoS [9], a multiobjective method was developed. Using this

method, efficient use with lower power consumption was ob-

tained, and this problem was transformed into different convex,

genetic, and max-min problems [10], [11], [12]. Moreover,

Belabed et al. proposed a model with various topologies of a

data center to present a reasonable topology for the cloud data

center [?].

Other studies have reported only two methods with unfixed

thresholds used for determining whether a PM is overloaded.

One of the methods is a shadow-routing-based dynamic algo-

rithm proposed by Guo et al. They formulated the problem as a

max-min problem that dynamically changes the distribution of

VM by using constraints [13]. The other method is the Markov

chain model proposed by Beloglazov et al. They solved

the condition with unknown and nonstationary workloads by

using a sliding window. The Markov chain model provides a

sequence of states that distributes converged VMs [14].

Otherwise, we have found some allocators begin to notice

the interference between co-locate VMs. Corradi et al. imple-

ment a consolidation allocator with Openstack and discuss the

interference between VMs do influence the allocator perfor-

mance [8]. Otherwise, Caron et al. proposed the model concern

the interference between VMs in QoS which they define them

as isolation requirements [15].

B. Migration Cost

We aimed to determine the extent of damage caused by the

migrant attack in a real system. Therefore, we evaluated some

topics related to migration cost that highlighted the positive

relationship between the performance of workloads on the

VMs and the migration times [16]. In addition, the relationship

between power consumption and time of migration is positive

[3]. Therefore, as our migrant attack begins to increase migra-

tion times, the various costs of migration increase.

C. Other DoS Attack

The attacked target is increasingly close to the core network,

even cloud provider. Alarifi et al. design a class of DoS

attacks to IaaS clouds similar as us. Differently, their attack

cheats the protocol by building on some existed wave of

resource usage, and our attack skilly choose the weakly or

close to overloading resource to attack [17]. A coremelt attack

uses subverted machines between a link to saturate that link

[18]. Similarly, crossfire attacks target a group of network

apparatuses belonging to a network area to degrade or block

the area’s network availability [19]. Other attacks focus on the

saturation of a link in the cloud environment [20], [21].

Furthermore, some attacks focus on the weakness of the

protocol and design of defense schemes to send traffic that

forces low use of the scheme or apparatuses or failure to

98

provide service [22], [23]. Moreover, some attacks target the

hypervisor. Zhou et al. proposed the exploitation of virtual

CPU allocation, in which malicious VMs extract more CPU

cycles than other VMs do, and they implemented this attack in

a public cloud [24]. Varadarajan et al. used a similar concept

called resource-freeing attack, in which the attack using more

resource to squeezing others’ resource using [25]. Duncan et

al. proposed an attack scenario in which a malicious insider

may use a higher level of authorization to cause damage during

migration [26].

VII. FUTURE WORK AND CONCLUSION

The naive idea of defense and mitigation can be applied

to complex allocators and limit the use of resources. The

concept of a migrant attack can be applied to other types of

dynamic allocation. Moreover, a migrant attack can be used

to coordinate with the particular victim VM or service. It may

result in a chain migration.

The VM allocation scheme is crucial for ensuring elasticity

in the cloud data center. Lose elasticity will increase latency

of each request and incur additional cost because of high

power consumption and decreased revenues. A conventional

DoS attack on a cloud focuses on eluding the defense scheme

or targets a bottleneck in the service provider. This study

demonstrated that a malicious VMs can attack an allocation

scheme and cause damage to users and clouds. We hope

that this paper motivates more detailed investigations into the

migrant attack and eventually provides a solution for it.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of Science

and Technology under Grant 103-2221-E-002-142-MY3 and

Grant 104-3115-E-002-005, and in part by the Institute for

Information Industry (III) under Grant 105-FS-C06.

REFERENCES

[1] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy, survey,
and issues of cloud computing ecosystems. In Cloud Computing, pages
21–46. Springer, 2010.

[2] D Anstee, A Cockburn, and G Sockrider. Worldwide infrastructure
security report. Technical report, Burlington, MA, USA, 2014.

[3] Waltenegus Dargie. Estimation of the cost of vm migration. In Com-
puter Communication and Networks (ICCCN), 2014 23rd International
Conference on, pages 1–8. IEEE, 2014.

[4] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar
Buyya. Cost of virtual machine live migration in clouds: A performance
evaluation. In Cloud Computing, pages 254–265. Springer, 2009.

[5] Zhen Xiao, Weijia Song, and Qi Chen. Dynamic resource allocation
using virtual machines for cloud computing environment. volume 24,
pages 1107–1117. IEEE, 2013.

[6] Openstack. In https://www.openstack.org/software/icehouse/, 2014.
[7] Richard Wolski and John Brevik. Using parametric models to represent

private cloud workloads. Services Computing, IEEE Transactions on,
7(4):714–725, 2014.

[8] Antonio Corradi, Mario Fanelli, and Luca Foschini. Vm consolidation:
A real case based on openstack cloud. Future Generation Computer
Systems, 32:118–127, 2014.

[9] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware
resource allocation heuristics for efficient management of data centers
for cloud computing. Future generation computer systems, 28(5):755–
768, 2012.

[10] Thuan Duong-Ba, Thinh Nguyen, Bella Bose, and Tuan Tran. Joint
virtual machine placement and migration scheme for datacenters. In
Global Communications Conference (GLOBECOM), 2014 IEEE, pages
2320–2325. IEEE, 2014.

[11] Ting Yang, Young Choon Lee, and Albert Y Zomaya. Energy-efficient
data center networks planning with virtual machine placement and
traffic configuration. In Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference on, pages 284–
291. IEEE, 2014.

[12] Nguyen Trung Hieu, Marco Di Francesco, and Antti Yla-Jaaski. A
virtual machine placement algorithm for balanced resource utilization
in cloud data centers. In Cloud Computing (CLOUD), 2014 IEEE 7th
International Conference on, pages 474–481. IEEE, 2014.

[13] Yang Guo, Alexander L Stolyar, and Anwar Walid. Shadow-routing
based dynamic algorithms for virtual machine placement in a network
cloud. In INFOCOM, 2013 Proceedings IEEE, pages 620–628. IEEE,
2013.

[14] Anton Beloglazov and Rajkumar Buyya. Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers under
quality of service constraints. Parallel and Distributed Systems, IEEE
Transactions on, 24(7):1366–1379, 2013.

[15] Eddy Caron and Jonathan Rouzaud Cornabas. Improving users’ isolation
in iaas: Virtual machine placement with security constraints. In Cloud
Computing (CLOUD), 2014 IEEE 7th International Conference on,
pages 64–71. IEEE, 2014.

[16] Kateryna Rybina, Abhinandan Patni, and Alexander Schill. Analysing
the migration time of live migration of multiple virtual machines. In
4th International Conference on Cloud Computing and Services Science
(CLOSER 2014), 2014.

[17] Suaad Alarifi and Stephen D Wolthusen. Robust coordination of cloud-
internal denial of service attacks. In Cloud and Green Computing (CGC),
2013 Third International Conference on, pages 135–142. IEEE, 2013.

[18] Ahren Studer and Adrian Perrig. The coremelt attack. In Computer
Security–ESORICS 2009, pages 37–52. Springer, 2009.

[19] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. The crossfire attack.
In Security and Privacy (SP), 2013 IEEE Symposium on, pages 127–141.
IEEE, 2013.

[20] Huan Liu. A new form of dos attack in a cloud and its avoidance
mechanism. In Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, pages 65–76. ACM, 2010.

[21] Yichuan Wang, Jianfeng Ma, Di Lu, Xiang Lu, and Liumei Zhang. From
high-availability to collapse: quantitative analysis of ”cloud-droplet-
freezing” attack threats to virtual machine migration in cloud computing.
Cluster Computing, 17(4):1369–1381, 2014.

[22] Massimo Ficco and Massimiliano Rak. Stealthy denial of service
strategy in cloud computing. Cloud Computing, IEEE Transactions on,
3(1):80–94, 2015.

[23] Zhenqian Feng, Bing Bai, Baokang Zhao, and Jinshu Su. Shrew attack
in cloud data center networks. In Mobile Ad-hoc and Sensor Networks
(MSN), 2011 Seventh International Conference on, pages 441–445.
IEEE, 2011.

[24] Fangfei Zhou, Manish Goel, Peter Desnoyers, and Ravi Sundaram.
Scheduler vulnerabilities and coordinated attacks in cloud computing.
In 2011 10th IEEE International Symposium on Network Computing
and Applications (NCA), pages 123–130. IEEE, 2011.

[25] Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley,
Thomas Ristenpart, and Michael M Swift. Resource-freeing attacks:
improve your cloud performance (at your neighbor’s expense). In Pro-
ceedings of the 2012 ACM conference on Computer and communications
security, pages 281–292. ACM, 2012.

[26] Adrian Duncan, Sadie Creese, Michael Goldsmith, and Jamie S Quinton.
Cloud computing: Insider attacks on virtual machines during migration.
In Trust, Security and Privacy in Computing and Communications
(TrustCom), 2013 12th IEEE International Conference on, pages 493–
500. IEEE, 2013.

99

